Commit Graph

13 Commits

Author SHA1 Message Date
Thomas Hellstrom 0b8762e997 drm/ttm, drm/vmwgfx: Move the lock- and object functionality to the vmwgfx driver
No other driver is using this functionality so move it out of TTM and
into the vmwgfx driver. Update includes and remove exports.
Also annotate to remove false static analyzer lock balance warnings.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
2018-09-27 15:19:20 +02:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Masahiro Yamada 2da83319a1 drm/ttm: fix include notation and remove -Iinclude/drm flag
For the C file, include <drm/*.h> instead of relative path from
include/drm.

For headers in include/drm/ttm, simplify the <tty/*.h> with "*.h".

This allows us to remove the -Iinclude/drm compiler flag from
drivers/gpu/drm/ttm/Makefile (and from other drivers' Makefiles).

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/1493009447-31524-3-git-send-email-yamada.masahiro@socionext.com
2017-05-16 17:17:16 +02:00
Daniel Vetter e6bf6e5799 drm/ttm: Remove TTM_HAS_AGP
It tries to do fancy things with excluding agp support if ttm is
built-in, but agp isn't. Instead just express this depency like drm
does and use CONFIG_AGP everywhere.

Also use the neat Makefile magic to make the entire ttm_agp_backend
file optional.

v2: Use IS_ENABLED(CONFIG_AGP) as suggested by Ville

v3: Review from Emil.

v4: Actually get it right as spotted by 0-day.

Cc: Emil Velikov <emil.l.velikov@gmail.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Emil Velikov <emil.l.velikov@gmail.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/1459337046-25882-1-git-send-email-daniel.vetter@ffwll.ch
2016-03-30 17:20:43 +02:00
Thomas Hellstrom 7aeb7448d8 drm/ttm: Enable the dma page pool also for intel IOMMUs
Used by the vmwgfx driver

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Jakob Bornecrantz <jakob@vmware.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2013-11-06 03:55:52 -08:00
Konrad Rzeszutek Wilk 2334b75ffb drm/ttm: provide dma aware ttm page pool code V9
In TTM world the pages for the graphic drivers are kept in three different
pools: write combined, uncached, and cached (write-back). When the pages
are used by the graphic driver the graphic adapter via its built in MMU
(or AGP) programs these pages in. The programming requires the virtual address
(from the graphic adapter perspective) and the physical address (either System RAM
or the memory on the card) which is obtained using the pci_map_* calls (which does the
virtual to physical - or bus address translation). During the graphic application's
"life" those pages can be shuffled around, swapped out to disk, moved from the
VRAM to System RAM or vice-versa. This all works with the existing TTM pool code
- except when we want to use the software IOTLB (SWIOTLB) code to "map" the physical
addresses to the graphic adapter MMU. We end up programming the bounce buffer's
physical address instead of the TTM pool memory's and get a non-worky driver.
There are two solutions:
1) using the DMA API to allocate pages that are screened by the DMA API, or
2) using the pci_sync_* calls to copy the pages from the bounce-buffer and back.

This patch fixes the issue by allocating pages using the DMA API. The second
is a viable option - but it has performance drawbacks and potential correctness
issues - think of the write cache page being bounced (SWIOTLB->TTM), the
WC is set on the TTM page and the copy from SWIOTLB not making it to the TTM
page until the page has been recycled in the pool (and used by another application).

The bounce buffer does not get activated often - only in cases where we have
a 32-bit capable card and we want to use a page that is allocated above the
4GB limit. The bounce buffer offers the solution of copying the contents
of that 4GB page to an location below 4GB and then back when the operation has been
completed (or vice-versa). This is done by using the 'pci_sync_*' calls.
Note: If you look carefully enough in the existing TTM page pool code you will
notice the GFP_DMA32 flag is used  - which should guarantee that the provided page
is under 4GB. It certainly is the case, except this gets ignored in two cases:
 - If user specifies 'swiotlb=force' which bounces _every_ page.
 - If user is using a Xen's PV Linux guest (which uses the SWIOTLB and the
   underlaying PFN's aren't necessarily under 4GB).

To not have this extra copying done the other option is to allocate the pages
using the DMA API so that there is not need to map the page and perform the
expensive 'pci_sync_*' calls.

This DMA API capable TTM pool requires for this the 'struct device' to
properly call the DMA API. It also has to track the virtual and bus address of
the page being handed out in case it ends up being swapped out or de-allocated -
to make sure it is de-allocated using the proper's 'struct device'.

Implementation wise the code keeps two lists: one that is attached to the
'struct device' (via the dev->dma_pools list) and a global one to be used when
the 'struct device' is unavailable (think shrinker code). The global list can
iterate over all of the 'struct device' and its associated dma_pool. The list
in dev->dma_pools can only iterate the device's dma_pool.
                                                            /[struct device_pool]\
        /---------------------------------------------------| dev                |
       /                                            +-------| dma_pool           |
 /-----+------\                                    /        \--------------------/
 |struct device|     /-->[struct dma_pool for WC]</         /[struct device_pool]\
 | dma_pools   +----+                                     /-| dev                |
 |  ...        |    \--->[struct dma_pool for uncached]<-/--| dma_pool           |
 \-----+------/                                         /   \--------------------/
        \----------------------------------------------/
[Two pools associated with the device (WC and UC), and the parallel list
containing the 'struct dev' and 'struct dma_pool' entries]

The maximum amount of dma pools a device can have is six: write-combined,
uncached, and cached; then there are the DMA32 variants which are:
write-combined dma32, uncached dma32, and cached dma32.

Currently this code only gets activated when any variant of the SWIOTLB IOMMU
code is running (Intel without VT-d, AMD without GART, IBM Calgary and Xen PV
with PCI devices).

Tested-by: Michel Dänzer <michel@daenzer.net>
[v1: Using swiotlb_nr_tbl instead of swiotlb_enabled]
[v2: Major overhaul - added 'inuse_list' to seperate used from inuse and reorder
the order of lists to get better performance.]
[v3: Added comments/and some logic based on review, Added Jerome tag]
[v4: rebase on top of ttm_tt & ttm_backend merge]
[v5: rebase on top of ttm memory accounting overhaul]
[v6: New rebase on top of more memory accouting changes]
[v7: well rebase on top of no memory accounting changes]
[v8: make sure pages list is initialized empty]
[v9: calll ttm_mem_global_free_page in unpopulate for accurate accountg]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
2011-12-06 10:39:33 +00:00
Ben Skeggs d961db75ce drm/ttm: restructure to allow driver to plug in alternate memory manager
Nouveau will need this on GeForce 8 and up to account for the GPU
reordering physical VRAM for some memory types.

Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: Thomas Hellström <thellstrom@vmware.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2010-10-05 10:01:20 +10:00
Dave Airlie ba4420c224 drm: move ttm global code to core drm
I wrote this for the prime sharing work, but I also noticed other external
non-upstream drivers from a large company carrying a similiar patch, so I
may as well ship it in master.

Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-08-04 09:46:06 +10:00
Pauli Nieminen 1403b1a38e drm/ttm: add pool wc/uc page allocator V3
On AGP system we might allocate/free routinely uncached or wc memory,
changing page from cached (wb) to uc or wc is very expensive and involves
a lot of flushing. To improve performance this allocator use a pool
of uc,wc pages.

Pools are protected with spinlocks to allow multiple threads to allocate pages
simultanously. Expensive operations are done outside of spinlock to maximize
concurrency.

Pools are linked lists of pages that were recently freed. mm shrink callback
allows kernel to claim back pages when they are required for something else.

Fixes:
* set_pages_array_wb handles highmem pages so we don't have to remove them
  from pool.
* Add count parameter to ttm_put_pages to avoid looping in free code.
* Change looping from _safe to normal in pool fill error path.
* Initialize sum variable and make the loop prettier in get_num_unused_pages.

* Moved pages_freed reseting inside the loop in ttm_page_pool_free.
* Add warning comment about spinlock context in ttm_page_pool_free.

Based on Jerome Glisse's and Dave Airlie's pool allocator.

Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: Pauli Nieminen <suokkos@gmail.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-04-06 11:35:26 +10:00
Thomas Hellstrom c078aa2fc4 drm/ttm: Add TTM execbuf utilities.
Utilities to reserve, unreserve and fence a list of TTM
buffer objects in a deadlock-safe manner.

Used by the vmwgfx driver.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-12-07 15:22:05 +10:00
Thomas Hellstrom 4aff1013f5 drm/ttm: Add ttm lock functionality.
This is intended to be used by ttm-aware drivers to
1) Block clients to inactive masters when
they try to validate buffers for GPU use.
2) Optionally block clients to the current master when
there is thrashing due to GPU memory shortage.

Used by the vmwgfx driver.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-12-07 15:22:03 +10:00
Thomas Hellstrom 88071539a3 drm/ttm: Add user-space objects.
Add objects needed for user-space to maintain reference counts on ttm objects.
This is used by the vmwgfx driver which allows user-space to maintain
map-counts on dma buffers, lock-counts on the ttm lock and ref-counts on
gpu surfaces, gpu contexts and dma buffer.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-12-07 15:22:01 +10:00
Thomas Hellstrom ba4e7d973d drm: Add the TTM GPU memory manager subsystem.
TTM is a GPU memory manager subsystem designed for use with GPU
devices with various memory types (On-card VRAM, AGP,
PCI apertures etc.). It's essentially a helper library that assists
the DRM driver in creating and managing persistent buffer objects.

TTM manages placement of data and CPU map setup and teardown on
data movement. It can also optionally manage synchronization of
data on a per-buffer-object level.

TTM takes care to provide an always valid virtual user-space address
to a buffer object which makes user-space sub-allocation of
big buffer objects feasible.

TTM uses a fine-grained per buffer-object locking scheme, taking
care to release all relevant locks when waiting for the GPU.
Although this implies some locking overhead, it's probably a big
win for devices with multiple command submission mechanisms, since
the lock contention will be minimal.

TTM can be used with whatever user-space interface the driver
chooses, including GEM. It's used by the upcoming Radeon KMS DRM driver
and is also the GPU memory management core of various new experimental
DRM drivers.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-15 09:37:57 +10:00