Now that we (almost) have enough dependencies in place (MMCC, RPM, etc),
add necessary DT support so that we can use drm/msm on upstream kernel.
v2: update for review comments
v3: rebase on component helper changes
Signed-off-by: Rob Clark <robdclark@gmail.com>
Shut down the clks when the gpu has nothing to do. A short inactivity
timer is used to provide a low pass filter for power transitions.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add support for adreno 330. Not too much different, just a few
differences in initial configuration plus setting OCMEM base.
Userspace support is already in upstream mesa.
Note that the existing DT code is simply using the bindings from
downstream android kernel, to simplify porting of this driver to
existing devices. These do not constitute any committed/stable
DT ABI. The addition of proper DT bindings will be a subsequent
patch, at which point (as best as possible) I will try to support
either upstream bindings or what is found in downstream android
kernel, so that existing device DT files can be used.
Signed-off-by: Rob Clark <robdclark@gmail.com>
This adds the necessary configuration for the APQ8060A SoC (dual-core
krait + a320 gpu) as found on the bstem board.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add a VRAM carveout that is used for systems which do not have an IOMMU.
The VRAM carveout uses CMA. The arch code must setup a CMA pool for the
device (preferrably in highmem.. a 256m-512m VRAM pool in lowmem is not
cool). The user can configure the VRAM pool size using msm.vram module
param.
Technically, the abstraction of IOMMU behind msm_mmu is not strictly
needed, but it simplifies the GEM code a bit, and will be useful later
when I add support for a2xx devices with GPUMMU, so I decided to keep
this part.
It appears to be possible to configure the GPU to restrict access to
addresses within the VRAM pool, but this is not done yet. So for now
the GPU will refuse to load if there is no sort of mmu. Once address
based limits are supported and tested to confirm that we aren't giving
the GPU access to arbitrary memory, this restriction can be lifted
Signed-off-by: Rob Clark <robdclark@gmail.com>
This got a bit broken with original patches when re-arranging things to
move dependencies on mach-msm inside #ifndef OF.
Signed-off-by: Rob Clark <robdclark@gmail.com>
A basic, no-frills recovery mechanism in case the gpu gets wedged. We
could try to be a bit more fancy and restart the next submit after the
one that got wedged, but for now keep it simple. This is enough to
recover things if, for example, the gpu hangs mid way through a piglit
run.
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add initial support for a3xx 3d core.
So far, with hardware that I've seen to date, we can have:
+ zero, one, or two z180 2d cores
+ a3xx or a2xx 3d core, which share a common CP (the firmware
for the CP seems to implement some different PM4 packet types
but the basics of cmdstream submission are the same)
Which means that the eventual complete "class" hierarchy, once
support for all past and present hw is in place, becomes:
+ msm_gpu
+ adreno_gpu
+ a3xx_gpu
+ a2xx_gpu
+ z180_gpu
This commit splits out the parts that will eventually be common
between a2xx/a3xx into adreno_gpu, and the parts that are even
common to z180 into msm_gpu.
Note that there is no cmdstream validation required. All memory access
from the GPU is via IOMMU/MMU. So as long as you don't map silly things
to the GPU, there isn't much damage that the GPU can do.
Signed-off-by: Rob Clark <robdclark@gmail.com>