This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
On some architectures do_div does the pointer compare
trick to make sure that we've sent it an unsigned 64-bit
number. (Why unsigned? I don't know.)
Fix up the few places that squawk about this; in
xfs_bmap_wants_extents() we just used a bare int64_t so change
that to unsigned.
In xfs_adjust_extent_unmap_boundaries() all we wanted was the
mod, and we have an xfs-specific function to handle that w/o
side effects, which includes proper casting for do_div.
In xfs_daddr_to_ag[b]no, we were using the wrong type anyway;
XFS_BB_TO_FSBT returns a block in the filesystem, so use
xfs_rfsblock_t not xfs_daddr_t, and gain the unsignedness
from that type as a bonus.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The log covering background task used to be part of the xfssyncd
workqueue. That workqueue was removed as of commit 5889608df ("xfs:
syncd workqueue is no more") and the associated work item scheduled
to the xfs-log wq. The latter is used for log buffer I/O completion.
Since xfs_log_worker() can invoke a log flush, a deadlock is
possible between the xfs-log and xfs-cil workqueues. Consider the
following codepath from xfs_log_worker():
xfs_log_worker()
xfs_log_force()
_xfs_log_force()
xlog_cil_force()
xlog_cil_force_lsn()
xlog_cil_push_now()
flush_work()
The above is in xfs-log wq context and blocked waiting on the
completion of an xfs-cil work item. Concurrently, the cil push in
progress can end up blocked here:
xlog_cil_push_work()
xlog_cil_push()
xlog_write()
xlog_state_get_iclog_space()
xlog_wait(&log->l_flush_wait, ...)
The above is in xfs-cil context waiting on log buffer I/O
completion, which executes in xfs-log wq context. In this scenario
both workqueues are deadlocked waiting on eachother.
Add a new workqueue specifically for the high level log covering and
ail pushing worker, as was the case prior to commit 5889608df.
Diagnosed-by: David Jeffery <djeffery@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A debug mode write failure mechanism was introduced to XFS in commit
801cc4e17a ("xfs: debug mode forced buffered write failure") to
facilitate targeted testing of delalloc indirect reservation management
from userspace. This code was subsequently rendered ineffective by the
move to iomap based buffered writes in commit 68a9f5e700 ("xfs:
implement iomap based buffered write path"). This likely went unnoticed
because the associated userspace code had not made it into xfstests.
Resurrect this mechanism to facilitate effective indlen reservation
testing from xfstests. The move to iomap based buffered writes relocated
the hook this mechanism needs to return write failure from XFS to
generic code. The failure trigger must remain in XFS. Given that
limitation, convert this from a write failure mechanism to one that
simply drops writes without returning failure to userspace. Rename all
"fail_writes" references to "drop_writes" to illustrate the point. This
is more hacky than preferred, but still triggers the XFS error handling
behavior required to drive the indlen tests. This is only available in
DEBUG mode and for testing purposes only.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we force the log and simply try again if we hit a busy extent,
but especially with online discard enabled it might take a while after
the log force for the busy extents to disappear, and we might have
already completed our second pass.
So instead we add a new waitqueue and a generation counter to the pag
structure so that we can do wakeups once we've removed busy extents,
and we replace the single retry with an unconditional one - after
all we hold the AGF buffer lock, so no other allocations or frees
can be racing with us in this AG.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we try to rely on the global reserved block pool for block
allocations for the free inode btree, but I have customer reports
(fairly complex workload, need to find an easier reproducer) where that
is not enough as the AG where we free an inode that requires a new
finobt block is entirely full. This causes us to cancel a dirty
transaction and thus a file system shutdown.
I think the right way to guard against this is to treat the finot the same
way as the refcount btree and have a per-AG reservations for the possible
worst case size of it, and the patch below implements that.
Note that this could increase mount times with large finobt trees. In
an ideal world we would have added a field for the number of finobt
fields to the AGI, similar to what we did for the refcount blocks.
We should do add it next time we rev the AGI or AGF format by adding
new fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On filesystems with a lot of metadata and in metadata intensive workloads
xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of
the CPU time is spent on CPU cache misses while traversing the rbtree.
As the buffer cache does not need any kind of ordering, but fast lookups
a hashtable is the natural data structure to use. The rhashtable
infrastructure provides a self-scaling hashtable implementation and
allows lookups to proceed while the table is going through a resize
operation.
This reduces the CPU-time spent for the lookups to 1/3 even for small
filesystems with a relatively small number of cached buffers, with
possibly much larger gains on higher loaded filesystems.
[dchinner: reduce minimum hash size to an acceptable size for large
filesystems with many AGs with no active use.]
[dchinner: remove stale rbtree asserts.]
[dchinner: use xfs_buf_map for compare function argument.]
[dchinner: make functions static.]
[dchinner: remove redundant comments.]
Signed-off-by: Lucas Stach <dev@lynxeye.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Trim CoW reservations made on behalf of a cowextsz hint if they get too
old or we run low on quota, so long as we don't have dirty data awaiting
writeback or directio operations in progress.
Garbage collection of the cowextsize extents are kept separate from
prealloc extent reaping because setting the CoW prealloc lifetime to a
(much) higher value than the regular prealloc extent lifetime has been
useful for combatting CoW fragmentation on VM hosts where the VMs
experience bursty write behaviors and we can keep the utilization ratios
low enough that we don't start to run out of space. IOWs, it benefits
us to keep the CoW fork reservations around for as long as we can unless
we run out of blocks or hit inode reclaim.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Start constructing the refcount btree implementation by establishing
the on-disk format and everything needed to read, write, and
manipulate the refcount btree blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add new per-AG refcount btree definitions to the per-AG structures.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
One unfortunate quirk of the reference count and reverse mapping
btrees -- they can expand in size when blocks are written to *other*
allocation groups if, say, one large extent becomes a lot of tiny
extents. Since we don't want to start throwing errors in the middle
of CoWing, we need to reserve some blocks to handle future expansion.
The transaction block reservation counters aren't sufficient here
because we have to have a reserve of blocks in every AG, not just
somewhere in the filesystem.
Therefore, create two per-AG block reservation pools. One feeds the
AGFL so that rmapbt expansion always succeeds, and the other feeds all
other metadata so that refcountbt expansion never fails.
Use the count of how many reserved blocks we need to have on hand to
create a virtual reservation in the AG. Through selective clamping of
the maximum length of allocation requests and of the length of the
longest free extent, we can make it look like there's less free space
in the AG unless the reservation owner is asking for blocks.
In other words, play some accounting tricks in-core to make sure that
we always have blocks available. On the plus side, there's nothing to
clean up if we crash, which is contrast to the strategy that the rough
draft used (actually removing extents from the freespace btrees).
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
As it stands today, the "fail immediately" vs. "retry forever"
values for max_retries and retry_timeout_seconds in the xfs metadata
error configurations are not consistent.
A retry_timeout_seconds of 0 means "retry forever," but a
max_retries of 0 means "fail immediately."
retry_timeout_seconds < 0 is disallowed, while max_retries == -1
means "retry forever."
Make this consistent across the error configs, such that a value of
0 means "fail immediately" (i.e. wait 0 seconds, or retry 0 times),
and a value of -1 always means "retry forever."
This makes retry_timeout a signed long to accommodate the -1, even
though it stores jiffies. Given our limit of a 1 day maximum
timeout, this should be sufficient even at much higher HZ values
than we have available today.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
The rmap btree is allocated from the AGFL, which means we have to
ensure ENOSPC is reported to userspace before we run out of free
space in each AG. The last allocation in an AG can cause a full
height rmap btree split, and that means we have to reserve at least
this many blocks *in each AG* to be placed on the AGFL at ENOSPC.
Update the various space calculation functions to handle this.
Also, because the macros are now executing conditional code and are
called quite frequently, convert them to functions that initialise
variables in the struct xfs_mount, use the new variables everywhere
and document the calculations better.
[darrick.wong@oracle.com: don't reserve blocks if !rmap]
[dchinner@redhat.com: update m_ag_max_usable after growfs]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
Now we have all the surrounding call infrastructure in place, we can
start filling out the rmap btree implementation. Start with the
on-disk btree format; add everything needed to read, write and
manipulate rmap btree blocks. This prepares the way for adding the
btree operations implementation.
[darrick: record owner and offset info in rmap btree]
[darrick: fork, bmbt and unwritten state in rmap btree]
[darrick: flags are a separate field in xfs_rmap_irec]
[darrick: calculate maxlevels separately]
[darrick: move the 'unwritten' bit into unused parts of rm_offset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Originally-From: Dave Chinner <dchinner@redhat.com>
XFS reserves a small amount of space in each AG for the minimum
number of free blocks needed for operation. Adding the rmap btree
increases the number of reserved blocks, but it also increases the
complexity of the calculation as the free inode btree is optional
(like the rmbt).
Rather than calculate the prealloc blocks every time we need to
check it, add a function to calculate it at mount time and store it
in the struct xfs_mount, and convert the XFS_PREALLOC_BLOCKS macro
just to use the xfs-mount variable directly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Changes in this update:
o fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
o allow fast path symlink lookups for inline symlinks.
o attribute listing cleanups
o writeback goes direct to bios rather than indirecting through
bufferheads
o transaction allocation cleanup
o optimised kmem_realloc
o added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
o fixed several inode cluster writeback lookup vs reclaim race
conditions
o fixed inode cluster writeback checking wrong inode after lookup
o fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
o cleaned up inode reclaim tagging
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRo8LAAoJEK3oKUf0dfodxLgP+wQMd46i/nCncr6jMcdoVXfL
rE6cL1LJWWVOWzax/bmdlV1VNXqqW7n0ABAVMqikzqSEd+fBQe/HOkdBeVUywu7o
bmqgNxuofMqHaiYhiTvUijHLHWLFxIgd/jNT7L5oGRzZdmP260VGf3EPipN7aA9U
Y3KVhFQCqohpeIUeSV4Z/eIDdHN5LyUI1s+7zMLquHKCWyO4aO4GBX8YlyXdRRVe
cwCZb4TBryS0PBCIra31MZ5wBRwLx8PBXqcNsnTQSR5Uu+WeuwxofXz5q3kdmNOU
XGTWiabQbcvaC4twrzqnErHEX41PAs43tWxsI/qJH49QIFdfOYM+t8ERhEa2Q3DW
Ihl+Q/2qiOuZZterG/t5MrxhybrmQhEFVJT6Ib8b/CnwpRm+K8kWTead1YJL8Xzd
F9k8e57BCgTbDA7jWxWDbp7eQ1/4KglBD4sefFPpsuFgO882mmo5GmymALGjmitw
JH1v3HL3PeTkQoHfcay8ZM/zNjX643CXHwCWYEOAgD+e77TPiOs/cHLZaXbrBkLK
PpSJNfYiBe31eeSOEGsxivMapLpus+cHZyK3uR+XU+naJhjOdaBDTTo8RsAD9jS5
C/dzxc4l7o+gYT+UjV5KtyfEeVwtGo5mtR9XozPbNDjNQor8Vo6NQMZXMXpFYDZI
2XgzVNpkEf/74kexdEzV
=0tYo
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"A pretty average collection of fixes, cleanups and improvements in
this request.
Summary:
- fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
- allow fast path symlink lookups for inline symlinks.
- attribute listing cleanups
- writeback goes direct to bios rather than indirecting through
bufferheads
- transaction allocation cleanup
- optimised kmem_realloc
- added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
- fixed several inode cluster writeback lookup vs reclaim race
conditions
- fixed inode cluster writeback checking wrong inode after lookup
- fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
- cleaned up inode reclaim tagging"
* tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: fix warning in xfs_finish_page_writeback for non-debug builds
xfs: move reclaim tagging functions
xfs: simplify inode reclaim tagging interfaces
xfs: rename variables in xfs_iflush_cluster for clarity
xfs: xfs_iflush_cluster has range issues
xfs: mark reclaimed inodes invalid earlier
xfs: xfs_inode_free() isn't RCU safe
xfs: optimise xfs_iext_destroy
xfs: skip stale inodes in xfs_iflush_cluster
xfs: fix inode validity check in xfs_iflush_cluster
xfs: xfs_iflush_cluster fails to abort on error
xfs: remove xfs_fs_evict_inode()
xfs: add "fail at unmount" error handling configuration
xfs: add configuration handlers for specific errors
xfs: add configuration of error failure speed
xfs: introduce table-based init for error behaviors
xfs: add configurable error support to metadata buffers
xfs: introduce metadata IO error class
xfs: configurable error behavior via sysfs
xfs: buffer ->bi_end_io function requires irq-safe lock
...
If we take "retry forever" literally on metadata IO errors, we can
hang at unmount, once it retries those writes forever. This is the
default behavior, unfortunately.
Add an error configuration option for this behavior and default it
to "fail" so that an unmount will trigger actuall errors, a shutdown
and allow the unmount to succeed. It will be noisy, though, as it
will log the errors and shutdown that occurs.
To fix this, we need to mark the filesystem as being in the process
of unmounting. Do this with a mount flag that is added at the
appropriate time (i.e. before the blocking AIL sync). We also need
to add this flag if mount fails after the initial phase of log
recovery has been run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
now most of the infrastructure is in place, we can start adding
support for configuring specific errors such as ENODEV, ENOSPC, EIO,
etc. Add these error configurations and configure them all to have
appropriate behaviours. That is, all will be configured to retry
forever by default, except for ENODEV, which is an unrecoverable
error, so it will be configured to not retry on error
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On reception of an error, we can fail immediately, perform some
bound amount of retries or retry indefinitely. The current behaviour
we have is to retry forever.
However, we'd like the ability to choose how long the filesystem
should try after an error, it can either fail immediately, retry a
few times, or retry forever. This is implemented by using
max_retries sysfs attribute, to hold the amount of times we allow
the filesystem to retry after an error. Being -1 a special case
where the filesystem will retry indefinitely.
Add both a maximum retry count and a retry timeout so that we can
bound by time and/or physical IO attempts.
Finally, plumb these into xfs_buf_iodone error processing so that
the error behaviour follows the selected configuration.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
With the error configuration handle for async metadata write errors
in place, we can now add initial support to the IO error processing
in xfs_buf_iodone_error().
Add an infrastructure function to look up the configuration handle,
and rearrange the error handling to prepare the way for different
error handling conigurations to be used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now we have the basic infrastructure, add the first error class so
we can build up the infrastructure in a meaningful way. Add the
metadata async write IO error class and sysfs entry, and introduce a
default configuration that matches the existing "retry forever"
behavior for async write metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We need to be able to change the way XFS behaviours in error
conditions depending on the type of underlying storage. This is
necessary for handling non-traditional block devices with extended
error cases, such as thin provisioned devices that can return ENOSPC
as an IO error.
Introduce the basic sysfs infrastructure needed to define and
configure error behaviours. This is done to be generic enough to
extend to configuring behaviour in other error conditions, such as
ENOMEM, which also has different desired behaviours according to
machine configuration.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a DEBUG mode-only sysfs knob to enable forced buffered write
failure. An additional side effect of this mode is brute force killing
of delayed allocation blocks in the range of the write. The latter is
the prime motiviation behind this patch, as userspace test
infrastructure requires a reliable mechanism to create and split
delalloc extents without causing extent conversion.
Certain fallocate operations (i.e., zero range) were used for this in
the past, but the implementations have changed such that delalloc
extents are flushed and converted to real blocks, rendering the test
useless.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
inode32/inode64 allocator behavior with respect to mount, remount
and growfs is a little tricky.
The inode32 mount option should only enable the inode32 allocator
heuristics if the filesystem is large enough for 64-bit inodes to
exist. Today, it has this behavior on the initial mount, but a
remount with inode32 unconditionally changes the allocation
heuristics, even for a small fs.
Also, an inode32 mounted small filesystem should transition to the
inode32 allocator if the filesystem is subsequently grown to a
sufficient size. Today that does not happen.
This patch consolidates xfs_set_inode32 and xfs_set_inode64 into a
single new function, and moves the "is the maximum inode number big
enough to matter" test into that function, so it doesn't rely on the
caller to get it right - which remount did not do, previously.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Old leftovers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Don't leak the UUID table when the module is unloaded.
(Found with kmemleak.)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To enable DAX to do atomic allocation of zeroed extents, we need to
drive the block zeroing deep into the allocator. Because
xfs_bmapi_write() can return merged extents on allocation that were
only partially allocated (i.e. requested range spans allocated and
hole regions, allocation into the hole was contiguous), we cannot
zero the extent returned from xfs_bmapi_write() as that can
overwrite existing data with zeros.
Hence we have to drive the extent zeroing into the allocation code,
prior to where we merge the extents into the BMBT and return the
resultant map. This means we need to propagate this need down to
the xfs_alloc_vextent() and issue the block zeroing at this point.
While this functionality is being introduced for DAX, there is no
reason why it is specific to DAX - we can per-zero blocks during the
allocation transaction on any type of device. It's just slow (and
usually slower than unwritten allocation and conversion) on
traditional block devices so doesn't tend to get used. We can,
however, hook hardware zeroing optimisations via sb_issue_zeroout()
to this operation, so it may be useful in future and hence the
"allocate zeroed blocks" API needs to be implementation neutral.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch implements per-filesystem stats objects in sysfs. It
depends on the application of the previous patch series that
develops the infrastructure to support both xfs global stats and
xfs per-fs stats in sysfs.
Stats objects are instantiated when an xfs filesystem is mounted
and deleted on unmount. With this patch, the stats directory is
created and populated with the familiar stats and stats_clear files.
Example:
/sys/fs/xfs/sda9/stats/stats
/sys/fs/xfs/sda9/stats/stats_clear
With this patch, the individual counts within the new per-fs
stats file(s) remain at zero. Functions that use the the macros
to increment, decrement, and add-to the per-fs stats counts will
be covered in a separate new patch to follow this one. Note that
the counts within the global stats file (/sys/fs/xfs/stats/stats)
advance normally and can be cleared as it was prior to this patch.
[dchinner: move setup/teardown to xfs_fs_{fill|put}_super() so
it is down before/after any path that uses the per-mount stats. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add initial DAX support to XFS. To do this we need a new mount
option to turn DAX on filesystem, and we need to propagate this into
the inode flags whenever an inode is instantiated so that the
per-inode checks throughout the code Do The Right Thing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_ialloc_ag_select() iterates through the allocation groups looking
for free inodes or free space to determine whether to allow an inode
allocation to proceed. If no free inodes are available, it assumes that
an AG must have an extent longer than mp->m_ialloc_blks.
Sparse inode chunk support currently allows for allocations smaller than
the traditional inode chunk size specified in m_ialloc_blks. The current
minimum sparse allocation is set in the superblock sb_spino_align field
at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use
this to represent the minimum supported allocation size for inode
chunks. Initialize m_ialloc_min_blks at mount time based on whether
sparse inodes are supported.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that there are no users of the bitfield based incore superblock
modification API, just remove the whole damn lot of it, including
all the bitfield definitions. This finally removes a lot of cruft
that has been around for a long time.
Credit goes to Christoph Hellwig for providing a great patch
connecting all the dots to enale us to do this. This patch is
derived from that work.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Introduce helper functions for modifying fields in the superblock
into xfs_trans.c, the only caller of xfs_mod_incore_sb_batch(). We
can then use these directly in xfs_trans_unreserve_and_mod_sb() and
so remove another user of the xfs_mode_incore_sb() API without
losing any functionality or scalability of the transaction commit
code..
Based on a patch from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a new helper to modify the incore counter of free realtime
extents. This matches the helpers used for inode and data block
counters, and removes a significant users of the xfs_mod_incore_sb()
interface.
Based on a patch originally from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the in-core superblock infrastructure has been replaced with
generic per-cpu counters, we don't need it anymore. Nuke it from
orbit so we are sure that it won't haunt us again...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free block counter is
special in that it is used for ENOSPC detection outside transaction
contexts for for delayed allocation. This means that the counter
needs to be accurate at zero. The current per-cpu counter code jumps
through lots of hoops to ensure we never run past zero, but we don't
need to make all those jumps with the generic counter
implementation.
The generic counter implementation allows us to pass a "batch"
threshold at which the addition/subtraction to the counter value
will be folded back into global value under lock. We can use this
feature to reduce the batch size as we approach 0 in a very similar
manner to the existing counters and their rebalance algorithm. If we
use a batch size of 1 as we approach 0, then every addition and
subtraction will be done against the global value and hence allow
accurate detection of zero threshold crossing.
Hence we can replace the handrolled, accurate-at-zero counters with
generic percpu counters.
Note: this removes just enough of the icsb infrastructure to compile
without warnings. The rest will go in subsequent commits.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free inode counter is not
used for any limit enforcement - the per-AG free inode counters are
used during allocation to determine if there are inode available for
allocation.
Hence we don't need any of the complexity of the hand-rolled
counters and we can simply replace them with generic per-cpu
counters similar to the inode counter.
This version introduces a xfs_mod_ifree() helper function from
Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. There are some warts around
the use of them for the inode counter as the hand rolled counter is
designed to be accurate at zero, but has no specific accurracy at
any other value. This design causes problems for the maximum inode
count threshold enforcement, as there is no trigger that balances
the counters as they get close tothe maximum threshold.
Instead of designing new triggers for balancing, just replace the
handrolled per-cpu counter with a generic counter. This enables us
to update the counter through the normal superblock modification
funtions, but rather than do that we add a xfs_mod_icount() helper
function (from Christoph Hellwig) and keep the percpu counter
outside the superblock in the struct xfs_mount.
This means we still need to initialise the per-cpu counter
specifically when we read the superblock, and vice versa when we
log/write it, but it does mean that we don't need to change any
other code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add operations to export pNFS block layouts from an XFS filesystem. See
the previous commit adding the operations for an explanation of them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We now have several superblock loggin functions that are identical
except for the transaction reservation and whether it shoul dbe a
synchronous transaction or not. Consolidate these all into a single
function, a single reserveration and a sync flag and call it
xfs_sync_sb().
Also, xfs_mod_sb() is not really a modification function - it's the
operation of logging the superblock buffer. hence change the name of
it to reflect this.
Note that we have to change the mp->m_update_flags that are passed
around at mount time to a boolean simply to indicate a superblock
update is needed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we log changes to the superblock, we first have to write them
to the on-disk buffer, and then log that. Right now we have a
complex bitfield based arrangement to only write the modified field
to the buffer before we log it.
This used to be necessary as a performance optimisation because we
logged the superblock buffer in every extent or inode allocation or
freeing, and so performance was extremely important. We haven't done
this for years, however, ever since the lazy superblock counters
pulled the superblock logging out of the transaction commit
fast path.
Hence we have a bunch of complexity that is not necessary that makes
writing the in-core superblock to disk much more complex than it
needs to be. We only need to log the superblock now during
management operations (e.g. during mount, unmount or quota control
operations) so it is not a performance critical path anymore.
As such, remove the complex field based logging mechanism and
replace it with a simple conversion function similar to what we use
for all other on-disk structures.
This means we always log the entirity of the superblock, but again
because we rarely modify the superblock this is not an issue for log
bandwidth or CPU time. Indeed, if we do log the superblock
frequently, delayed logging will minimise the impact of this
overhead.
[Fixed gquota/pquota inode sharing regression noticed by bfoster.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The expectation since the introduction the lazy superblock counters is
that the counters are synced and superblock logged appropriately as part
of the filesystem freeze sequence. This does not occur, however, due to
the logic in xfs_fs_writable() that prevents progress when the fs is in
any state other than SB_UNFROZEN.
While this is a bug, it has not been exposed to date because the last
thing XFS does during freeze is dirty the log. The log recovery process
recalculates the counters from AGI/AGF metadata to ensure everything is
correct. Therefore should a crash occur while an fs is frozen, the
subsequent log recovery puts everything back in order. See the following
commit for reference:
92821e2b [XFS] Lazy Superblock Counters
We might not always want to rely on dirtying the log on a frozen fs.
Modify xfs_log_sbcount() to proceed when the filesystem is freezing but
not once the freeze process has completed. Modify xfs_fs_writable() to
accept the minimum freeze level for which modifications should be
blocked to support various codepaths.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The xfslogd workqueue is a global, single-job workqueue for buffer ioend
processing. This means we allow for a single work item at a time for all
possible XFS mounts on a system. fsstress testing in loopback XFS over
XFS configurations has reproduced xfslogd deadlocks due to the single
threaded nature of the queue and dependencies introduced between the
separate XFS instances by online discard (-o discard).
Discard over a loopback device converts the discard request to a hole
punch (fallocate) on the underlying file. Online discard requests are
issued synchronously and from xfslogd context in XFS, hence the xfslogd
workqueue is blocked in the upper fs waiting on a hole punch request to
be servied in the lower fs. If the lower fs issues I/O that depends on
xfslogd to complete, both filesystems end up hung indefinitely. This is
reproduced reliabily by generic/013 on XFS->loop->XFS test devices with
the '-o discard' mount option.
Further, docker implementations appear to use this kind of configuration
for container instance filesystems by default (container fs->dm->
loop->base fs) and therefore are subject to this deadlock when running
on XFS.
Replace the global xfslogd workqueue with a per-mount variant. This
guarantees each mount access to a single worker and prevents deadlocks
due to inter-fs dependencies introduced by discard. Since the queue is
only responsible for buffer iodone processing at this point in time,
rename xfslogd to xfs-buf.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Embed a base kobject into xfs_mount. This creates a kobject associated
with each XFS mount and a subdirectory in sysfs with the name of the
filesystem. The subdirectory lifecycle matches that of the mount. Also
add the new xfs_sysfs.[c,h] source files with some XFS sysfs
infrastructure to facilitate attribute creation.
Note that there are currently no attributes exported as part of the
xfs_mount kobject. It exists solely to serve as a per-mount container
for child objects.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The directory code has a dependency on the struct xfs_mount to
supply the directory block geometry. Block size, block log size,
and other parameters are pre-caclulated in the struct xfs_mount or
access directly from the superblock embedded in the struct
xfs_mount.
Extract all of this geometry information out of the struct xfs_mount
and superblock and place it into a new struct xfs_da_geometry
defined by the directory code. Allocate and initialise it at mount
time, and attach it to the struct xfs_mount so it canbe passed back
into the directory code appropriately rather than using the struct
xfs_mount.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
v5 filesystems use 512 byte inodes as a minimum, so read inodes in
clusters that are effectively half the size of a v4 filesystem with
256 byte inodes. For v5 fielsystems, scale the inode cluster size
with the size of the inode so that we keep a constant 32 inodes per
cluster ratio for all inode IO.
This only works if mkfs.xfs sets the inode alignment appropriately
for larger inode clusters, so this functionality is made conditional
on mkfs doing the right thing. xfs_repair needs to know about
the inode alignment changes, too.
Wall time:
create bulkstat find+stat ls -R unlink
v4 237s 161s 173s 201s 299s
v5 235s 163s 205s 31s 356s
patched 234s 160s 182s 29s 317s
System time:
create bulkstat find+stat ls -R unlink
v4 2601s 2490s 1653s 1656s 2960s
v5 2637s 2497s 1681s 20s 3216s
patched 2613s 2451s 1658s 20s 3007s
So, wall time same or down across the board, system time same or
down across the board, and cache hit rates all improve except for
the ls -R case which is a pure cold cache directory read workload
on v5 filesystems...
So, this patch removes most of the performance and CPU usage
differential between v4 and v5 filesystems on traversal related
workloads.
Note: while this patch is currently for v5 filesystems only, there
is no reason it can't be ported back to v4 filesystems. This hasn't
been done here because bringing the code back to v4 requires
forwards and backwards kernel compatibility testing. i.e. to
deterine if older kernels(*) do the right thing with larger inode
alignments but still only using 8k inode cluster sizes. None of this
testing and validation on v4 filesystems has been done, so for the
moment larger inode clusters is limited to v5 superblocks.
(*) a current default config v4 filesystem should mount just fine on
2.6.23 (when lazy-count support was introduced), and so if we change
the alignment emitted by mkfs without a feature bit then we have to
make sure it works properly on all kernels since 2.6.23. And if we
allow it to be changed when the lazy-count bit is not set, then it's
all kernels since v2 logs were introduced that need to be tested for
compatibility...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The remaining non-vectorised code for the directory structure is the
node format blocks. This is shared with the attribute tree, and so
is slightly more complex to vectorise.
Introduce a "non-directory" directory ops structure that is attached
to all non-directory inodes so that attribute operations can be
vectorised for all inodes.
Once we do this, we can vectorise all the da btree operations.
Because this patch adds more infrastructure than it removes the
binary size does not decrease:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
789061 96802 1096 886959 d88af fs/xfs/xfs.o.p5
789733 96802 1096 887631 d8b4f fs/xfs/xfs.o.p6
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Lots of the dir code now goes through switches to determine what is
the correct on-disk format to parse. It generally involves a
"xfs_sbversion_hasfoo" check, deferencing the superblock version and
feature fields and hence touching several cache lines per operation
in the process. Some operations do multiple checks because they nest
conditional operations and they don't pass the information in a
direct fashion between each other.
Hence, add an ops vector to the xfs_inode structure that is
configured when the inode is initialised to point to all the correct
decode and encoding operations. This will significantly reduce the
branchiness and cacheline footprint of the directory object decoding
and encoding.
This is the first patch in a series of conversion patches. It will
introduce the ops structure, the setup of it and add the first
operation to the vector. Subsequent patches will convert directory
ops one at a time to keep the changes simple and obvious.
Just this patch shows the benefit of such an approach on code size.
Just converting the two shortform dir operations as this patch does
decreases the built binary size by ~1500 bytes:
$ size fs/xfs/xfs.o.orig fs/xfs/xfs.o.p1
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
$
That's a significant decrease in the instruction cache footprint of
the directory code for such a simple change, and indicates that this
approach is definitely worth pursuing further.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce a new structure xfs_trans_res to hold transaction
reservation item info per log ticket.
We also need to improve xfs_trans_resv_calc() by initializing the
log count as well as log flags for permanent log reservation.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The struct xfs_perag has many kernel-only definitions in it,
requiring a __KERNEL__ guard so userspace can use it to. Move it to
xfs_mount.h so that it it kernel-only, and let userspace redefine
it's own version of the structure containing only what it needs.
This gets rid of another __KERNEL__ check in the XFS header files.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_mount.c is shared with userspace, but the only functions that
are shared are to do with physical superblock manipulations. This
means that less than 25% of the xfs_mount.c code is actually shared
with userspace. Move all the superblock functions to xfs_sb.c and
share that instead with libxfs.
Note that this will leave all the in-core transaction related
superblock counter modifications in xfs_mount.c as none of that is
shared with userspace. With a few more small changes, xfs_mount.h
won't need to be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The transaction reservation size calculations is used by both kernel
and userspace, but most of the transaction code in xfs_trans.c is
kernel specific. Split all the transaction reservation code out into
it's own files to make sharing with userspace simpler. This just
leaves kernel-only definitions in xfs_trans.h, so it doesn't need to
be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_MOUNT_RETERR is going to be set at xfs_parseargs() if
mp->m_dalign is enabled, so any time we enter "if (mp->m_dalign)"
branch in xfs_update_alignment(), XFS_MOUNT_RETERR is set and so
we always be emitting a warning and returning an error.
Hence, we can remove it and get rid of a couple of redundant
check up against it at xfs_upate_alignment().
Thanks Dave Chinner for the suggestions of simplify the code
in xfs_parseargs().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove struct xfs_chash from struct xfs_mount as there is no user of
it nowadays.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the addition of CRCs, there is such a wide and varied change to
the on disk format that it makes sense to bump the superblock
version number rather than try to use feature bits for all the new
functionality.
This commit introduces all the new superblock fields needed for all
the new functionality: feature masks similar to ext4, separate
project quota inodes, a LSN field for recovery and the CRC field.
This commit does not bump the superblock version number, however.
That will be done as a separate commit at the end of the series
after all the new functionality is present so we switch it all on in
one commit. This means that we can slowly introduce the changes
without them being active and hence maintain bisectability of the
tree.
This patch is based on a patch originally written by myself back
from SGI days, which was subsequently modified by Christoph Hellwig.
There is relatively little of that patch remaining, but the history
of the patch still should be acknowledged here.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Looks the old m_inode_shrink is obsoleted as we perform inodes reclaim per AG via
m_reclaim_workqueue, this patch remove it from the xfs_mount structure if so.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently, we calculate the attribute set transaction
log space reservation at runtime in two parts:
1) XFS_ATTRSET_LOG_RES() which is calcuated out at mount time.
2) ((ext * (mp)->m_sb.sb_sectsize) + \
(ext * XFS_FSB_TO_B((mp), XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))) + \
(128 * (ext + (ext * XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))))))
which is calculated out at runtime since it depend on the given extent length in blocks.
This patch renamed XFS_ATTRSET_LOG_RES(mp) to XFS_ATTRSETM_LOG_RES(mp) to indicate
that it is figured out at mount time. Introduce XFS_ATTRSETRT_LOG_RES(mp) which would
be used to calculate out the unit of the log space reservation for one block.
In this way, the total runtime space for the given extent length can be figured out by:
XFS_ATTRSETM_LOG_RES(mp) + XFS_ATTRSETRT_LOG_RES(mp) * ext
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce a new transaction space reservation XFS_SB_LOG_RES() for
those transactions that need to modify the superblock on disk.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation for end of quotaoff log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation of quota off transaction log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The disk quota allocation log space reservation is calcuated at runtime,
this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For adjusting quota limits transactions, we calculate out the log space
reservation at runtime, this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The transaction log space for clearing/reseting the quota flags
is calculated out at runtime, this patch can figure it out at
mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a superblock verify callback function and pass it into the
buffer read functions. Remove the now redundant verification code
that is currently in use.
Adding verification shows that secondary superblocks never have
their "sb_inprogress" flag cleared by mkfs.xfs, so when validating
the secondary superblocks during a grow operation we have to avoid
checking this field. Even if we fix mkfs, we will still have to
ignore this field for verification purposes unless a version of mkfs
that does not have this bug was used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Create a new mount workqueue and delayed_work to enable background
scanning and freeing of eofblocks inodes. The scanner kicks in once
speculative preallocation occurs and stops requeueing itself when
no eofblocks inodes exist.
The scan interval is based on the new
'speculative_prealloc_lifetime' tunable (default to 5m). The
background scanner performs unfiltered, best effort scans (which
skips inodes under lock contention or with a dirty cache mapping).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_sync.c now only contains inode reclaim functions and inode cache
iteration functions. It is not related to sync operations anymore.
Rename to xfs_icache.c to reflect it's contents and prepare for
consolidation with the other inode cache file that exists
(xfs_iget.c).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the syncd functions moved to the log and/or removed, the syncd
workqueue is the only remaining bit left. It is used by the log
covering/ail pushing work, as well as by the inode reclaim work.
Given how cheap workqueues are these days, give the log and inode
reclaim work their own work queues and kill the syncd work queue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
We don't do any data writeback from XFS any more - the VFS is
completely responsible for that, including for freeze. We can
replace the remaining caller with a VFS level function that
achieves the same thing, but without conflicting with current
writeback work.
This means we can remove the flush_work and xfs_flush_inodes() - the
VFS functionality completely replaces the internal flush queue for
doing this writeback work in a separate context to avoid stack
overruns.
This does have one complication - it cannot be called with page
locks held. Hence move the flushing of delalloc space when ENOSPC
occurs back up into xfs_file_aio_buffered_write when we don't hold
any locks that will stall writeback.
Unfortunately, writeback_inodes_sb_if_idle() is not sufficient to
trigger delalloc conversion fast enough to prevent spurious ENOSPC
whent here are hundreds of writers, thousands of small files and GBs
of free RAM. Hence we need to use sync_sb_inodes() to block callers
while we wait for writeback like the previous xfs_flush_inodes
implementation did.
That means we have to hold the s_umount lock here, but because this
call can nest inside i_mutex (the parent directory in the create
case, held by the VFS), we have to use down_read_trylock() to avoid
potential deadlocks. In practice, this trylock will succeed on
almost every attempt as unmount/remount type operations are
exceedingly rare.
Note: we always need to pass a count of zero to
generic_file_buffered_write() as the previously written byte count.
We only do this by accident before this patch by the virtue of ret
always being zero when there are no errors. Make this explicit
rather than needing to specifically zero ret in the ENOSPC retry
case.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
The only thing the periodic sync work does now is flush the AIL and
idle the log. These are really functions of the log code, so move
the work to xfs_log.c and rename it appropriately.
The only wart that this leaves behind is the xfssyncd_centisecs
sysctl, otherwise the xfssyncd is dead. Clean up any comments that
related to xfssyncd to reflect it's passing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
I noticed that "struct xfs_mount_args" was still declared in
"fs/xfs/xfs_mount.h". That struct doesn't even exist any more (and
is obviously not referenced elsewhere in that header file). While
in there, delete four other unneeded struct declarations in that
file.
Doing so highlights that "fs/xfs/xfs_trace.h" was relying indirectly
on "xfs_mount.h" to be #included in order to declare "struct
xfs_bmbt_irec", so add that declaration to resolve that issue.
Signed-off-by: Alex Elder <elder@inktank.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_MAXIOFFSET() is just a simple macro that resolves to
mp->m_maxioffset. It doesn't need to exist, and it just makes the
code unnecessarily loud and shouty.
Make it quiet and easy to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The m_maxioffset field in the struct xfs_mount contains the same
value as the superblock s_maxbytes field. There is no need to carry
two copies of this limit around, so use the VFS superblock version.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Doing background CIL flushes adds significant latency to whatever
async transaction that triggers it. To avoid blocking async
transactions on things like waiting for log buffer IO to complete,
move the CIL push off into a workqueue. By moving the push work
into a workqueue, we remove all the latency that the commit adds
from the foreground transaction commit path. This also means that
single threaded workloads won't do the CIL push procssing, leaving
them more CPU to do more async transactions.
To do this, we need to keep track of the sequence number we have
pushed work for. This avoids having many transaction commits
attempting to schedule work for the same sequence, and ensures that
we only ever have one push (background or forced) in progress at a
time. It also means that we don't need to take the CIL lock in write
mode to check for potential background push races, which reduces
lock contention.
To avoid potential issues with "smart" IO schedulers, don't use the
workqueue for log force triggered flushes. Instead, do them directly
so that the log IO is done directly by the process issuing the log
force and so doesn't get stuck on IO elevator queue idling
incorrectly delaying the log IO from the workqueue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we write back all metadata either synchronously or through
the AIL we can simply implement metadata freezing in terms of
emptying the AIL.
The implementation for this is fairly simply and straight-forward:
A new routine is added that asks the xfsaild to push the AIL to the
end and waits for it to complete and send a wakeup. The routine will
then loop if the AIL is not actually empty, and continue to do so
until the AIL is compeltely empty.
We keep an inode reclaim pass in the freeze process to avoid having
memory pressure have to reclaim inodes that require dirtying the
filesystem to be reclaimed after the freeze has completed. This
means we can also treat unmount in the exact same way as freeze.
As an upside we can now remove the radix tree based inode writeback
and xfs_unmountfs_writesb.
[ Dave Chinner:
- Cleaned up commit message.
- Added inode reclaim passes back into freeze.
- Cleaned up wakeup mechanism to avoid the use of a new
sleep counter variable. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The new concurrency managed workqueues are cheap enough that we can create
per-filesystem instead of global workqueues. This allows us to remove the
trylock or defer scheme on the ilock, which is not helpful once we have
outstanding log reservations until finishing a size update.
Also allow the default concurrency on this workqueues so that I/O completions
blocking on the ilock for one inode do not block process for another inode.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Change xfs_sb_from_disk() interface to take a mount pointer
instead of a superblock pointer.
This is to print mount point specific error messages in future
fixes.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
The delaylog mode has been the default for a long time, and the nodelaylog
option has been scheduled for removal in Linux 3.3. Remove it and code
only used by it now that we have opened the 3.3 window.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove the second parameter to xfs_sb_count() since all callers of
the function set them.
Also, fix the header comment regarding it being called periodically.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Now that we have reliably tracking of deleted extents in a
transaction we can easily implement "online" discard support
which calls blkdev_issue_discard once a transaction commits.
The actual discard is a two stage operation as we first have
to mark the busy extent as not available for reuse before we
can start the actual discard. Note that we don't bother
supporting discard for the non-delaylog mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Background inode reclaim needs to run more frequently that the XFS
syncd work is run as 30s is too long between optimal reclaim runs.
Add a new periodic work item to the xfs syncd workqueue to run a
fast, non-blocking inode reclaim scan.
Background inode reclaim is kicked by the act of marking inodes for
reclaim. When an AG is first marked as having reclaimable inodes,
the background reclaim work is kicked. It will continue to run
periodically untill it detects that there are no more reclaimable
inodes. It will be kicked again when the first inode is queued for
reclaim.
To ensure shrinker based inode reclaim throttles to the inode
cleaning and reclaim rate but still reclaim inodes efficiently, make it kick the
background inode reclaim so that when we are low on memory we are
trying to reclaim inodes as efficiently as possible. This kick shoul
d not be necessary, but it will protect against failures to kick the
background reclaim when inodes are first dirtied.
To provide the rate throttling, make the shrinker pass do
synchronous inode reclaim so that it blocks on inodes under IO. This
means that the shrinker will reclaim inodes rather than just
skipping over them, but it does not adversely affect the rate of
reclaim because most dirty inodes are already under IO due to the
background reclaim work the shrinker kicked.
These two modifications solve one of the two OOM killer invocations
Chris Mason reported recently when running a stress testing script.
The particular workload trigger for the OOM killer invocation is
where there are more threads than CPUs all unlinking files in an
extremely memory constrained environment. Unlike other solutions,
this one does not have a performance impact on performance when
memory is not constrained or the number of concurrent threads
operating is <= to the number of CPUs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
On of the problems with the current inode flush at ENOSPC is that we
queue a flush per ENOSPC event, regardless of how many are already
queued. Thi can result in hundreds of queued flushes, most of
which simply burn CPU scanned and do no real work. This simply slows
down allocation at ENOSPC.
We really only need one active flush at a time, and we can easily
implement that via the new xfs_syncd_wq. All we need to do is queue
a flush if one is not already active, then block waiting for the
currently active flush to complete. The result is that we only ever
have a single ENOSPC inode flush active at a time and this greatly
reduces the overhead of ENOSPC processing.
On my 2p test machine, this results in tests exercising ENOSPC
conditions running significantly faster - 042 halves execution time,
083 drops from 60s to 5s, etc - while not introducing test
regressions.
This allows us to remove the old xfssyncd threads and infrastructure
as they are no longer used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>