Each time pick one dead root from the list and let the caller know if
it's needed to continue. This should improve responsiveness during
umount and balance which at some point waits for cleaning all currently
queued dead roots.
A new dead root is added to the end of the list, so the snapshots
disappear in the order of deletion.
The snapshot cleaning work is now done only from the cleaner thread and the
others wake it if needed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We currently store the first key of the tree block inside the reference for the
tree block in the extent tree. This takes up quite a bit of space. Make a new
key type for metadata which holds the level as the offset and completely removes
storing the btrfs_tree_block_info inside the extent ref. This reduces the size
from 51 bytes to 33 bytes per extent reference for each tree block. In practice
this results in a 30-35% decrease in the size of our extent tree, which means we
COW less and can keep more of the extent tree in memory which makes our heavy
metadata operations go much faster. This is not an automatic format change, you
must enable it at mkfs time or with btrfstune. This patch deals with having
metadata stored as either the old format or the new format so it is easy to
convert. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"We've had a busy two weeks of bug fixing. The biggest patches in here
are some long standing early-enospc problems (Josef) and a very old
race where compression and mmap combine forces to lose writes (me).
I'm fairly sure the mmap bug goes all the way back to the introduction
of the compression code, which is proof that fsx doesn't trigger every
possible mmap corner after all.
I'm sure you'll notice one of these is from this morning, it's a small
and isolated use-after-free fix in our scrub error reporting. I
double checked it here."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: don't drop path when printing out tree errors in scrub
Btrfs: fix wrong return value of btrfs_lookup_csum()
Btrfs: fix wrong reservation of csums
Btrfs: fix double free in the btrfs_qgroup_account_ref()
Btrfs: limit the global reserve to 512mb
Btrfs: hold the ordered operations mutex when waiting on ordered extents
Btrfs: fix space accounting for unlink and rename
Btrfs: fix space leak when we fail to reserve metadata space
Btrfs: fix EIO from btrfs send in is_extent_unchanged for punched holes
Btrfs: fix race between mmap writes and compression
Btrfs: fix memory leak in btrfs_create_tree()
Btrfs: fix locking on ROOT_REPLACE operations in tree mod log
Btrfs: fix missing qgroup reservation before fallocating
Btrfs: handle a bogus chunk tree nicely
Btrfs: update to use fs_state bit
A user reported a problem where he was getting early ENOSPC with hundreds of
gigs of free data space and 6 gigs of free metadata space. This is because the
global block reserve was taking up the entire free metadata space. This is
ridiculous, we have infrastructure in place to throttle if we start using too
much of the global reserve, so instead of letting it get this huge just limit it
to 512mb so that users can still get work done. This allowed the user to
complete his rsync without issues. Thanks
Cc: stable@vger.kernel.org
Reported-and-tested-by: Stefan Priebe <s.priebe@profihost.ag>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Dave reported a warning when running xfstest 275. We have been leaking delalloc
metadata space when our reservations fail. This is because we were improperly
calculating how much space to free for our checksum reservations. The problem
is we would sometimes free up space that had already been freed in another
thread and we would end up with negative usage for the delalloc space. This
patch fixes the problem by calculating how much space the other threads would
have already freed, and then calculate how much space we need to free had we not
done the reservation at all, and then freeing any excess space. This makes
xfstests 275 no longer have leaked space. Thanks
Cc: stable@vger.kernel.org
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If you restore a btrfs-image file system and try to mount that file system we'll
panic. That's because btrfs-image restores and just makes one big chunk to
envelope the whole disk, since they are really only meant to be messed with by
our btrfs-progs. So fix up btrfs_rmap_block and the callers of it for mount so
that we no longer panic but instead just return an error and fail to mount.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"Eric's rcu barrier patch fixes a long standing problem with our
unmount code hanging on to devices in workqueue helpers. Liu Bo
nailed down a difficult assertion for in-memory extent mappings."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix warning of free_extent_map
Btrfs: fix warning when creating snapshots
Btrfs: return as soon as possible when edquot happens
Btrfs: return EIO if we have extent tree corruption
btrfs: use rcu_barrier() to wait for bdev puts at unmount
Btrfs: remove btrfs_try_spin_lock
Btrfs: get better concurrency for snapshot-aware defrag work
The callers of lookup_inline_extent_info all handle getting an error back
properly, so return an error if we have corruption instead of being a jerk and
panicing. Still WARN_ON() since this is kind of crucial and I've been seeing it
a bit too much recently for my taste, I think we're doing something wrong
somewhere. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"The biggest feature in the pull is the new (and still experimental)
raid56 code that David Woodhouse started long ago. I'm still working
on the parity logging setup that will avoid inconsistent parity after
a crash, so this is only for testing right now. But, I'd really like
to get it out to a broader audience to hammer out any performance
issues or other problems.
scrub does not yet correct errors on raid5/6 either.
Josef has another pass at fsync performance. The big change here is
to combine waiting for metadata with waiting for data, which is a big
latency win. It is also step one toward using atomics from the
hardware during a commit.
Mark Fasheh has a new way to use btrfs send/receive to send only the
metadata changes. SUSE is using this to make snapper more efficient
at finding changes between snapshosts.
Snapshot-aware defrag is also included.
Otherwise we have a large number of fixes and cleanups. Eric Sandeen
wins the award for removing the most lines, and I'm hoping we steal
this idea from XFS over and over again."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
btrfs: fixup/remove module.h usage as required
Btrfs: delete inline extents when we find them during logging
btrfs: try harder to allocate raid56 stripe cache
Btrfs: cleanup to make the function btrfs_delalloc_reserve_metadata more logic
Btrfs: don't call btrfs_qgroup_free if just btrfs_qgroup_reserve fails
Btrfs: remove reduplicate check about root in the function btrfs_clean_quota_tree
Btrfs: return ENOMEM rather than use BUG_ON when btrfs_alloc_path fails
Btrfs: fix missing deleted items in btrfs_clean_quota_tree
btrfs: use only inline_pages from extent buffer
Btrfs: fix wrong reserved space when deleting a snapshot/subvolume
Btrfs: fix wrong reserved space in qgroup during snap/subv creation
Btrfs: remove unnecessary dget_parent/dput when creating the pending snapshot
btrfs: remove a printk from scan_one_device
Btrfs: fix NULL pointer after aborting a transaction
Btrfs: fix memory leak of log roots
Btrfs: copy everything if we've created an inline extent
btrfs: cleanup for open-coded alignment
Btrfs: do not change inode flags in rename
Btrfs: use reserved space for creating a snapshot
clear chunk_alloc flag on retryable failure
...
The original code is a little confusing and not clear, The right
way to deal with the kernel code like this:
[...]
if (ret)
goto out;
[...]
So i move the common clean_up code to the place labeled with
out_fail, this will be easier to maintain.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
commit eb6b88d92c leads into another bug.
If it is just because qgroup_reserve fails, the function btrfs_qgroup_free
should not be called, otherwise, it will cause the wrong quota accounting.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There are two problems in the space reservation of the snapshot/
subvolume creation.
- don't reserve the space for the root item insertion
- the space which is reserved in the qgroup is different with
the free space reservation. we need reserve free space for
7 items, but in qgroup reservation, we need reserve space only
for 3 items.
So we implement new metadata reservation functions for the
snapshot/subvolume creation.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Though most of the btrfs codes are using ALIGN macro for page alignment,
there are still some codes using open-coded alignment like the
following:
------
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
------
Or even hidden one:
------
num_bytes = (end - start + blocksize) & ~(blocksize - 1);
------
Sometimes these open-coded alignment is not so easy to understand for
newbie like me.
This commit changes the open-coded alignment to the ALIGN macro for a
better readability.
Also there is a previous patch from David Sterba with similar changes,
but the patch is for 3.2 kernel and seems not merged.
http://www.spinics.net/lists/linux-btrfs/msg12747.html
Cc: David Sterba <dave@jikos.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I've experienced filesystem freezes with permanent spikes in the active
process count for quite a while, particularly on filesystems whose
available raw space has already been fully allocated to chunks.
While looking into this, I found a pretty obvious error in
do_chunk_alloc: it sets space_info->chunk_alloc, but if
btrfs_alloc_chunk returns an error other than ENOSPC, it returns leaving
that flag set, which causes any other threads waiting for
space_info->chunk_alloc to become zero to spin indefinitely.
I haven't double-checked that this patch fixes the failure I've observed
fully (it's not exactly trivial to trigger), but it surely is a bug and
the fix is trivial, so... Please put it in :-)
What I saw in that function also happens to explain why in some cases I
see filesystems allocate a huge number of chunks that remain unused
(leading to the scenario above, of not having more chunks to allocate).
It happens for data and metadata, but not necessarily both. I'm
guessing some thread sets the force_alloc flag on the corresponding
space_info, and then several threads trying to get disk space end up
attempting to allocate a new chunk concurrently. All of them will see
the force_alloc flag and bump their local copy of force up to the level
they see first, and they won't clear it even if another thread succeeds
in allocating a chunk, thus clearing the force flag. Then each thread
that observed the force flag will, on its turn, force the allocation of
a new chunk. And any threads that come in while it does that will see
the force flag still set and pick it up, and so on. This sounds like a
problem to me, but... what should the correct behavior be? Clear
force_flag once we copy it to a local force? Reset force to the
incoming value on every loop? Set the flag to our incoming force if we
have it at first, clear our local flag, and move it from the space_info
when we determined that we are the thread that's going to perform the
allocation?
btrfs: clear chunk_alloc flag on retryable failure
From: Alexandre Oliva <oliva@gnu.org>
If btrfs_alloc_chunk fails with e.g. ENOMEM, we exit do_chunk_alloc
without clearing chunk_alloc in space_info. As a result, any further
calls to do_chunk_alloc on that filesystem will start busy-waiting for
chunk_alloc to be cleared, but it never will be. This patch adjusts
do_chunk_alloc so that it clears this flag in case of an error.
Signed-off-by: Alexandre Oliva <oliva@gnu.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull trivial tree from Jiri Kosina:
"Assorted tiny fixes queued in trivial tree"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (22 commits)
DocBook: update EXPORT_SYMBOL entry to point at export.h
Documentation: update top level 00-INDEX file with new additions
ARM: at91/ide: remove unsused at91-ide Kconfig entry
percpu_counter.h: comment code for better readability
x86, efi: fix comment typo in head_32.S
IB: cxgb3: delay freeing mem untill entirely done with it
net: mvneta: remove unneeded version.h include
time: x86: report_lost_ticks doesn't exist any more
pcmcia: avoid static analysis complaint about use-after-free
fs/jfs: Fix typo in comment : 'how may' -> 'how many'
of: add missing documentation for of_platform_populate()
btrfs: remove unnecessary cur_trans set before goto loop in join_transaction
sound: soc: Fix typo in sound/codecs
treewide: Fix typo in various drivers
btrfs: fix comment typos
Update ibmvscsi module name in Kconfig.
powerpc: fix typo (utilties -> utilities)
of: fix spelling mistake in comment
h8300: Fix home page URL in h8300/README
xtensa: Fix home page URL in Kconfig
...
Very large fallocate requests are cpu bound and result in extents with a
repeating pattern of ever decreasing size:
$ time fallocate -l 1T file
real 0m13.039s
( an excerpt of the extents from btrfs-debug-tree: )
prealloc data disk byte 1536292564992 nr 397312
prealloc data disk byte 1536292962304 nr 196608
prealloc data disk byte 1536293158912 nr 98304
prealloc data disk byte 1536293257216 nr 49152
prealloc data disk byte 1536293306368 nr 24576
prealloc data disk byte 1536293330944 nr 12288
prealloc data disk byte 1536293343232 nr 8192
prealloc data disk byte 1536293351424 nr 4096
prealloc data disk byte 1536293355520 nr 4096
prealloc data disk byte 1536293359616 nr 4096
The excessive cpu use comes from __btrfs_prealloc_file_range() trying to
allocate the entire remaining size after each extent is allocated.
btrfs_reserve_extent() repeatedly cuts this requested size in half until
it gets down to the size that the allocators can return. We limit the
problem for now by capping each reservation at 256 meg.
The small extents come from a masking bug when decreasing the requested
reservation size. The high 32bits are cleared and the remaining low
bits might happen to reserve a small size. Fix this by using
round_down() which properly casts the mask.
After these fixes huge fallocate requests are fast and result in nice
large extents:
$ time fallocate -l 1T file
real 0m0.082s
prealloc data disk byte 1112425889792 nr 268435456
prealloc data disk byte 1112694325248 nr 268435456
prealloc data disk byte 1112962760704 nr 268435456
Reported-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The warning in use_block_rsv is not useful for users and may fill
the logs unnecessarily.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The deadlock problem happened when running fsstress(a test program in LTP).
Steps to reproduce:
# mkfs.btrfs -b 100M <partition>
# mount <partition> <mnt>
# <Path>/fsstress -p 3 -n 10000000 -d <mnt>
The reason is:
btrfs_direct_IO()
|->do_direct_IO()
|->get_page()
|->get_blocks()
| |->btrfs_delalloc_resereve_space()
| |->btrfs_add_ordered_extent() ------- Add a new ordered extent
|->dio_send_cur_page(page0) -------------- We didn't submit bio here
|->get_page()
|->get_blocks()
|->btrfs_delalloc_resereve_space()
|->flush_space()
|->btrfs_start_ordered_extent()
|->wait_event() ---------- Wait the completion of
the ordered extent that is
mentioned above
But because we didn't submit the bio that is mentioned above, the ordered
extent can not complete, we would wait for its completion forever.
There are two methods which can fix this deadlock problem:
1. submit the bio before we invoke get_blocks()
2. reserve the space before we do dio
Though the 1st is the simplest way, we need modify the code of VFS, and it
is likely to break contiguous requests, and introduce performance regression
for the other filesystems.
So we have to choose the 2nd way.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Sometimes xfstest 83 will fail to remount the scratch device because we've
gotten ourselves so full that we cannot cleanup the orphan items. In this
case check to see if we're doing the orphan cleanup and if we are allow us
to steal our reservation from the global block rsv. With this patch I've
not been able to reproduce the failed mount problem. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
People have been complaining about random ENOSPC errors that will clear up
after a umount or just a given amount of time. Chris was able to reproduce
this with stress.sh and lots of processes and so was I. Basically the
overcommit stuff would really let us get out of hand, in my tests I saw up
to 30 gigs of outstanding reservations with only 2 gigs total of metadata
space. This usually worked out fine but with so much outstanding
reservation the flushing stuff short circuits to make sure we don't hang
forever flushing when we really need ENOSPC. Plus we allocate chunks in
order to alleviate the pressure, but this doesn't actually help us since we
only use the non-allocated area in our over commit logic.
So instead of basing overcommit on the amount of non-allocated space,
instead just do it based on how much total space we have, and then limit it
to the non-allocated space in case we are short on space to spill over into.
This allows us to have the same performance as well as no longer giving
random ENOSPC. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Because of how little we allocate chunks now we can get really tight on
metadata space before we will allocate a new chunk. This resulted in being
unable to add device extents when allocating a new metadata chunk as we did
not have enough space. This is because we were allowed to overcommit too
much metadata without actually making sure we had enough space to make
allocations. The idea behind overcommit is that we are allowed to say "sure
you can have that reservation" when most of the free space is occupied by
reservations, not actual allocations. But in this case where a majority of
the total space is in use by actual allocations we can screw ourselves by
not being able to make real allocations when it matters. So make sure we
have enough real space for our global reserve, and if not then don't allow
overcommitting. Thanks,
Reported-and-tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is no lock to protect
fs_info->avail_{data, metadata, system}_alloc_bits,
it may introduce some problem, such as the wrong profile
information, so we add a seqlock to protect them.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
fs_info->delalloc_bytes is accessed very frequently, so use percpu
counter instead of the u64 variant for it to reduce the lock
contention.
This patch also fixed the problem that we access the variant
without the lock protection.At worst, we would not flush the
delalloc inodes, and just return ENOSPC error when we still have
some free space in the fs.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The current code of raid attr arry is hard to understand and it is easy to
introduce some problem if we modify the array. So I changed it and made it
more readable.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This'd save us a rbtree search which may become expensive in large filesystem.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
commit d53ba47484
(Btrfs: use commit root when loading free space cache) has remove
the deadlock check, and the related comments can be removed as well.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If we start running low on metadata space we will try to allocate a chunk,
which could then try to allocate a chunk to add the device entry. The thing
is we allocate a chunk before we try really hard to make the allocation, so
we should be able to find space for the device entry. Add a flag to the
trans handle so we know we're currently allocating a chunk so we can just
bail out if we try to allocate another chunk. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We may try to flush some dirty pages when there is no enough space to reserve.
But it is possible that this operation fails, in order to get enough space to
reserve successfully, we will sync all the delalloc file. This operation is
safe, we needn't worry about the case that the filesystem goes from r/w to r/o.
because the filesystem should guarantee all the dirty pages have been written
into the disk after it becomes readonly, so the sync operation will do nothing
if the filesystem is already readonly. Though it may waste lots of time,
as a corner case, we needn't care.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Locking and unlocking delayed ref mutex are in the different functions,
and the name of lock functions is not uniform, so the readability is not
so good, this patch optimizes the lock logic and makes it more readable.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The delayed reference allocation is in the fast path of the IO, so use slabs
to improve the speed of the allocation.
And besides that, it can do check for leaked objects when the module is removed.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Pull btrfs fixes from Chris Mason:
"We've got corner cases for updating i_size that ceph was hitting,
error handling for quotas when we run out of space, a very subtle
snapshot deletion race, a crash while removing devices, and one
deadlock between subvolume creation and the sb_internal code (thanks
lockdep)."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: move d_instantiate outside the transaction during mksubvol
Btrfs: fix EDQUOT handling in btrfs_delalloc_reserve_metadata
Btrfs: fix possible stale data exposure
Btrfs: fix missing i_size update
Btrfs: fix race between snapshot deletion and getting inode
Btrfs: fix missing release of the space/qgroup reservation in start_transaction()
Btrfs: fix wrong sync_writers decrement in btrfs_file_aio_write()
Btrfs: do not merge logged extents if we've removed them from the tree
btrfs: don't try to notify udev about missing devices
When btrfs_qgroup_reserve returned a failure, we were missing a counter
operation for BTRFS_I(inode)->outstanding_extents++, leading to warning
messages about outstanding extents and space_info->bytes_may_use != 0.
Additionally, the error handling code didn't take into account that we
dropped the inode lock which might require more cleanup.
Luckily, all the cleanup code we need is already there and can be shared
with reserve_metadata_bytes, which is exactly what this patch does.
Reported-by: Lev Vainblat <lev@zadarastorage.com>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We batch up operations to the extent allocation tree, which allows
us to deal with the recursive nature of using the extent allocation
tree to allocate extents to the extent allocation tree.
It also provides a mechanism to sort and collect extent
operations, which makes it much more efficient to record extents
that are close together.
The delayed extent operations must all be finished before the
running transaction commits, so we have code to make sure and run a few
of the batched operations when closing our transaction handles.
This creates a great deal of contention for the locks in the
delayed extent operation tree, and also contention for the lock on the
extent allocation tree itself. All the extra contention just slows
down the operations and doesn't get things done any faster.
This commit changes things to use a wait queue instead. As procs
want to run the delayed operations, one of them races in and gets
permission to hit the tree, and the others step back and wait for
progress to be made.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
With the new raid56 code, we want to make sure we're
properly aligning our allocation clusters with -o ssd
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This builds on David Woodhouse's original Btrfs raid5/6 implementation.
The code has changed quite a bit, blame Chris Mason for any bugs.
Read/modify/write is done after the higher levels of the filesystem have
prepared a given bio. This means the higher layers are not responsible
for building full stripes, and they don't need to query for the topology
of the extents that may get allocated during delayed allocation runs.
It also means different files can easily share the same stripe.
But, it does expose us to incorrect parity if we crash or lose power
while doing a read/modify/write cycle. This will be addressed in a
later commit.
Scrub is unable to repair crc errors on raid5/6 chunks.
Discard does not work on raid5/6 (yet)
The stripe size is fixed at 64KiB per disk. This will be tunable
in a later commit.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"It turns out that we had two crc bugs when running fsx-linux in a
loop. Many thanks to Josef, Miao Xie, and Dave Sterba for nailing it
all down. Miao also has a new OOM fix in this v2 pull as well.
Ilya fixed a regression Liu Bo found in the balance ioctls for pausing
and resuming a running balance across drives.
Josef's orphan truncate patch fixes an obscure corruption we'd see
during xfstests.
Arne's patches address problems with subvolume quotas. If the user
destroys quota groups incorrectly the FS will refuse to mount.
The rest are smaller fixes and plugs for memory leaks."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (30 commits)
Btrfs: fix repeated delalloc work allocation
Btrfs: fix wrong max device number for single profile
Btrfs: fix missed transaction->aborted check
Btrfs: Add ACCESS_ONCE() to transaction->abort accesses
Btrfs: put csums on the right ordered extent
Btrfs: use right range to find checksum for compressed extents
Btrfs: fix panic when recovering tree log
Btrfs: do not allow logged extents to be merged or removed
Btrfs: fix a regression in balance usage filter
Btrfs: prevent qgroup destroy when there are still relations
Btrfs: ignore orphan qgroup relations
Btrfs: reorder locks and sanity checks in btrfs_ioctl_defrag
Btrfs: fix unlock order in btrfs_ioctl_rm_dev
Btrfs: fix unlock order in btrfs_ioctl_resize
Btrfs: fix "mutually exclusive op is running" error code
Btrfs: bring back balance pause/resume logic
btrfs: update timestamps on truncate()
btrfs: fix btrfs_cont_expand() freeing IS_ERR em
Btrfs: fix a bug when llseek for delalloc bytes behind prealloc extents
Btrfs: fix off-by-one in lseek
...
We forgot to reset the path lock state to zero after we unlock the path block,
and this can lead to the ASSERT checker in tree unlock API.
Reported-by: Slava Barinov <rayslava@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This'd avoid us empty looping.
Say we have only one disk and the metadata raid type will be defaultly DUP,
and we do not need to start from index=0(RAID10) and get over two empty
loops to index=2(DUP).
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We still need to say we're flushing if we're limit flushing to keep somebody
from coming in and stealing our reservation. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
writeback_inodes_sb(_nr)_if_idle() is re-implemented by replacing down_read()
with down_read_trylock() because
- If ->s_umount is write locked, then the sb is not idle. That is
writeback_inodes_sb(_nr)_if_idle() needn't wait for the lock.
- writeback_inodes_sb(_nr)_if_idle() grabs s_umount lock when it want to start
writeback, it may bring us deadlock problem when doing umount. In order to
fix the problem, ext4 and btrfs implemented their own writeback functions
instead of writeback_inodes_sb(_nr)_if_idle(), but it introduced the redundant
code, it is better to implement a new writeback_inodes_sb(_nr)_if_idle().
The name of these two functions is cumbersome, so rename them to
try_to_writeback_inodes_sb(_nr).
This idea came from Christoph Hellwig.
Some code is from the patch of Kamal Mostafa.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Pull btrfs update from Chris Mason:
"A big set of fixes and features.
In terms of line count, most of the code comes from Stefan, who added
the ability to replace a single drive in place. This is different
from how btrfs normally replaces drives, and is much much much faster.
Josef is plowing through our synchronous write performance. This pull
request does not include the DIO_OWN_WAITING patch that was discussed
on the list, but it has a number of other improvements to cut down our
latencies and CPU time during fsync/O_DIRECT writes.
Miao Xie has a big series of fixes and is spreading out ordered
operations over more CPUs. This improves performance and reduces
contention.
I've put in fixes for error handling around hash collisions. These
are going back to individual stable kernels as I test against them.
Otherwise we have a lot of fixes and cleanups, thanks everyone!
raid5/6 is being rebased against the device replacement code. I'll
have it posted this Friday along with a nice series of benchmarks."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (115 commits)
Btrfs: fix a bug of per-file nocow
Btrfs: fix hash overflow handling
Btrfs: don't take inode delalloc mutex if we're a free space inode
Btrfs: fix autodefrag and umount lockup
Btrfs: fix permissions of empty files not affected by umask
Btrfs: put raid properties into global table
Btrfs: fix BUG() in scrub when first superblock reading gives EIO
Btrfs: do not call file_update_time in aio_write
Btrfs: only unlock and relock if we have to
Btrfs: use tokens where we can in the tree log
Btrfs: optimize leaf_space_used
Btrfs: don't memset new tokens
Btrfs: only clear dirty on the buffer if it is marked as dirty
Btrfs: move checks in set_page_dirty under DEBUG
Btrfs: log changed inodes based on the extent map tree
Btrfs: add path->really_keep_locks
Btrfs: do not mark ems as prealloc if we are writing to them
Btrfs: keep track of the extents original block length
Btrfs: inline csums if we're fsyncing
Btrfs: don't bother copying if we're only logging the inode
...
This confuses and angers lockdep even though it's ok. We don't really need
the lock for free space inodes since only the transaction committer will be
reserving space. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This happens because writeback_inodes_sb_nr_if_idle does down_read. This
doesn't work for us and it has not been fixed upstream yet, so do it
ourselves and use that instead so we can stop having this stupid long
standing lockup. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Raid properties can be shared among raid calculation code, we can put
them into a global table to keep it simple.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We forget to release the reserved space in the error path of delalloc
reservatiom, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch adds some code to disallow operations on the device that
is used as the target for the device replace operation.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Two calling functions also had to be changed to have the fs_info
pointer: repair_io_failure() and scrub_setup_recheck_block().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When committing a transaction, we may bail out of running delayed refs
due to ENOSPC, and then abort the current transaction to flip into readonly.
But we'll hit a deadlock on ref head's lock since we forget to release
its lock and other cleanup stuff.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Use WARN rather than printk followed by WARN_ON(1), for conciseness.
A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)
// <smpl>
@@
expression list es;
@@
-printk(
+WARN(1,
es);
-WARN_ON(1);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Dave gave me an image of a very full file system that would abort the
transaction because it ran out of space while committing the transaction.
This is because we would think there was plenty of room to create a snapshot
even though the global reserve was not full. This happens because we
calculate the global reserve size before we unpin any space, so after we
unpin the space we allow reservations to occur even though we haven't
reserved all of the space for our global reserve. Fix this by adding to the
global reserve while unpinning in order to make sure we always have enough
space to do our work. With this patch we no longer end up with an aborted
transaction, we return ENOSPC properly to the person trying to create the
snapshot. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In some places(such as: evicting inode), we just can not flush the reserved
space of delalloc, flushing the delayed directory index and delayed inode
is OK, but we don't try to flush those things and just go back when there is
no enough space to be reserved. This patch fixes this problem.
We defined 3 types of the flush operations: NO_FLUSH, FLUSH_LIMIT and FLUSH_ALL.
If we can in the transaction, we should not flush anything, or the deadlock
would happen, so use NO_FLUSH. If we flushing the reserved space of delalloc
would cause deadlock, use FLUSH_LIMIT. In the other cases, FLUSH_ALL is used,
and we will flush all things.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The comment is not coincident with the code. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
div_factor{_fine} has been implemented for two times, cleanup it.
And I move them into a independent file named math.h because they are
common math functions.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
"Whether" is misspelled in various comments across the tree; this
fixes them. No code changes.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
I don't think we have the same problem that this was supposed to fix
originally since we can allocate chunks in the enospc path now. This code
is causing us to constantly commit the transaction as we get close to using
all of our available space in our currently allocated chunks, instead of
allocating another chunk and carrying on with life, which is not nice for
performance. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Everytime we write out dirty pages we search for an offset in the tree,
convert the bits in the state, and then when we wait we search for the
offset again and clear the bits. So for every dirty range in the io tree we
are doing 4 rb searches, which is suboptimal. With this patch we are only
doing 2 searches for every cycle (modulo weird things happening). Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Running delayed refs is faster than running delalloc, so lets do that first
to try and reclaim space. This makes my fs_mark test about 20% faster.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Call btrfs_abort_transaction as early as possible when an error
condition is detected, that way the line number reported is useful
and we're not clueless anymore which error path led to the abort.
Signed-off-by: David Sterba <dsterba@suse.cz>
Everybody is just making stuff up, and it's just used to see if we really do
need to alloc a chunk, and since we do this when we already know we really
do it's just a waste of space. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
So we have lots of places where we try to preallocate chunks in order to
make sure we have enough space as we make our allocations. This has
historically meant that we're constantly tweaking when we should allocate a
new chunk, and historically we have gotten this horribly wrong so we way
over allocate either metadata or data. To try and keep this from happening
we are going to make it so that the block group item insertion is done out
of band at the end of a transaction. This will allow us to create chunks
even if we are trying to make an allocation for the extent tree. With this
patch my enospc tests run faster (didn't expect this) and more efficiently
use the disk space (this is what I wanted). Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I noticed I was seeing large lags when running my torrent test in a vm on my
laptop. While trying to make it lag less I noticed that our overcommit math
was taking into account the number of bytes we wanted to reclaim, not the
number of bytes we actually wanted to allocate, which means we wouldn't
overcommit as often. This patch fixes the overcommit math and makes
shrink_delalloc() use that logic so that it will stop looping faster. We
still have pretty high spikes of latency, but the test now takes 3 minutes
less time (about 5% faster). Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Mitch reported a problem where you could get an ENOSPC error when untarring
a kernel git tree onto a 16gb file system with compress-force=zlib. This is
because compression is a huge pain, it will return from ->writepages()
without having actually created any ordered extents. To get around this we
check to see if the async submit counter is up, and if it is wait until it
drops to 0 before doing our normal ordered wait dance. With this patch I
can now untar a kernel git tree onto a 16gb file system without getting
ENOSPC errors. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We should insert/update 6 items(root ref, root backref, dir item, dir index,
root item and parent inode) when creating a snapshot, not 5 items, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Sometimes we need choose the method of the reservation according to the type
of the block reservation, such as the reservation for the delayed inode update.
Now we identify the type just by comparing the address of the reservation
variants, it is very ugly if it is a temporary one because we need compare it
with all the common reservation variants. So we add a new "type" field to keep
the type the reservation variants.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
We will stop and restart a transaction every time we move to a different leaf
when truncating a file. This is for enospc reasons, but really we could
probably get away with doing this a little better by actually working until we
hit an ENOSPC. So add a ->failfast flag to the block_rsv and set it when we do
truncates which will fail as soon as the block rsv runs out of space, and then
at that point we can stop and restart the transaction and refill the block rsv
and carry on. This will make rm'ing of a file with lots of extents a bit
faster. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Swinging this pendulum back the other way. We've been allocating chunks up
to 2% of the disk no matter how much we actually have allocated. So instead
fix this calculation to only allocate chunks if we have more than 80% of the
space available allocated. Please test this as it will likely cause all
sorts of ENOSPC problems to pop up suddenly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Daniel Blueman reported a bug with fio+balance on a ramdisk setup.
Basically what happens is the balance relocates a tree block which will drop
the implicit refs for all of its children and adds a full backref. Once the
block is relocated we have to add the implicit refs back, so when we cow the
block again we add the implicit refs for its children back. The problem
comes when the original drop ref doesn't get run before we add the implicit
refs back. The delayed ref stuff will specifically prefer ADD operations
over DROP to keep us from freeing up an extent that will have references to
it, so we try to add the implicit ref before it is actually removed and we
panic. This worked fine before because the add would have just canceled the
drop out and we would have been fine. But the backref walking work needs to
be able to freeze the delayed ref stuff in time so we have this ever
increasing sequence number that gets attached to all new delayed ref updates
which makes us not merge refs and we run into this issue.
So to fix this we need to merge delayed refs. So everytime we run a
clustered ref we need to try and merge all of its delayed refs. The backref
walking stuff locks the delayed ref head before processing, so if we have it
locked we are safe to merge any refs inside of the sequence number. If
there is no sequence number we can merge all refs. Doing this not only
fixes our bug but keeps the delayed ref code from adding and removing
useless refs and batching together multiple refs into one search instead of
one search per delayed ref, which will really help our commit times. I ran
this with Daniels test and 276 and I haven't seen any problems. Thanks,
Reported-by: Daniel J Blueman <daniel@quora.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
With commit
commit d1270cd91f
Author: Arne Jansen <sensille@gmx.net>
Date: Tue Sep 13 15:16:43 2011 +0200
Btrfs: put back delayed refs that are too new
I added a window where the delayed_ref's head->ref_mod code can diverge
from the sum of the remaining refs, because we release the head->mutex
in the middle. This leads to btrfs_lookup_extent_info returning wrong
numbers. This patch fixes this by adjusting the head's ref_mod with each
delayed ref we run.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Arne was complaining about the space cache having mismatching generation
numbers when debugging a deadlock. This is because we can run out of space
in our preallocated range for our space cache if you have a pretty
fragmented amount of space in your pinned space. So just increase the
amount of space we preallocate for space cache so we can be sure to have
enough space. This will only really affect data ranges since their the only
chunks that end up larger than 256MB. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Commit a168650c introduced a waiting mechanism to prevent busy waiting in
btrfs_run_delayed_refs. This can deadlock with btrfs_run_ordered_operations,
where a tree_mod_seq is held while waiting for the io to complete, while
the end_io calls btrfs_run_delayed_refs.
This whole mechanism is unnecessary. If not enough runnable refs are
available to satisfy count, just return as count is more like a guideline
than a strict requirement.
In case we have to run all refs, commit transaction makes sure that no
other threads are working in the transaction anymore, so we just assert
here that no refs are blocked.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
For backref walking, we've introduce delayed ref's sequence. However,
it changes our preallocation behavior.
The story is that when we preallocate an extent and then mark it written
piece by piece, the ideal case should be that we don't need to COW the
extent, which is why we use 'preallocate'.
But we may not make use of preallocation, since when we check for cross refs on
the extent, we may have two ref entries which have the same content except
the sequence value, and we recognize them as cross refs and do COW to allocate
another extent.
So we end up with several pieces of space instead of an whole extent.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Inodes always allocate free space with BTRFS_BLOCK_GROUP_DATA type,
which means every inode has the same BTRFS_I(inode)->free_space pointer.
This shrinks struct btrfs_inode by 4 bytes (or 8 bytes on 64 bits).
Signed-off-by: Li Zefan <lizefan@huawei.com>
Block group has ro attributes, make dump_space_info show it.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Here is the whole story:
1)
A free space cache consists of two parts:
o free space cache inode, which is special becase it's stored in root tree.
o free space info, which is stored as the above inode's file data.
But we only build up another new inode and does not flush its free space info
onto disk when we _clear and setup_ free space cache, and this ends up with
that the block group cache's cache_state remains DC_SETUP instead of DC_WRITTEN.
And holding DC_SETUP means that we will not truncate this free space cache inode,
which means the disk offset of its file extent will remain _unchanged_ at least
until next transaction finishes committing itself.
2)
We can set a block group readonly when we relocate the block group.
However,
if the readonly block group covers the disk offset where our free space cache
inode is going to write, it will force the free space cache inode into
cow_file_range() and it'll end up hitting a BUG_ON.
3)
Due to the above analysis, we fix this bug by adding the missing dirty flag.
4)
However, it's not over, there is still another case, nospace_cache.
With nospace_cache, we do not want to set dirty flag, instead we just truncate
free space cache inode and bail out with setting cache state DC_WRITTEN.
We can benifit from it since it saves us another 'pre-allocation' part which
usually costs a lot.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
During disk balance, we prealloc new file extent for file data relocation,
but we may fail in 'no available space' case, and it leads to flipping btrfs
into readonly.
It is not necessary to bail out and abort transaction since we do have several
ways to rescue ourselves from ENOSPC case.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Since root can be fetched via BTRFS_I macro directly, we can save an args
for btrfs_is_free_space_inode().
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
So shrink_delalloc has grown all sorts of cruft over the years thanks to
many reworkings of how we track enospc. What happens now as we fill up the
disk is we will loop for freaking ever hoping to reclaim a arbitrary amount
of space of metadata, this was from when everybody flushed at the same time.
Now we only have people flushing one at a time. So instead of trying to
reclaim a huge amount of space, just try to flush a decent chunk of space,
and stop looping as soon as we have enough free space to satisfy our
reservation. This makes xfstests 224 go much faster. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is weird logic I had to put in place to make sure that when we were
adding csums that we'd used the delalloc block rsv instead of the global
block rsv. Part of this meant that we had to free up our transaction
reservation before we ran the delayed refs since csum deletion happens
during the delayed ref work. The problem with this is that when we release
a reservation we will add it to the global reserve if it is not full in
order to keep us going along longer before we have to force a transaction
commit. By releasing our reservation before we run delayed refs we don't
get the opportunity to drain down the global reserve for the work we did, so
we won't refill it as often. This isn't a problem per-se, it just results
in us possibly committing transactions more and more often, and in rare
cases could cause those WARN_ON()'s to pop in use_block_rsv because we ran
out of space in our block rsv.
This also helps us by holding onto space while the delayed refs run so we
don't end up with as many people trying to do things at the same time, which
again will help us not force commits or hit the use_block_rsv warnings.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Those crazy gentoo guys have been complaining about ENOSPC errors on their
portage volumes. This is because doing things like untar tends to create
lots of new files which will soak up all the reservation space in the
delayed inodes. Usually this gets papered over by the fact that we will try
and commit the transaction, however if this happens in the wrong spot or we
choose not to commit the transaction you will be screwed. So add the
ability to expclitly flush delayed inodes to free up space. Please test
this out guys to make sure it works since as usual I cannot reproduce.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Like block reserves, reserve a small piece of space on each
transaction start and for delalloc. These are the hooks that
can actually return EDQUOT to the user.
The amount of space reserved is tracked in the transaction
handle.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Normally delayed refs get processed in ascending bytenr order. This
correlates in most cases to the order added. To expose dependencies
on this order, we start to process the tree in the middle instead of
the beginning.
This code is only effective when SCRAMBLE_DELAYED_REFS is defined.
Signed-off-by: Arne Jansen <sensille@gmx.net>
We've got two mechanisms both required for reliable backref resolving (tree
mod log and holding back delayed refs). You cannot make use of one without
the other. So instead of requiring the user of this mechanism to setup both
correctly, we join them into a single interface.
Additionally, we stop inserting non-blockers into fs_info->tree_mod_seq_list
as we did before, which was of no value.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>