The GMA500 driver is using the legacy GPIO API to fetch
three optional display control GPIO lines from the SFI
description used by the Medfield platform.
Switch this over to use GPIO descriptors and delete the
custom platform data.
We create three new static locals in the tc35876x bridge
code but it is hardly any worse than the I2C client static
local already there: I tried first to move it to the DRM
driver state container but there are workarounds for
probe order in the code so I just stayed off it, as the
result is unpredictable.
People wanting to do a more throrugh and proper cleanup
of the GMA500 driver can work on top of this, I can't
solve much more since I don't have access to the hardware,
I can only attempt to tidy up my GPIO corner.
Cc: Daniel Stone <daniels@collabora.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191206094301.76368-1-linus.walleij@linaro.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Pull x86 fixes from Thomas Gleixner:
"A small set of x86 fixes:
- Prevent a NULL pointer dereference in the X2APIC code in case of a
CPU hotplug failure.
- Prevent boot failures on HP superdome machines by invalidating the
level2 kernel pagetable entries outside of the kernel area as
invalid so BIOS reserved space won't be touched unintentionally.
Also ensure that memory holes are rounded up to the next PMD
boundary correctly.
- Enable X2APIC support on Hyper-V to prevent boot failures.
- Set the paravirt name when running on Hyper-V for consistency
- Move a function under the appropriate ifdef guard to prevent build
warnings"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/acpi: Move get_cmdline_acpi_rsdp() under #ifdef guard
x86/hyperv: Set pv_info.name to "Hyper-V"
x86/apic/x2apic: Fix a NULL pointer deref when handling a dying cpu
x86/hyperv: Make vapic support x2apic mode
x86/boot/64: Round memory hole size up to next PMD page
x86/boot/64: Make level2_kernel_pgt pages invalid outside kernel area
When building with "EXTRA_CFLAGS=-Wall" gcc warns:
arch/x86/boot/compressed/acpi.c:29:30: warning: get_cmdline_acpi_rsdp defined but not used [-Wunused-function]
get_cmdline_acpi_rsdp() is only used when CONFIG_RANDOMIZE_BASE and
CONFIG_MEMORY_HOTREMOVE are both enabled, so any build where one of these
config options is disabled has this issue.
Move the function under the same ifdef guard as the call site.
[ tglx: Add context to the changelog so it becomes useful ]
Fixes: 41fa1ee9c6 ("acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1569719633-32164-1-git-send-email-zhenzhong.duan@oracle.com
Michael reported that the x86/hyperv initialization code prints the
following dmesg when running in a VM on Hyper-V:
[ 0.000738] Booting paravirtualized kernel on bare hardware
Let the x86/hyperv initialization code set pv_info.name to "Hyper-V" so
dmesg reports correctly:
[ 0.000172] Booting paravirtualized kernel on Hyper-V
[ tglx: Folded build fix provided by Yue ]
Reported-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Link: https://lkml.kernel.org/r/20191015103502.13156-1-parri.andrea@gmail.com
Check that the per-cpu cluster mask pointer has been set prior to
clearing a dying cpu's bit. The per-cpu pointer is not set until the
target cpu reaches smp_callin() during CPUHP_BRINGUP_CPU, whereas the
teardown function, x2apic_dead_cpu(), is associated with the earlier
CPUHP_X2APIC_PREPARE. If an error occurs before the cpu is awakened,
e.g. if do_boot_cpu() itself fails, x2apic_dead_cpu() will dereference
the NULL pointer and cause a panic.
smpboot: do_boot_cpu failed(-22) to wakeup CPU#1
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:x2apic_dead_cpu+0x1a/0x30
Call Trace:
cpuhp_invoke_callback+0x9a/0x580
_cpu_up+0x10d/0x140
do_cpu_up+0x69/0xb0
smp_init+0x63/0xa9
kernel_init_freeable+0xd7/0x229
? rest_init+0xa0/0xa0
kernel_init+0xa/0x100
ret_from_fork+0x35/0x40
Fixes: 023a611748 ("x86/apic/x2apic: Simplify cluster management")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191001205019.5789-1-sean.j.christopherson@intel.com
Now that there's Hyper-V IOMMU driver, Linux can switch to x2apic mode
when supported by the vcpus.
However, the apic access functions for Hyper-V enlightened apic assume
xapic mode only.
As a result, Linux fails to bring up secondary cpus when run as a guest
in QEMU/KVM with both hv_apic and x2apic enabled.
According to Michael Kelley, when in x2apic mode, the Hyper-V synthetic
apic MSRs behave exactly the same as the corresponding architectural
x2apic MSRs, so there's no need to override the apic accessors. The
only exception is hv_apic_eoi_write, which benefits from lazy EOI when
available; however, its implementation works for both xapic and x2apic
modes.
Fixes: 29217a4746 ("iommu/hyper-v: Add Hyper-V stub IOMMU driver")
Fixes: 6b48cb5f83 ("X86/Hyper-V: Enlighten APIC access")
Suggested-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191010123258.16919-1-rkagan@virtuozzo.com
Pull perf fixes from Ingo Molnar:
"Mostly tooling fixes, but also a couple of updates for new Intel
models (which are technically hw-enablement, but to users it's a fix
to perf behavior on those new CPUs - hope this is fine), an AUX
inheritance fix, event time-sharing fix, and a fix for lost non-perf
NMI events on AMD systems"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
perf/x86/cstate: Add Tiger Lake CPU support
perf/x86/msr: Add Tiger Lake CPU support
perf/x86/intel: Add Tiger Lake CPU support
perf/x86/cstate: Update C-state counters for Ice Lake
perf/x86/msr: Add new CPU model numbers for Ice Lake
perf/x86/cstate: Add Comet Lake CPU support
perf/x86/msr: Add Comet Lake CPU support
perf/x86/intel: Add Comet Lake CPU support
perf/x86/amd: Change/fix NMI latency mitigation to use a timestamp
perf/core: Fix corner case in perf_rotate_context()
perf/core: Rework memory accounting in perf_mmap()
perf/core: Fix inheritance of aux_output groups
perf annotate: Don't return -1 for error when doing BPF disassembly
perf annotate: Return appropriate error code for allocation failures
perf annotate: Fix arch specific ->init() failure errors
perf annotate: Propagate the symbol__annotate() error return
perf annotate: Fix the signedness of failure returns
perf annotate: Propagate perf_env__arch() error
perf evsel: Fall back to global 'perf_env' in perf_evsel__env()
perf tools: Propagate get_cpuid() error
...
Pull EFI fixes from Ingo Molnar:
"Misc EFI fixes all across the map: CPER error report fixes, fixes to
TPM event log parsing, fix for a kexec hang, a Sparse fix and other
fixes"
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/tpm: Fix sanity check of unsigned tbl_size being less than zero
efi/x86: Do not clean dummy variable in kexec path
efi: Make unexported efi_rci2_sysfs_init() static
efi/tpm: Only set 'efi_tpm_final_log_size' after successful event log parsing
efi/tpm: Don't traverse an event log with no events
efi/tpm: Don't access event->count when it isn't mapped
efivar/ssdt: Don't iterate over EFI vars if no SSDT override was specified
efi/cper: Fix endianness of PCIe class code
Pull x86 fixes from Ingo Molnar:
"A handful of fixes: a kexec linking fix, an AMD MWAITX fix, a vmware
guest support fix when built under Clang, and new CPU model number
definitions"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Comet Lake to the Intel CPU models header
lib/string: Make memzero_explicit() inline instead of external
x86/cpu/vmware: Use the full form of INL in VMWARE_PORT
x86/asm: Fix MWAITX C-state hint value
Pull x86 license tag fixlets from Ingo Molnar:
"Fix a couple of SPDX tags in x86 headers to follow the canonical
pattern"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Use the correct SPDX License Identifier in headers
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXaGvDgAKCRCAXGG7T9hj
vjeDAPoDg9Gn0zDiej0jWWX6ZFXPQDdzWwhK9iEuwH9U7+GgOQEA6BeTPSIxvXUm
gicOPWs6QGGQ0m3CGN2UGKc74pFh9ww=
=wcya
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.4-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
- correct panic handling when running as a Xen guest
- cleanup the Xen grant driver to remove printing a pointer being
always NULL
- remove a soon to be wrong call of of_dma_configure()
* tag 'for-linus-5.4-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: Stop abusing DT of_dma_configure API
xen/grant-table: remove unnecessary printing
x86/xen: Return from panic notifier
Tiger Lake is the followon to Ice Lake. From the perspective of Intel
cstate residency counters, there is nothing changed compared with
Ice Lake.
Share icl_cstates with Ice Lake.
Update the comments for Tiger Lake.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-10-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tiger Lake is the followon to Ice Lake. PPERF and SMI_COUNT MSRs are
also supported.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-9-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tiger Lake is the followon to Ice Lake. From the perspective of Intel
core PMU, there is little changes compared with Ice Lake, e.g. small
changes in event list. But it doesn't impact on core PMU functionality.
Share the perf code with Ice Lake. The event list patch will be submitted
later separately.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-8-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no Core C3 C-State counter for Ice Lake.
Package C8/C9/C10 C-State counters are added for Ice Lake.
Introduce a new event list, icl_cstates, for Ice Lake.
Update the comments accordingly.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f08c47d1f8 ("perf/x86/intel/cstate: Add Icelake support")
Link: https://lkml.kernel.org/r/1570549810-25049-7-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PPERF and SMI_COUNT MSRs are also supported by Ice Lake desktop and
server.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Kaby Lake.
Share hswult_cstates with Kaby Lake.
Update the comments for Comet Lake.
Kaby Lake is missed in the comments for some Residency Counters. Update
the comments for Kaby Lake as well.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-5-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. PPERF and SMI_COUNT MSRs
are also supported.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. From the perspective
of Intel PMU, there is nothing changed compared with Sky Lake.
Share the perf code with Sky Lake.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel image map is created using PMD pages, which can include
some extra space beyond what's actually needed. Round the size of the
memory hole we search for up to the next PMD boundary, to be certain
all of the space to be mapped is usable RAM and includes no reserved
areas.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dimitri.sivanich@hpe.com
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: mike.travis@hpe.com
Cc: russ.anderson@hpe.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/df4f49f05c0c27f108234eb93db5c613d09ea62e.1569358539.git.steve.wahl@hpe.com
Our hardware (UV aka Superdome Flex) has address ranges marked
reserved by the BIOS. Access to these ranges is caught as an error,
causing the BIOS to halt the system.
Initial page tables mapped a large range of physical addresses that
were not checked against the list of BIOS reserved addresses, and
sometimes included reserved addresses in part of the mapped range.
Including the reserved range in the map allowed processor speculative
accesses to the reserved range, triggering a BIOS halt.
Used early in booting, the page table level2_kernel_pgt addresses 1
GiB divided into 2 MiB pages, and it was set up to linearly map a full
1 GiB of physical addresses that included the physical address range
of the kernel image, as chosen by KASLR. But this also included a
large range of unused addresses on either side of the kernel image.
And unlike the kernel image's physical address range, this extra
mapped space was not checked against the BIOS tables of usable RAM
addresses. So there were times when the addresses chosen by KASLR
would result in processor accessible mappings of BIOS reserved
physical addresses.
The kernel code did not directly access any of this extra mapped
space, but having it mapped allowed the processor to issue speculative
accesses into reserved memory, causing system halts.
This was encountered somewhat rarely on a normal system boot, and much
more often when starting the crash kernel if "crashkernel=512M,high"
was specified on the command line (this heavily restricts the physical
address of the crash kernel, in our case usually within 1 GiB of
reserved space).
The solution is to invalidate the pages of this table outside the kernel
image's space before the page table is activated. It fixes this problem
on our hardware.
[ bp: Touchups. ]
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dimitri.sivanich@hpe.com
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: mike.travis@hpe.com
Cc: russ.anderson@hpe.com
Cc: stable@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/9c011ee51b081534a7a15065b1681d200298b530.1569358539.git.steve.wahl@hpe.com
It turns out that the NMI latency workaround from commit:
6d3edaae16 ("x86/perf/amd: Resolve NMI latency issues for active PMCs")
ends up being too conservative and results in the perf NMI handler claiming
NMIs too easily on AMD hardware when the NMI watchdog is active.
This has an impact, for example, on the hpwdt (HPE watchdog timer) module.
This module can produce an NMI that is used to reset the system. It
registers an NMI handler for the NMI_UNKNOWN type and relies on the fact
that nothing has claimed an NMI so that its handler will be invoked when
the watchdog device produces an NMI. After the referenced commit, the
hpwdt module is unable to process its generated NMI if the NMI watchdog is
active, because the current NMI latency mitigation results in the NMI
being claimed by the perf NMI handler.
Update the AMD perf NMI latency mitigation workaround to, instead, use a
window of time. Whenever a PMC is handled in the perf NMI handler, set a
timestamp which will act as a perf NMI window. Any NMIs arriving within
that window will be claimed by perf. Anything outside that window will
not be claimed by perf. The value for the NMI window is set to 100 msecs.
This is a conservative value that easily covers any NMI latency in the
hardware. While this still results in a window in which the hpwdt module
will not receive its NMI, the window is now much, much smaller.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jerry Hoemann <jerry.hoemann@hpe.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6d3edaae16 ("x86/perf/amd: Resolve NMI latency issues for active PMCs")
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. Add two new CPU model
numbers to the Intel family list.
The CPU model numbers are not published in the SDM yet but they come
from an authoritative internal source.
[ bp: Touch up commit message. ]
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: ak@linux.intel.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1570549810-25049-2-git-send-email-kan.liang@linux.intel.com
LLVM's assembler doesn't accept the short form INL instruction:
inl (%%dx)
but instead insists on the output register to be explicitly specified:
<inline asm>:1:7: error: invalid operand for instruction
inl (%dx)
^
LLVM ERROR: Error parsing inline asm
Use the full form of the instruction to fix the build.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
Cc: clang-built-linux@googlegroups.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: "VMware, Inc." <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/734
Link: https://lkml.kernel.org/r/20191007192129.104336-1-samitolvanen@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per "AMD64 Architecture Programmer's Manual Volume 3: General-Purpose
and System Instructions", MWAITX EAX[7:4]+1 specifies the optional hint
of the optimized C-state. For C0 state, EAX[7:4] should be set to 0xf.
Currently, a value of 0xf is set for EAX[3:0] instead of EAX[7:4]. Fix
this by changing MWAITX_DISABLE_CSTATES from 0xf to 0xf0.
This hasn't had any implications so far because setting reserved bits in
EAX is simply ignored by the CPU.
[ bp: Fixup comment in delay_mwaitx() and massage. ]
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20191007190011.4859-1-Janakarajan.Natarajan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently execution of panic() continues until Xen's panic notifier
(xen_panic_event()) is called at which point we make a hypercall that
never returns.
This means that any notifier that is supposed to be called later as
well as significant part of panic() code (such as pstore writes from
kmsg_dump()) is never executed.
There is no reason for xen_panic_event() to be this last point in
execution since panic()'s emergency_restart() will call into
xen_emergency_restart() from where we can perform our hypercall.
Nevertheless, we will provide xen_legacy_crash boot option that will
preserve original behavior during crash. This option could be used,
for example, if running kernel dumper (which happens after panic
notifiers) is undesirable.
Reported-by: James Dingwall <james@dingwall.me.uk>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
In commit 9f79b78ef7 ("Convert filldir[64]() from __put_user() to
unsafe_put_user()") I made filldir() use unsafe_put_user(), which
improves code generation on x86 enormously.
But because we didn't have a "unsafe_copy_to_user()", the dirent name
copy was also done by hand with unsafe_put_user() in a loop, and it
turns out that a lot of other architectures didn't like that, because
unlike x86, they have various alignment issues.
Most non-x86 architectures trap and fix it up, and some (like xtensa)
will just fail unaligned put_user() accesses unconditionally. Which
makes that "copy using put_user() in a loop" not work for them at all.
I could make that code do explicit alignment etc, but the architectures
that don't like unaligned accesses also don't really use the fancy
"user_access_begin/end()" model, so they might just use the regular old
__copy_to_user() interface.
So this commit takes that looping implementation, turns it into the x86
version of "unsafe_copy_to_user()", and makes other architectures
implement the unsafe copy version as __copy_to_user() (the same way they
do for the other unsafe_xyz() accessor functions).
Note that it only does this for the copying _to_ user space, and we
still don't have a unsafe version of copy_from_user().
That's partly because we have no current users of it, but also partly
because the copy_from_user() case is slightly different and cannot
efficiently be implemented in terms of a unsafe_get_user() loop (because
gcc can't do asm goto with outputs).
It would be trivial to do this using "rep movsb", which would work
really nicely on newer x86 cores, but really badly on some older ones.
Al Viro is looking at cleaning up all our user copy routines to make
this all a non-issue, but for now we have this simple-but-stupid version
for x86 that works fine for the dirent name copy case because those
names are short strings and we simply don't need anything fancier.
Fixes: 9f79b78ef7 ("Convert filldir[64]() from __put_user() to unsafe_put_user()")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Luck <tony.luck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kexec reboot fails randomly in UEFI based KVM guest. The firmware
just resets while calling efi_delete_dummy_variable(); Unfortunately
I don't know how to debug the firmware, it is also possible a potential
problem on real hardware as well although nobody reproduced it.
The intention of the efi_delete_dummy_variable is to trigger garbage collection
when entering virtual mode. But SetVirtualAddressMap can only run once
for each physical reboot, thus kexec_enter_virtual_mode() is not necessarily
a good place to clean a dummy object.
Drop the efi_delete_dummy_variable so that kexec reboot can work.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Matthew Garrett <mjg59@google.com>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Talbert <swt@techie.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Link: https://lkml.kernel.org/r/20191002165904.8819-8-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
a nested hypervisor has always been busted on Broadwell and newer processors,
and that has finally been fixed.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdlzTRAAoJEL/70l94x66DElcH/Rvhn5VQE/n2J+tKEXAICxQu
FqcTBJ5x2mp04aFe7xD3kWoKRJmz2lmHdw2ahFd4sqqLfGEFF/KW24ADI33vzLx/
UmT78O0Je3PX77TRnEXy+napbJny0iT6ikTAQKPbyQ151JlqlbPvatpDXXLPWQHv
jj6nKHCvMBrhV3kgaXO3cTFl8swX1hvR9lo9PcA2gRNt+HMN0heUmpfKughPoOes
JH+UNjsEr7MYlXYlIIc9o71EYH+kgPObwlLejy0ture+dvvZEJUJjZJE8H/XG5f2
ryXG9favaCOTAvaGf0R5Es+47A3crqUr6gHS0N28QKPn7x4hehIkKpA9dXQnWIw=
=1/LN
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"ARM and x86 bugfixes of all kinds.
The most visible one is that migrating a nested hypervisor has always
been busted on Broadwell and newer processors, and that has finally
been fixed"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
KVM: x86: omit "impossible" pmu MSRs from MSR list
KVM: nVMX: Fix consistency check on injected exception error code
KVM: x86: omit absent pmu MSRs from MSR list
selftests: kvm: Fix libkvm build error
kvm: vmx: Limit guest PMCs to those supported on the host
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
KVM: selftests: x86: clarify what is reported on KVM_GET_MSRS failure
KVM: VMX: Set VMENTER_L1D_FLUSH_NOT_REQUIRED if !X86_BUG_L1TF
selftests: kvm: add test for dirty logging inside nested guests
KVM: x86: fix nested guest live migration with PML
KVM: x86: assign two bits to track SPTE kinds
KVM: x86: Expose XSAVEERPTR to the guest
kvm: x86: Enumerate support for CLZERO instruction
kvm: x86: Use AMD CPUID semantics for AMD vCPUs
kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH
KVM: X86: Fix userspace set invalid CR4
kvm: x86: Fix a spurious -E2BIG in __do_cpuid_func
KVM: LAPIC: Loosen filter for adaptive tuning of lapic_timer_advance_ns
KVM: arm/arm64: vgic: Use the appropriate TRACE_INCLUDE_PATH
arm64: KVM: Kill hyp_alternate_select()
...
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXZbQhwAKCRCAXGG7T9hj
vh03AP9mOLNY8r16u6a+Iy0YVccTaeiQiquG6HgFVEGX2Ki38gD/Xf5u6bPRYBts
uSRL/eYDvtfU4YGGMjogn20Fdzhc5Ak=
=EkVp
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes and cleanups from Juergen Gross:
- a fix in the Xen balloon driver avoiding hitting a BUG_ON() in some
cases, plus a follow-on cleanup series for that driver
- a patch for introducing non-blocking EFI callbacks in Xen's EFI
driver, plu a cleanup patch for Xen EFI handling merging the x86 and
ARM arch specific initialization into the Xen EFI driver
- a fix of the Xen xenbus driver avoiding a self-deadlock when cleaning
up after a user process has died
- a fix for Xen on ARM after removal of ZONE_DMA
- a cleanup patch for avoiding build warnings for Xen on ARM
* tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/xenbus: fix self-deadlock after killing user process
xen/efi: have a common runtime setup function
arm: xen: mm: use __GPF_DMA32 for arm64
xen/balloon: Clear PG_offline in balloon_retrieve()
xen/balloon: Mark pages PG_offline in balloon_append()
xen/balloon: Drop __balloon_append()
xen/balloon: Set pages PageOffline() in balloon_add_region()
ARM: xen: unexport HYPERVISOR_platform_op function
xen/efi: Set nonblocking callbacks
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors.
Since some machines actually have MSRs past the reserved range,
filtering them against x86_pmu.num_counters_gp may have false
positives. Cut the list to 18 entries to avoid this.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jamttson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current versions of Intel's SDM incorrectly state that "bits 31:15 of
the VM-Entry exception error-code field" must be zero. In reality, bits
31:16 must be zero, i.e. error codes are 16-bit values.
The bogus error code check manifests as an unexpected VM-Entry failure
due to an invalid code field (error number 7) in L1, e.g. when injecting
a #GP with error_code=0x9f00.
Nadav previously reported the bug[*], both to KVM and Intel, and fixed
the associated kvm-unit-test.
[*] https://patchwork.kernel.org/patch/11124749/
Reported-by: Nadav Amit <namit@vmware.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18 contiguous
MSR indices reserved by Intel for event selectors. Since some machines
actually have MSRs past the reserved range, these may survive the
filtering of msrs_to_save array and would be rejected by KVM_GET/SET_MSR.
To avoid this, cut the list to whatever CPUID reports for the host's
architectural PMU.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Today the EFI runtime functions are setup in architecture specific
code (x86 and arm), with the functions themselves living in drivers/xen
as they are not architecture dependent.
As the setup is exactly the same for arm and x86 move the setup to
drivers/xen, too. This at once removes the need to make the single
functions global visible.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
[boris: "Dropped EXPORT_SYMBOL_GPL(xen_efi_runtime_setup)"]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
KVM can only virtualize as many PMCs as the host supports.
Limit the number of generic counters and fixed counters to the number
of corresponding counters supported on the host, rather than to
INTEL_PMC_MAX_GENERIC and INTEL_PMC_MAX_FIXED, respectively.
Note that INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors. Since
the existing code relies on a contiguous range of MSR indices for
event selectors, it can't possibly work for more than 18 general
purpose counters.
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Other parts of the kernel expect these nonblocking EFI callbacks to
exist and crash when running under Xen. Since the implementations of
xen_efi_set_variable() and xen_efi_query_variable_info() do not take any
locks, use them for the nonblocking callbacks too.
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
The largepages debugfs entry is incremented/decremented as shadow
pages are created or destroyed. Clearing it will result in an
underflow, which is harmless to KVM but ugly (and could be
misinterpreted by tools that use debugfs information), so make
this particular statistic read-only.
Cc: kvm-ppc@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fix from Ingo Molnar:
"A kexec fix for the case when GCC_PLUGIN_STACKLEAK=y is enabled"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/purgatory: Disable the stackleak GCC plugin for the purgatory
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
* The usual accuracy improvements for nested virtualization
* The usual round of code cleanups from Sean
* Added back optimizations that were prematurely removed in 5.2
(the bare minimum needed to fix the regression was in 5.3-rc8,
here comes the rest)
* Support for UMWAIT/UMONITOR/TPAUSE
* Direct L2->L0 TLB flushing when L0 is Hyper-V and L1 is KVM
* Tell Windows guests if SMT is disabled on the host
* More accurate detection of vmexit cost
* Revert a pvqspinlock pessimization
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdjfaKAAoJEL/70l94x66D8MAH/2thJnM47tYtMTFA4GBFugeH
mAx8OApWFBo8apOip+8ElFLPQ8FQdZCzr9ti8H4JkuzKxgsxCs1iqEg5pHEKxSTi
K9kLOZwoFtwgy3XmxC0PIZ9lT2Wx74ruh1HF+QG/YsjKH636UPv2VpmulsTNbm62
2ryzOb3TlGT/cjf+gv9l6IYIxZa2Ff19PF4i//H8u4YRBj358/jr99CK01iE0M9r
4NhEKiQZywzREWtKxymGOM6HEbwbWcIa+loYjj2htq8epep6f9Y1zQ0Jcn5+nPA0
cn1T2gGJAJ0OUahKLwNbz8pzrFDkW+eoQgqCBJZ4RT9Uf8WCESfl14p+/vRkAMg=
=tk5S
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Paolo Bonzini:
"x86 KVM changes:
- The usual accuracy improvements for nested virtualization
- The usual round of code cleanups from Sean
- Added back optimizations that were prematurely removed in 5.2 (the
bare minimum needed to fix the regression was in 5.3-rc8, here
comes the rest)
- Support for UMWAIT/UMONITOR/TPAUSE
- Direct L2->L0 TLB flushing when L0 is Hyper-V and L1 is KVM
- Tell Windows guests if SMT is disabled on the host
- More accurate detection of vmexit cost
- Revert a pvqspinlock pessimization"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (56 commits)
KVM: nVMX: cleanup and fix host 64-bit mode checks
KVM: vmx: fix build warnings in hv_enable_direct_tlbflush() on i386
KVM: x86: Don't check kvm_rebooting in __kvm_handle_fault_on_reboot()
KVM: x86: Drop ____kvm_handle_fault_on_reboot()
KVM: VMX: Add error handling to VMREAD helper
KVM: VMX: Optimize VMX instruction error and fault handling
KVM: x86: Check kvm_rebooting in kvm_spurious_fault()
KVM: selftests: fix ucall on x86
Revert "locking/pvqspinlock: Don't wait if vCPU is preempted"
kvm: nvmx: limit atomic switch MSRs
kvm: svm: Intercept RDPRU
kvm: x86: Add "significant index" flag to a few CPUID leaves
KVM: x86/mmu: Skip invalid pages during zapping iff root_count is zero
KVM: x86/mmu: Explicitly track only a single invalid mmu generation
KVM: x86/mmu: Revert "KVM: x86/mmu: Remove is_obsolete() call"
KVM: x86/mmu: Revert "Revert "KVM: MMU: reclaim the zapped-obsolete page first""
KVM: x86/mmu: Revert "Revert "KVM: MMU: collapse TLB flushes when zap all pages""
KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""
KVM: x86/mmu: Revert "Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages""
KVM: x86/mmu: Revert "Revert "KVM: MMU: show mmu_valid_gen in shadow page related tracepoints""
...
The l1tf_vmx_mitigation is only set to VMENTER_L1D_FLUSH_NOT_REQUIRED
when the ARCH_CAPABILITIES MSR indicates that L1D flush is not required.
However, if the CPU is not affected by L1TF, l1tf_vmx_mitigation will
still be set to VMENTER_L1D_FLUSH_AUTO. This is certainly not the best
option for a !X86_BUG_L1TF CPU.
So force l1tf_vmx_mitigation to VMENTER_L1D_FLUSH_NOT_REQUIRED to make it
more explicit in case users are checking the vmentry_l1d_flush parameter.
Signed-off-by: Waiman Long <longman@redhat.com>
[Patch rewritten accoring to Borislav Petkov's suggestion. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shadow paging is fundamentally incompatible with the page-modification
log, because the GPAs in the log come from the wrong memory map.
In particular, for the EPT page-modification log, the GPAs in the log come
from L2 rather than L1. (If there was a non-EPT page-modification log,
we couldn't use it for shadow paging because it would log GVAs rather
than GPAs).
Therefore, we need to rely on write protection to record dirty pages.
This has the side effect of bypassing PML, since writes now result in an
EPT violation vmexit.
This is relatively easy to add to KVM, because pretty much the only place
that needs changing is spte_clear_dirty. The first access to the page
already goes through the page fault path and records the correct GPA;
it's only subsequent accesses that are wrong. Therefore, we can equip
set_spte (where the first access happens) to record that the SPTE will
have to be write protected, and then spte_clear_dirty will use this
information to do the right thing.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, we are overloading SPTE_SPECIAL_MASK to mean both
"A/D bits unavailable" and MMIO, where the difference between the
two is determined by mio_mask and mmio_value.
However, the next patch will need two bits to distinguish
availability of A/D bits from write protection. So, while at
it give MMIO its own bit pattern, and move the two bits from
bit 62 to bits 52..53 since Intel is allocating EPT page table
bits from the top.
Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The naming of pgtable_page_{ctor,dtor}() seems to have confused a few
people, and until recently arm64 used these erroneously/pointlessly for
other levels of page table.
To make it incredibly clear that these only apply to the PTE level, and to
align with the naming of pgtable_pmd_page_{ctor,dtor}(), let's rename them
to pgtable_pte_page_{ctor,dtor}().
These changes were generated with the following shell script:
----
git grep -lw 'pgtable_page_.tor' | while read FILE; do
sed -i '{s/pgtable_page_ctor/pgtable_pte_page_ctor/}' $FILE;
sed -i '{s/pgtable_page_dtor/pgtable_pte_page_dtor/}' $FILE;
done
----
... with the documentation re-flowed to remain under 80 columns, and
whitespace fixed up in macros to keep backslashes aligned.
There should be no functional change as a result of this patch.
Link: http://lkml.kernel.org/r/20190722141133.3116-1-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I was surprised to see that the guest reported `fxsave_leak' while the
host did not. After digging deeper I noticed that the bits are simply
masked out during enumeration.
The XSAVEERPTR feature is actually a bug fix on AMD which means the
kernel can disable a workaround.
Pass XSAVEERPTR to the guest if available on the host.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CLZERO is available to the guest if it is supported on the
host. Therefore, enumerate support for the instruction in
KVM_GET_SUPPORTED_CPUID whenever it is supported on the host.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the guest CPUID information represents an AMD vCPU, return all
zeroes for queries of undefined CPUID leaves, whether or not they are
in range.
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: bd22f5cfcf ("KVM: move and fix substitue search for missing CPUID entries")
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For these CPUID leaves, the EDX output is not dependent on the ECX
input (i.e. the SIGNIFCANT_INDEX flag doesn't apply to
EDX). Furthermore, the low byte of the ECX output is always identical
to the low byte of the ECX input. KVM does not produce the correct ECX
and EDX outputs for any undefined subleaves beyond the first.
Special-case these CPUID leaves in kvm_cpuid, so that the ECX and EDX
outputs are properly generated for all undefined subleaves.
Fixes: 0771671749 ("KVM: Enhance guest cpuid management")
Fixes: a87f2d3a6e ("KVM: x86: Add Intel CPUID.1F cpuid emulation support")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>