The 8xx has two special registers called EID (External Interrupt
Disable) and EIE (External Interrupt Enable) for clearing/setting
EE in MSR. It avoids the three instructions set mfmsr/ori/mtmsr or
mfmsr/rlwinm/mtmsr and it avoids using a general register.
We just have to write something in the special register to change MSR EE
bit. So we write r0 into the register, regardless of r0 value.
Writing to one of those two special registers also set the MSR RI bit,
but this bit is only unset during beginning of exception prolog and end
of exception epilog. When executing C-functions MSR RI is always set.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
Calling this function with interrupts soft-disabled will cause
a replay of the external interrupt vector when they are re-enabled.
This will be used by the OPAL XICS backend (and latter by the native
XIVE code) to handle EOI signaling that there are more interrupts to
fetch from the hardware since the hardware won't issue another HW
interrupt in that case.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In hard_irq_disable(), we accessed the PACA before we hard disabled
the interrupts, potentially causing a warning as get_paca() will
us debug_smp_processor_id().
Move that to after the disabling, and also use local_paca directly
rather than get_paca() to avoid several redundant and useless checks.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
lockdep.c has this:
/*
* So we're supposed to get called after you mask local IRQs,
* but for some reason the hardware doesn't quite think you did
* a proper job.
*/
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
return;
Since irqs_disabled() is based on soft_enabled(), that (not just the
hard EE bit) needs to be 0 before we call trace_hardirqs_off.
Signed-off-by: Scott Wood <scottwood@freescale.com>
If hard_irq_disable() is called while interrupts are already soft-disabled
(which is the most common case) all is already well.
However you can (and in some cases want) to call it while everything is
enabled (to make sure you don't get a lazy even, for example before entry
into KVM guests) and in this case we need to inform the irq tracer that
the irqs are going off.
We have to change the inline into a macro to avoid an include circular
dependency hell hole.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQDRDNAAoJEI7yEDeUysxlkl8P/3C2AHx2webOU8sVzhfU6ONZ
ZoGevwBjyZIeJEmiWVpFTTEew1l0PXtpyOocXGNUXIddVnhXTQOKr/Scj4uFbmx8
ROqgK8NSX9+xOGrBPCoN7SlJkmp+m6uYtwYkl2SGnsEVLWMKkc7J7oqmszCcTQvN
UXMf7G47/Ul2NUSBdv4Yvizhl4kpvWxluiweDw3E/hIQKN0uyP7CY58qcAztw8nG
csZBAnnuPFwIAWxHXW3eBBv4UP138HbNDqJ/dujjocM6GnOxmXJmcZ6b57gh+Y64
3+w9IR4qrRWnsErb/I8inKLJ1Jdcf7yV2FmxYqR4pIXay2Yzo1BsvFd6EB+JavUv
pJpixrFiDDFoQyXlh4tGpsjpqdXNMLqyG4YpqzSZ46C8naVv9gKE7SXqlXnjyDlb
Llx3hb9Fop8O5ykYEGHi+gIISAK5eETiQl4yw9RUBDpxydH4qJtqGIbLiDy8y9wi
Xyi8PBlNl+biJFsK805lxURqTp/SJTC3+Zb7A7CzYEQm5xZw3W/CKZx1ZYBfpaa/
pWaP6tB7JwgLIVXi4HQayLWqMVwH0soZIn9yazpOEFv6qO8d5QH5RAxAW2VXE3n5
JDlrajar/lGIdiBVWfwTJLb86gv3QDZtIWoR9mZuLKeKWE/6PRLe7HQpG1pJovsm
2AsN5bS0BWq+aqPpZHa5
=pECD
-----END PGP SIGNATURE-----
Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Avi Kivity:
"Highlights include
- full big real mode emulation on pre-Westmere Intel hosts (can be
disabled with emulate_invalid_guest_state=0)
- relatively small ppc and s390 updates
- PCID/INVPCID support in guests
- EOI avoidance; 3.6 guests should perform better on 3.6 hosts on
interrupt intensive workloads)
- Lockless write faults during live migration
- EPT accessed/dirty bits support for new Intel processors"
Fix up conflicts in:
- Documentation/virtual/kvm/api.txt:
Stupid subchapter numbering, added next to each other.
- arch/powerpc/kvm/booke_interrupts.S:
PPC asm changes clashing with the KVM fixes
- arch/s390/include/asm/sigp.h, arch/s390/kvm/sigp.c:
Duplicated commits through the kvm tree and the s390 tree, with
subsequent edits in the KVM tree.
* tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
KVM: fix race with level interrupts
x86, hyper: fix build with !CONFIG_KVM_GUEST
Revert "apic: fix kvm build on UP without IOAPIC"
KVM guest: switch to apic_set_eoi_write, apic_write
apic: add apic_set_eoi_write for PV use
KVM: VMX: Implement PCID/INVPCID for guests with EPT
KVM: Add x86_hyper_kvm to complete detect_hypervisor_platform check
KVM: PPC: Critical interrupt emulation support
KVM: PPC: e500mc: Fix tlbilx emulation for 64-bit guests
KVM: PPC64: booke: Set interrupt computation mode for 64-bit host
KVM: PPC: bookehv: Add ESR flag to Data Storage Interrupt
KVM: PPC: bookehv64: Add support for std/ld emulation.
booke: Added crit/mc exception handler for e500v2
booke/bookehv: Add host crit-watchdog exception support
KVM: MMU: document mmu-lock and fast page fault
KVM: MMU: fix kvm_mmu_pagetable_walk tracepoint
KVM: MMU: trace fast page fault
KVM: MMU: fast path of handling guest page fault
KVM: MMU: introduce SPTE_MMU_WRITEABLE bit
KVM: MMU: fold tlb flush judgement into mmu_spte_update
...
There was a typo, checking for CONFIG_TRACE_IRQFLAG instead of
CONFIG_TRACE_IRQFLAGS causing some useful debug code to not be
built
This in turns causes a build error on BookE 64-bit due to incorrect
semicolons at the end of a couple of macros, so let's fix that too
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: stable@vger.kernel.org [v3.4]
Looks like we still have issues with pSeries and Cell idle code
vs. the lazy irq state. In fact, the reset fixes that went upstream
are exposing the problem more by causing BUG_ON() to trigger (which
this patch turns into a WARN_ON instead).
We need to be careful when using a variant of low power state that
has the side effect of turning interrupts back on, to properly set
all the SW & lazy state to look as if everything is enabled before
we enter the low power state with MSR:EE off as we will return with
MSR:EE on. If not, we have a discrepancy of state which can cause
things to go very wrong later on.
This patch moves the logic into a helper and uses it from the
pseries and cell idle code. The power4/970 idle code already got
things right (in assembly even !) so I'm not touching it. The power7
"bare metal" idle code is subtly different and correct. Remains PA6T
and some hypervisor based Cell platforms which have questionable
code in there, but they are mostly dead platforms so I'll fix them
when I manage to get final answers from the respective maintainers
about how the low power state actually works on them.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: stable@vger.kernel.org [v3.4]
Commit f948501b36 ("Make hard_irq_disable() actually hard-disable
interrupts") caused check_and_cede_processor to stop working.
->irq_happened will never be zero right after a hard_irq_disable
so the compiler removes the call to cede_processor completely.
The bug was introduced back in the lazy interrupt handling rework
of 3.4 but was hidden until recently because hard_irq_disable did
nothing.
This issue will eventually appear in 3.4 stable since the
hard_irq_disable fix is marked stable, so mark this one for stable
too.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
At present, hard_irq_disable() does nothing on powerpc because of
this code in include/linux/interrupt.h:
#ifndef hard_irq_disable
#define hard_irq_disable() do { } while(0)
#endif
So we need to make our hard_irq_disable be a macro. It was previously
a macro until commit 7230c56441 ("powerpc: Rework lazy-interrupt
handling") changed it to a static inline function.
Cc: stable@vger.kernel.org
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
--
arch/powerpc/include/asm/hw_irq.h | 3 +++
1 file changed, 3 insertions(+)
When we get a performance monitor interrupt, we need to make sure that
the host receives it. So reinject it like we reinject the other host
destined interrupts.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
On 64-bit, the mfmsr instruction can be quite slow, slower
than loading a field from the cache-hot PACA, which happens
to already contain the value we want in most cases.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We currently turn interrupts back to their previous state before
calling do_page_fault(). This can be annoying when debugging as
a bad fault will potentially have lost some processor state before
getting into the debugger.
We also end up calling some generic code with interrupts enabled
such as notify_page_fault() with interrupts enabled, which could
be unexpected.
This changes our code to behave more like other architectures,
and make the assembly entry code call into do_page_faults() with
interrupts disabled. They are conditionally re-enabled from
within do_page_fault() in the same spot x86 does it.
While there, add the might_sleep() test in the case of a successful
trylock of the mmap semaphore, again like x86.
Also fix a bug in the existing assembly where r12 (_MSR) could get
clobbered by C calls (the DTL accounting in the exception common
macro and DISABLE_INTS) in some cases.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2. Add the r12 clobber fix
Define the ARCH_IRQ_INIT_FLAGS instead of fixing it up in a loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fix the IRQ flag handling naming. In linux/irqflags.h under one configuration,
it maps:
local_irq_enable() -> raw_local_irq_enable()
local_irq_disable() -> raw_local_irq_disable()
local_irq_save() -> raw_local_irq_save()
...
and under the other configuration, it maps:
raw_local_irq_enable() -> local_irq_enable()
raw_local_irq_disable() -> local_irq_disable()
raw_local_irq_save() -> local_irq_save()
...
This is quite confusing. There should be one set of names expected of the
arch, and this should be wrapped to give another set of names that are expected
by users of this facility.
Change this to have the arch provide:
flags = arch_local_save_flags()
flags = arch_local_irq_save()
arch_local_irq_restore(flags)
arch_local_irq_disable()
arch_local_irq_enable()
arch_irqs_disabled_flags(flags)
arch_irqs_disabled()
arch_safe_halt()
Then linux/irqflags.h wraps these to provide:
raw_local_save_flags(flags)
raw_local_irq_save(flags)
raw_local_irq_restore(flags)
raw_local_irq_disable()
raw_local_irq_enable()
raw_irqs_disabled_flags(flags)
raw_irqs_disabled()
raw_safe_halt()
with type checking on the flags 'arguments', and then wraps those to provide:
local_save_flags(flags)
local_irq_save(flags)
local_irq_restore(flags)
local_irq_disable()
local_irq_enable()
irqs_disabled_flags(flags)
irqs_disabled()
safe_halt()
with tracing included if enabled.
The arch functions can now all be inline functions rather than some of them
having to be macros.
Signed-off-by: David Howells <dhowells@redhat.com> [X86, FRV, MN10300]
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> [Tile]
Signed-off-by: Michal Simek <monstr@monstr.eu> [Microblaze]
Tested-by: Catalin Marinas <catalin.marinas@arm.com> [ARM]
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> [AVR]
Acked-by: Tony Luck <tony.luck@intel.com> [IA-64]
Acked-by: Hirokazu Takata <takata@linux-m32r.org> [M32R]
Acked-by: Greg Ungerer <gerg@uclinux.org> [M68K/M68KNOMMU]
Acked-by: Ralf Baechle <ralf@linux-mips.org> [MIPS]
Acked-by: Kyle McMartin <kyle@mcmartin.ca> [PA-RISC]
Acked-by: Paul Mackerras <paulus@samba.org> [PowerPC]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [S390]
Acked-by: Chen Liqin <liqin.chen@sunplusct.com> [Score]
Acked-by: Matt Fleming <matt@console-pimps.org> [SH]
Acked-by: David S. Miller <davem@davemloft.net> [Sparc]
Acked-by: Chris Zankel <chris@zankel.net> [Xtensa]
Reviewed-by: Richard Henderson <rth@twiddle.net> [Alpha]
Reviewed-by: Yoshinori Sato <ysato@users.sourceforge.jp> [H8300]
Cc: starvik@axis.com [CRIS]
Cc: jesper.nilsson@axis.com [CRIS]
Cc: linux-cris-kernel@axis.com
Anton Blanchard found that large POWER systems would occasionally
crash in the exception exit path when profiling with perf_events.
The symptom was that an interrupt would occur late in the exit path
when the MSR[RI] (recoverable interrupt) bit was clear. Interrupts
should be hard-disabled at this point but they were enabled. Because
the interrupt was not recoverable the system panicked.
The reason is that the exception exit path was calling
perf_event_do_pending after hard-disabling interrupts, and
perf_event_do_pending will re-enable interrupts.
The simplest and cleanest fix for this is to use the same mechanism
that 32-bit powerpc does, namely to cause a self-IPI by setting the
decrementer to 1. This means we can remove the tests in the exception
exit path and raw_local_irq_restore.
This also makes sure that the call to perf_event_do_pending from
timer_interrupt() happens within irq_enter/irq_exit. (Note that
calling perf_event_do_pending from timer_interrupt does not mean that
there is a possible 1/HZ latency; setting the decrementer to 1 ensures
that the timer interrupt will happen immediately, i.e. within one
timebase tick, which is a few nanoseconds or 10s of nanoseconds.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
irqs_disabled_flags is #defined in linux/irqflags.h when
CONFIG_TRACE_IRQFLAGS_SUPPORT is enabled. 64 and 32 bit always have
CONFIG_TRACE_IRQFLAGS_SUPPORT enabled so just remove
irqs_disabled_flags.
This fixes the case when someone needs to include both linux/irqflags.h
and asm/hw_irq.h.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Based on initial work from: Dale Farnsworth <dale@farnsworth.org>
Add the low level irq tracing hooks for 32-bit powerpc needed
to enable full lockdep functionality.
The approach taken to deal with the code in entry_32.S is that
we don't trace all the transitions of MSR:EE when we just turn
it off to peek at TI_FLAGS without races. Only when we are
calling into C code or returning from exceptions with a state
that have changed from what lockdep thinks.
There's a little bugger though: If we take an exception that
keeps interrupts enabled (such as an alignment exception) while
interrupts are enabled, we will call trace_hardirqs_on() on the
way back spurriously. Not a big deal, but to get rid of it would
require remembering in pt_regs that the exception was one of the
type that kept interrupts enabled which we don't know at this
stage. (Well, we could test all cases for regs->trap but that
sucks too much).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Kumar Gala <galak@kernel.crashing.org>
This enables the perf_counter subsystem on 32-bit powerpc. Since we
don't have any support for hardware counters on 32-bit powerpc yet,
only software counters can be used.
Besides selecting HAVE_PERF_COUNTERS for 32-bit powerpc as well as
64-bit, the main thing this does is add an implementation of
set_perf_counter_pending(). This needs to arrange for
perf_counter_do_pending() to be called when interrupts are enabled.
Rather than add code to local_irq_restore as 64-bit does, the 32-bit
set_perf_counter_pending() generates an interrupt by setting the
decrementer to 1 so that a decrementer interrupt will become pending
in 1 or 2 timebase ticks (if a decrementer interrupt isn't already
pending). When interrupts are enabled, timer_interrupt() will be
called, and some new code in there calls perf_counter_do_pending().
We use a per-cpu array of flags to indicate whether we need to call
perf_counter_do_pending() or not.
This introduces a couple of new Kconfig symbols: PPC_HAVE_PMU_SUPPORT,
which is selected by processor families for which we have hardware PMU
support (currently only PPC64), and PPC_PERF_CTRS, which enables the
powerpc-specific perf_counter back-end.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55404.103840.393470@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At present, every architecture that supports perf_counters has to
declare set_perf_counter_pending() in its arch-specific headers.
This consolidates the declarations into a single declaration in one
common place, include/linux/perf_counter.h. On powerpc, we continue
to provide a static inline definition of set_perf_counter_pending()
in the powerpc hw_irq.h.
Also, this removes from the x86 perf_counter.h the unused null
definitions of {test,clear}_perf_counter_pending.
Reported-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: benh@kernel.crashing.org
LKML-Reference: <18998.13388.920691.523227@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On 32-bit non-Book E, local_irq_restore() turns into just mtmsr(),
which doesn't currently have a compiler memory barrier. This means
that accesses to memory inside a local_irq_save/restore section,
or a spin_lock_irqsave/spin_unlock_irqrestore section on UP, can
be reordered by the compiler to occur outside that section.
To fix this, this adds a compiler memory barrier to mtmsr for both
32-bit and 64-bit. Having a compiler memory barrier in mtmsr makes
sense because it will almost always be changing something about the
context in which memory accesses are done, so in general we don't want
memory accesses getting moved from one side of an mtmsr to the other.
With the barrier in mtmsr(), some of the explicit barriers in
hw_irq.h are now redundant, so this removes them.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While going over the wakeup code I noticed delayed wakeups only work
for hardware counters but basically all software counters rely on
them.
This patch unifies and generalizes the delayed wakeup to fix this
issue.
Since we're dealing with NMI context bits here, use a cmpxchg() based
single link list implementation to track counters that have pending
wakeups.
[ This should really be generic code for delayed wakeups, but since we
cannot use cmpxchg()/xchg() in generic code, I've let it live in the
perf_counter code. -- Eric Dumazet could use it to aggregate the
network wakeups. ]
Furthermore, the x86 method of using TIF flags was flawed in that its
quite possible to end up setting the bit on the idle task, loosing the
wakeup.
The powerpc method uses per-cpu storage and does appear to be
sufficient.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171023.153932974@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix for powerpc
Commit bd753921015e7905 ("perf_counter: software counter event
infrastructure") introduced a use of TIF_PERF_COUNTERS into the core
perfcounter code. This breaks the build on powerpc because we use
a flag in a per-cpu area to signal wakeups on powerpc rather than
a thread_info flag, because the thread_info flags have to be
manipulated with atomic operations and are thus slower than per-cpu
flags.
This fixes the by changing the core to use an abstracted
set_perf_counter_pending() function, which is defined on x86 to set
the TIF_PERF_COUNTERS flag and on powerpc to set the per-cpu flag
(paca->perf_counter_pending). It changes the previous powerpc
definition of set_perf_counter_pending to not take an argument and
adds a clear_perf_counter_pending, so as to simplify the definition
on x86.
On x86, set_perf_counter_pending() is defined as a macro. Defining
it as a static inline in arch/x86/include/asm/perf_counters.h causes
compile failures because <asm/perf_counters.h> gets included early in
<linux/sched.h>, and the definitions of set_tsk_thread_flag etc. are
therefore not available in <asm/perf_counters.h>. (On powerpc this
problem is avoided by defining set_perf_counter_pending etc. in
<asm/hw_irq.h>.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
Merge reason: we have gathered quite a few conflicts, need to merge upstream
Conflicts:
arch/powerpc/kernel/Makefile
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/hardirq.h
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/cpu/common.c
arch/x86/kernel/irq.c
arch/x86/kernel/syscall_table_32.S
arch/x86/mm/iomap_32.c
include/linux/sched.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Convert the last remaining users to struct irq_chip.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: linuxppc-dev@ozlabs.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Because 64-bit powerpc uses lazy (soft) interrupt disabling, it is
possible for a performance monitor exception to come in when the
kernel thinks interrupts are disabled (i.e. when they are
soft-disabled but hard-enabled). In such a situation the performance
monitor exception handler might have some processing to do (such as
process wakeups) which can't be done in what is effectively an NMI
handler.
This provides a way to defer that work until interrupts get enabled,
either in raw_local_irq_restore() or by returning from an interrupt
handler to code that had interrupts enabled. We have a per-processor
flag that indicates that there is work pending to do when interrupts
subsequently get re-enabled. This flag is checked in the interrupt
return path and in raw_local_irq_restore(), and if it is set,
perf_counter_do_pending() is called to do the pending work.
Signed-off-by: Paul Mackerras <paulus@samba.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>