Wall time obtained from do_gettimeofday gives 32 bit timeval which can only
represent time until January 2038. This patch moves to ktime_t, a 64-bit time.
Also, wall time is susceptible to sudden jumps due to user setting the time or
due to NTP. Boot time is constantly increasing time better suited for
subtracting two timestamps.
Signed-off-by: Abhilash Jindal <klock.android@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter. The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.
Tejun wasn't happy about this partial solution though and insisted on a
full solution. That requires the full OOM and freezer's task freezing
exclusion, though. This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.
oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.
oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations. Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.
The page fault path is covered now as well although it was assumed to be
safe before. As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here. Same applies
to the memcg OOM killer.
out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation. The page allocation
path simply fails the allocation same as before. The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.
Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because
- the victim cannot loop in the page fault handler (it would die
on the way out from the exception)
- it cannot loop in the page allocator because all the further
allocation would fail and __GFP_NOFAIL allocations are not
acceptable at this stage
- it shouldn't be blocked on any locks held by frozen tasks
(try_to_freeze expects lockless context) and kernel threads and
work queues are not frozen yet
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While touching this area let's convert printk to pr_*. This also makes
the printing of continuation lines done properly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up the code in process.c after recent changes to get rid of
unnecessary labels and goto statements.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
as per 0c740d0afc (introduce for_each_thread() to replace the buggy
while_each_thread()) get rid of do_each_thread { } while_each_thread()
construct and replace it by a more error prone for_each_thread.
This patch doesn't introduce any user visible change.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
PM freezer relies on having all tasks frozen by the time devices are
getting frozen so that no task will touch them while they are getting
frozen. But OOM killer is allowed to kill an already frozen task in
order to handle OOM situtation. In order to protect from late wake ups
OOM killer is disabled after all tasks are frozen. This, however, still
keeps a window open when a killed task didn't manage to die by the time
freeze_processes finishes.
Reduce the race window by checking all tasks after OOM killer has been
disabled. This is still not race free completely unfortunately because
oom_killer_disable cannot stop an already ongoing OOM killer so a task
might still wake up from the fridge and get killed without
freeze_processes noticing. Full synchronization of OOM and freezer is,
however, too heavy weight for this highly unlikely case.
Introduce and check oom_kills counter which gets incremented early when
the allocator enters __alloc_pages_may_oom path and only check all the
tasks if the counter changes during the freezing attempt. The counter
is updated so early to reduce the race window since allocator checked
oom_killer_disabled which is set by PM-freezing code. A false positive
will push the PM-freezer into a slow path but that is not a big deal.
Changes since v1
- push the re-check loop out of freeze_processes into
check_frozen_processes and invert the condition to make the code more
readable as per Rafael
Fixes: f660daac47 (oom: thaw threads if oom killed thread is frozen before deferring)
Cc: 3.2+ <stable@vger.kernel.org> # 3.2+
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It sometimes may be necessary to abort a system suspend in
progress or wake up the system from suspend-to-idle even if the
pm_wakeup_event()/pm_stay_awake() mechanism is not enabled.
For this purpose, introduce a new global variable pm_abort_suspend
and make pm_wakeup_pending() check its value. Also add routines
for manipulating that variable.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The commit [247bc037: PM / Sleep: Mitigate race between the freezer
and request_firmware()] introduced the finer state control, but it
also leads to a new bug; for example, a bug report regarding the
firmware loading of intel BT device at suspend/resume:
https://bugzilla.novell.com/show_bug.cgi?id=873790
The root cause seems to be a small window between the process resume
and the clear of usermodehelper lock. The request_firmware() function
checks the UMH lock and gives up when it's in UMH_DISABLE state. This
is for avoiding the invalid f/w loading during suspend/resume phase.
The problem is, however, that usermodehelper_enable() is called at the
end of thaw_processes(). Thus, a thawed process in between can kick
off the f/w loader code path (in this case, via btusb_setup_intel())
even before the call of usermodehelper_enable(). Then
usermodehelper_read_trylock() returns an error and request_firmware()
spews WARN_ON() in the end.
This oneliner patch fixes the issue just by setting to UMH_FREEZING
state again before restarting tasks, so that the call of
request_firmware() will be blocked until the end of this function
instead of returning an error.
Fixes: 247bc03742 (PM / Sleep: Mitigate race between the freezer and request_firmware())
Link: https://bugzilla.novell.com/show_bug.cgi?id=873790
Cc: 3.4+ <stable@vger.kernel.org> # 3.4+
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Adds trace events that give finer resolution into suspend/resume. These
events are graphed in the timelines generated by the analyze_suspend.py
script. They represent large areas of time consumed that are typical to
suspend and resume.
The event is triggered by calling the function "trace_suspend_resume"
with three arguments: a string (the name of the event to be displayed
in the timeline), an integer (case specific number, such as the power
state or cpu number), and a boolean (where true is used to denote the start
of the timeline event, and false to denote the end).
The suspend_resume trace event reproduces the data that the machine_suspend
trace event did, so the latter has been removed.
Signed-off-by: Todd Brandt <todd.e.brandt@intel.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Calling freeze_processes sets a global flag that will cause any
process that calls try_to_freeze to enter the refrigerator. It
skips sending a signal to the current task, but if the current
task ever hits try_to_freeze, all threads will be frozen and the
system will deadlock.
Set a new flag, PF_SUSPEND_TASK, on the task that calls
freeze_processes. The flag notifies the freezer that the thread
is involved in suspend and should not be frozen. Also add a
WARN_ON in thaw_processes if the caller does not have the
PF_SUSPEND_TASK flag set to catch if a different task calls
thaw_processes than the one that called freeze_processes, leaving
a task with PF_SUSPEND_TASK permanently set on it.
Threads that spawn off a task with PF_SUSPEND_TASK set (which
swsusp does) will also have PF_SUSPEND_TASK set, preventing them
from freezing while they are helping with suspend, but they need
to be dead by the time suspend is triggered, otherwise they may
run when userspace is expected to be frozen. Add a WARN_ON in
thaw_processes if more than one thread has the PF_SUSPEND_TASK
flag set.
Reported-and-tested-by: Michael Leun <lkml20130126@newton.leun.net>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
All tasks can easily be frozen in under 10 ms, switch to using
an initial 1 ms sleep followed by exponential backoff until
8 ms. Also convert the printed time to ms instead of centiseconds.
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
At present, the value of timeout for freezing is 20s, which is
meaningless in case that one thread is frozen with mutex locked
and another thread is trying to lock the mutex, as this time of
freezing will fail unavoidably.
And if there is no new wakeup event registered, the system will
waste at most 20s for such meaningless trying of freezing.
With this patch, the value of timeout can be configured to smaller
value, so such meaningless trying of freezing will be aborted in
earlier time, and later freezing can be also triggered in earlier
time. And more power will be saved.
In normal case on mobile phone, it costs real little time to freeze
processes. On some platform, it only costs about 20ms to freeze
user space processes and 10ms to freeze kernel freezable threads.
Signed-off-by: Liu Chuansheng <chuansheng.liu@intel.com>
Signed-off-by: Li Fei <fei.li@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
try_to_freeze_tasks() and cgroup_freezer rely on scheduler locks
to ensure that a task doing STOPPED/TRACED -> RUNNING transition
can't escape freezing. This mostly works, but ptrace_stop() does
not necessarily call schedule(), it can change task->state back to
RUNNING and check freezing() without any lock/barrier in between.
We could add the necessary barrier, but this patch changes
ptrace_stop() and do_signal_stop() to use freezable_schedule().
This fixes the race, freezer_count() and freezer_should_skip()
carefully avoid the race.
And this simplifies the code, try_to_freeze_tasks/update_if_frozen
no longer need to use task_is_stopped_or_traced() checks with the
non trivial assumptions. We can rely on the mechanism which was
specially designed to mark the sleeping task as "frozen enough".
v2: As Tejun pointed out, we can also change get_signal_to_deliver()
and move try_to_freeze() up before 'relock' label.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Noticed when digging into a suspend issue in linux-next (next-20120821).
For more details see <http://marc.info/?t=134554708000002&r=1&w=2>.
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
There is a race condition between the freezer and request_firmware()
such that if request_firmware() is run on one CPU and
freeze_processes() is run on another CPU and usermodehelper_disable()
called by it succeeds to grab umhelper_sem for writing before
usermodehelper_read_trylock() called from request_firmware()
acquires it for reading, the request_firmware() will fail and
trigger a WARN_ON() complaining that it was called at a wrong time.
However, in fact, it wasn't called at a wrong time and
freeze_processes() simply happened to be executed simultaneously.
To avoid this race, at least in some cases, modify
usermodehelper_read_trylock() so that it doesn't fail if the
freezing of tasks has just started and hasn't been completed yet.
Instead, during the freezing of tasks, it will try to freeze the
task that has called it so that it can wait until user space is
thawed without triggering the scary warning.
For this purpose, change usermodehelper_disabled so that it can
take three different values, UMH_ENABLED (0), UMH_FREEZING and
UMH_DISABLED. The first one means that usermode helpers are
enabled, the last one means "hard disable" (i.e. the system is not
ready for usermode helpers to be used) and the second one
is reserved for the freezer. Namely, when freeze_processes() is
started, it sets usermodehelper_disabled to UMH_FREEZING which
tells usermodehelper_read_trylock() that it shouldn't fail just
yet and should call try_to_freeze() if woken up and cannot
return immediately. This way all freezable tasks that happen
to call request_firmware() right before freeze_processes() is
started and lose the race for umhelper_sem with it will be
frozen and will sleep until thaw_processes() unsets
usermodehelper_disabled. [For the non-freezable callers of
request_firmware() the race for umhelper_sem against
freeze_processes() is unfortunately unavoidable.]
Reported-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
The core suspend/hibernation code calls usermodehelper_disable() to
avoid race conditions between the freezer and the starting of
usermode helpers and each code path has to do that on its own.
However, it is always called right before freeze_processes()
and usermodehelper_enable() is always called right after
thaw_processes(). For this reason, to avoid code duplication and
to make the connection between usermodehelper_disable() and the
freezer more visible, make freeze_processes() call it and remove the
direct usermodehelper_disable() and usermodehelper_enable() calls
from all suspend/hibernation code paths.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
This patch removes all the references in the code about the TIF_FREEZE
flag removed by commit a3201227f8
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE
There still are some references to TIF_FREEZE in
Documentation/power/freezing-of-tasks.txt, but it looks like that
documentation needs more thorough work to reflect how the new
freezer works, and hence merely removing the references to TIF_FREEZE
won't really help. So I have not touched that part in this patch.
Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Marcos Paulo de Souza <marcos.mage@gmail.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Use the observation that it is more efficient to check the wakeup
variable once before the loop reporting tasks that were not
frozen in try_to_freeze_tasks() than to do that in every step of that
loop.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
If freezing of kernel threads fails, we are expected to automatically
thaw tasks in the error recovery path. However, at times, we encounter
situations in which we would like the automatic error recovery path
to thaw only the kernel threads, because we want to be able to do
some more cleanup before we thaw userspace. Something like:
error = freeze_kernel_threads();
if (error) {
/* Do some cleanup */
/* Only then thaw userspace tasks*/
thaw_processes();
}
An example of such a situation is where we freeze/thaw filesystems
during suspend/hibernation. There, if freezing of kernel threads
fails, we would like to thaw the frozen filesystems before thawing
the userspace tasks.
So, modify freeze_kernel_threads() to thaw only kernel threads in
case of freezing failure. And change suspend_freeze_processes()
accordingly. (At the same time, let us also get rid of the rather
cryptic usage of the conditional operator (:?) in that function.)
[rjw: In fact, this patch fixes a regression introduced during the
3.3 merge window, because without it thaw_processes() may be called
before swsusp_free() in some situations and that may lead to massive
memory allocation failures.]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Nigel Cunningham <nigel@tuxonice.net>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Commit 2aede851dd
PM / Hibernate: Freeze kernel threads after preallocating memory
introduced a mechanism by which kernel threads were frozen after
the preallocation of hibernate image memory to avoid problems with
frozen kernel threads not responding to memory freeing requests.
However, it overlooked the s2disk code path in which the
SNAPSHOT_CREATE_IMAGE ioctl was run directly after SNAPSHOT_FREE,
which caused freeze_workqueues_begin() to BUG(), because it saw
that worqueues had been already frozen.
Although in principle this issue might be addressed by removing
the relevant BUG_ON() from freeze_workqueues_begin(), that would
reintroduce the very problem that commit 2aede851dd
attempted to avoid into that particular code path. For this reason,
to fix the issue at hand, introduce thaw_kernel_threads() and make
the SNAPSHOT_FREE ioctl execute it.
Special thanks to Srivatsa S. Bhat for detailed analysis of the
problem.
Reported-and-tested-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: stable@kernel.org
After "freezer: make freezing() test freeze conditions in effect
instead of TIF_FREEZE", freezing() returns authoritative answer on
whether the current task should freeze or not and freeze_task()
doesn't need or use @sig_only. Remove it.
While at it, rewrite function comment for freeze_task() and rename
@sig_only to @user_only in try_to_freeze_tasks().
This patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Using TIF_FREEZE for freezing worked when there was only single
freezing condition (the PM one); however, now there is also the
cgroup_freezer and single bit flag is getting clumsy.
thaw_processes() is already testing whether cgroup freezing in in
effect to avoid thawing tasks which were frozen by both PM and cgroup
freezers.
This is racy (nothing prevents race against cgroup freezing) and
fragile. A much simpler way is to test actual freeze conditions from
freezing() - ie. directly test whether PM or cgroup freezing is in
effect.
This patch adds variables to indicate whether and what type of
freezing conditions are in effect and reimplements freezing() such
that it directly tests whether any of the two freezing conditions is
active and the task should freeze. On fast path, freezing() is still
very cheap - it only tests system_freezing_cnt.
This makes the clumsy dancing aroung TIF_FREEZE unnecessary and
freeze/thaw operations more usual - updating state variables for the
new state and nudging target tasks so that they notice the new state
and comply. As long as the nudging happens after state update, it's
race-free.
* This allows use of freezing() in freeze_task(). Replace the open
coded tests with freezing().
* p != current test is added to warning printing conditions in
try_to_freeze_tasks() failure path. This is necessary as freezing()
is now true for the task which initiated freezing too.
-v2: Oleg pointed out that re-freezing FROZEN cgroup could increment
system_freezing_cnt. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
TIF_FREEZE will be removed soon and freezing() will directly test
whether any freezing condition is in effect. Make the following
changes in preparation.
* Rename cgroup_freezing_or_frozen() to cgroup_freezing() and make it
return bool.
* Make cgroup_freezing() access task_freezer() under rcu read lock
instead of task_lock(). This makes the state dereferencing racy
against task moving to another cgroup; however, it was already racy
without this change as ->state dereference wasn't synchronized.
This will be later dealt with using attach hooks.
* freezer->state is now set before trying to push tasks into the
target state.
-v2: Oleg pointed out that freeze_change_state() was setting
freeze->state incorrectly to CGROUP_FROZEN instead of
CGROUP_FREEZING. Fixed.
-v3: Matt pointed out that setting CGROUP_FROZEN used to always invoke
try_to_freeze_cgroup() regardless of the current state. Patch
updated such that the actual freeze/thaw operations are always
performed on invocation. This shouldn't make any difference
unless something is broken.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Paul Menage <paul@paulmenage.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
freeze_processes() failure path is rather messy. Freezing is canceled
for workqueues and tasks which aren't frozen yet but frozen tasks are
left alone and should be thawed by the caller and of course some
callers (xen and kexec) didn't do it.
This patch updates __thaw_task() to handle cancelation correctly and
makes freeze_processes() and freeze_kernel_threads() call
thaw_processes() on failure instead so that the system is fully thawed
on failure. Unnecessary [suspend_]thaw_processes() calls are removed
from kernel/power/hibernate.c, suspend.c and user.c.
While at it, restructure error checking if clause in suspend_prepare()
to be less weird.
-v2: Srivatsa spotted missing removal of suspend_thaw_processes() in
suspend_prepare() and error in commit message. Updated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
try_to_freeze_tasks() and thaw_processes() use freezable() and
frozen() as preliminary tests before initiating operations on a task.
These are done without any synchronization and hinder with
synchronization cleanup without any real performance benefits.
In try_to_freeze_tasks(), open code self test and move PF_NOFREEZE and
frozen() tests inside freezer_lock in freeze_task().
thaw_processes() can simply drop freezable() test as frozen() test in
__thaw_task() is enough.
Note: This used to be a part of larger patch to fix set_freezable()
race. Separated out to satisfy ordering among dependent fixes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently freezing (TIF_FREEZE) and frozen (PF_FROZEN) states are
interlocked - freezing is set to request freeze and when the task
actually freezes, it clears freezing and sets frozen.
This interlocking makes things more complex than necessary - freezing
doesn't mean there's freezing condition in effect and frozen doesn't
match the task actually entering and leaving frozen state (it's
cleared by the thawing task).
This patch makes freezing indicate that freeze condition is in effect.
A task enters and stays frozen if freezing. This makes PF_FROZEN
manipulation done only by the task itself and prevents wakeup from
__thaw_task() leaking outside of refrigerator.
The only place which needs to tell freezing && !frozen is
try_to_freeze_task() to whine about tasks which don't enter frozen.
It's updated to test the condition explicitly.
With the change, frozen() state my linger after __thaw_task() until
the task wakes up and exits fridge. This can trigger BUG_ON() in
update_if_frozen(). Work it around by testing freezing() && frozen()
instead of frozen().
-v2: Oleg pointed out missing re-check of freezing() when trying to
clear FROZEN and possible spurious BUG_ON() trigger in
update_if_frozen(). Both fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Menage <paul@paulmenage.org>
Freezer synchronization is needlessly complicated - it's by no means a
hot path and the priority is staying unintrusive and safe. This patch
makes it simply use a dedicated lock instead of piggy-backing on
task_lock() and playing with memory barriers.
On the failure path of try_to_freeze_tasks(), locking is moved from it
to cancel_freezing(). This makes the frozen() test racy but the race
here is a non-issue as the warning is printed for tasks which failed
to enter frozen for 20 seconds and race on PF_FROZEN at the last
moment doesn't change anything.
This simplifies freezer implementation and eases further changes
including some race fixes.
Signed-off-by: Tejun Heo <tj@kernel.org>
There's no point in thawing nosig tasks before others. There's no
ordering requirement between the two groups on thaw, which the staged
thawing can't guarantee anyway. Simplify thaw_processes() by removing
the distinction and collapsing thaw_tasks() into thaw_processes().
This will help further updates to freezer.
Signed-off-by: Tejun Heo <tj@kernel.org>
clear_freeze_flag() in exit_mm() is racy. Freezing can start
afterwards. Remove it. Skipping freezer for exiting task will be
properly implemented later.
Also, freezable() was testing exit_state directly to make system
freezer ignore dead tasks. Let the exiting task set PF_NOFREEZE after
entering TASK_DEAD instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
thaw_process() now has only internal users - system and cgroup
freezers. Remove the unnecessary return value, rename, unexport and
collapse __thaw_process() into it. This will help further updates to
the freezer code.
-v3: oom_kill grew a use of thaw_process() while this patch was
pending. Convert it to use __thaw_task() for now. In the longer
term, this should be handled by allowing tasks to die if killed
even if it's frozen.
-v2: minor style update as suggested by Matt.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Paul Menage <menage@google.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
There is a problem with the current ordering of hibernate code which
leads to deadlocks in some filesystems' memory shrinkers. Namely,
some filesystems use freezable kernel threads that are inactive when
the hibernate memory preallocation is carried out. Those same
filesystems use memory shrinkers that may be triggered by the
hibernate memory preallocation. If those memory shrinkers wait for
the frozen kernel threads, the hibernate process deadlocks (this
happens with XFS, for one example).
Apparently, it is not technically viable to redesign the filesystems
in question to avoid the situation described above, so the only
possible solution of this issue is to defer the freezing of kernel
threads until the hibernate memory preallocation is done, which is
implemented by this change.
Unfortunately, this requires the memory preallocation to be done
before the "prepare" stage of device freeze, so after this change the
only way drivers can allocate additional memory for their freeze
routines in a clean way is to use PM notifiers.
Reported-by: Christoph <cr2005@u-club.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
There are two spellings in use for 'freeze' + 'able' - 'freezable' and
'freezeable'. The former is the more prominent one. The latter is
mostly used by workqueue and in a few other odd places. Unify the
spelling to 'freezable'.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alex Dubov <oakad@yahoo.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Steven Whitehouse <swhiteho@redhat.com>
To avoid confusion with the meaning and return value of
pm_check_wakeup_events() replace it with pm_wakeup_pending() that
will work the other way around (ie. return true when system-wide
power transition should be aborted).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
After calling freeze_task(), try_to_freeze_tasks() see whether the
task is stopped or traced and if so, considers it to be frozen;
however, nothing guarantees that either the task being frozen sees
TIF_FREEZE or the freezer sees TASK_STOPPED -> TASK_RUNNING
transition. The task being frozen may wake up and not see TIF_FREEZE
while the freezer fails to notice the transition and believes the task
is still stopped.
This patch fixes the race by making freeze_task() always go through
fake_signal_wake_up() for applicable tasks. The function goes through
the target task's scheduler lock and thus guarantees that either the
target sees TIF_FREEZE or try_to_freeze_task() sees TASK_RUNNING.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
If there is a wakeup event during the freezing of tasks, suspend or
hibernation will fail anyway. Since try_to_freeze_tasks() can take
up to 20 seconds to complete or fail, aborting it as soon as a wakeup
event is detected improves the worst case wakeup latency.
Based on a patch from Arve Hjønnevåg.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Currently, workqueue freezing is implemented by marking the worker
freezeable and calling try_to_freeze() from dispatch loop.
Reimplement it using cwq->limit so that the workqueue is frozen
instead of the worker.
* workqueue_struct->saved_max_active is added which stores the
specified max_active on initialization.
* On freeze, all cwq->max_active's are quenched to zero. Freezing is
complete when nr_active on all cwqs reach zero.
* On thaw, all cwq->max_active's are restored to wq->saved_max_active
and the worklist is repopulated.
This new implementation allows having single shared pool of workers
per cpu.
Signed-off-by: Tejun Heo <tj@kernel.org>
When the cgroup freezer is used to freeze tasks we do not want to thaw
those tasks during resume. Currently we test the cgroup freezer
state of the resuming tasks to see if the cgroup is FROZEN. If so
then we don't thaw the task. However, the FREEZING state also indicates
that the task should remain frozen.
This also avoids a problem pointed out by Oren Ladaan: the freezer state
transition from FREEZING to FROZEN is updated lazily when userspace reads
or writes the freezer.state file in the cgroup filesystem. This means that
resume will thaw tasks in cgroups which should be in the FROZEN state if
there is no read/write of the freezer.state file to trigger this
transition before suspend.
NOTE: Another "simple" solution would be to always update the cgroup
freezer state during resume. However it's a bad choice for several reasons:
Updating the cgroup freezer state is somewhat expensive because it requires
walking all the tasks in the cgroup and checking if they are each frozen.
Worse, this could easily make resume run in N^2 time where N is the number
of tasks in the cgroup. Finally, updating the freezer state from this code
path requires trickier locking because of the way locks must be ordered.
Instead of updating the freezer state we rely on the fact that lazy
updates only manage the transition from FREEZING to FROZEN. We know that
a cgroup with the FREEZING state may actually be FROZEN so test for that
state too. This makes sense in the resume path even for partially-frozen
cgroups -- those that really are FREEZING but not FROZEN.
Reported-by: Oren Ladaan <orenl@cs.columbia.edu>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Cc: stable@kernel.org
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
show_state will dump all tasks state, so if freezer failed to freeze
any task, kernel will dump all tasks state and flood the dmesg log.
This patch makes freezer only show state of tasks refusing to freeze.
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Freezing isn't exactly the most latency sensitive operation and
there's no reason to burn cpu cycles and power waiting for it to
complete. msleep(10) instead of yield(). This should improve
reliability of emergency hibernation.
[rjw: Modified the comment next to the msleep(10).]
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Currently, the following scenario appears to be possible in theory:
* Tasks are frozen for hibernation or suspend.
* Free pages are almost exhausted.
* Certain piece of code in the suspend code path attempts to allocate
some memory using GFP_KERNEL and allocation order less than or
equal to PAGE_ALLOC_COSTLY_ORDER.
* __alloc_pages_internal() cannot find a free page so it invokes the
OOM killer.
* The OOM killer attempts to kill a task, but the task is frozen, so
it doesn't die immediately.
* __alloc_pages_internal() jumps to 'restart', unsuccessfully tries
to find a free page and invokes the OOM killer.
* No progress can be made.
Although it is now hard to trigger during hibernation due to the memory
shrinking carried out by the hibernation code, it is theoretically
possible to trigger during suspend after the memory shrinking has been
removed from that code path. Moreover, since memory allocations are
going to be used for the hibernation memory shrinking, it will be even
more likely to happen during hibernation.
To prevent it from happening, introduce the oom_killer_disabled switch
that will cause __alloc_pages_internal() to fail in the situations in
which the OOM killer would have been called and make the freezer set
this switch after tasks have been successfully frozen.
[akpm@linux-foundation.org: be nicer to the namespace]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Fengguang Wu <fengguang.wu@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a system is resumed after a suspend, it will also unfreeze frozen
cgroups.
This patchs modifies the resume sequence to skip the tasks which are part
of a frozen control group.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Tested-by: Matt Helsley <matthltc@us.ibm.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the TIF_FREEZE flag is available in all architectures, extract
the refrigerator() and freeze_task() from kernel/power/process.c and make
it available to all.
The refrigerator() can now be used in a control group subsystem
implementing a control group freezer.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Tested-by: Matt Helsley <matthltc@us.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix try_to_freeze_tasks()'s use of do_div() on an s64 by making
elapsed_csecs64 a u64 instead and dividing that.
Possibly this should be guarded lest the interval calculation turn up
negative, but the possible negativity of the result of the division is
cast away anyway.
This was introduced by patch 438e2ce68d.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The freezer currently attempts to distinguish kernel threads from
user space tasks by checking if their mm pointer is unset and it
does not send fake signals to kernel threads. However, there are
kernel threads, mostly related to networking, that behave like
user space tasks and may want to be sent a fake signal to be frozen.
Introduce the new process flag PF_FREEZER_NOSIG that will be set
by default for all kernel threads and make the freezer only send
fake signals to the tasks having PF_FREEZER_NOSIG unset. Provide
the set_freezable_with_signal() function to be called by the kernel
threads that want to be sent a fake signal for freezing.
This patch should not change the freezer's observable behavior.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Len Brown <len.brown@intel.com>
This changes the "freezer" code used by suspend/hibernate in its treatment
of tasks in TASK_STOPPED (job control stop) and TASK_TRACED (ptrace) states.
As I understand it, the intent of the "freezer" is to hold all tasks
from doing anything significant. For this purpose, TASK_STOPPED and
TASK_TRACED are "frozen enough". It's possible the tasks might resume
from ptrace calls (if the tracer were unfrozen) or from signals
(including ones that could come via timer interrupts, etc). But this
doesn't matter as long as they quickly block again while "freezing" is
in effect. Some minor adjustments to the signal.c code make sure that
try_to_freeze() very shortly follows all wakeups from both kinds of
stop. This lets the freezer code safely leave stopped tasks unmolested.
Changing this fixes the longstanding bug of seeing after resuming from
suspend/hibernate your shell report "[1] Stopped" and the like for all
your jobs stopped by ^Z et al, as if you had freshly fg'd and ^Z'd them.
It also removes from the freezer the arcane special case treatment for
ptrace'd tasks, which relied on intimate knowledge of ptrace internals.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Measure the time of the freezing of tasks, even if it doesn't fail.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Increase the freezer's verbosity a bit, so that it's easier to read problem
reports related to it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The freezer should not send signals to kernel threads, since that may lead to
subtle problems. In particular, commit
b74d0deb96 has changed recalc_sigpending_tsk()
so that it doesn't clear TIF_SIGPENDING. For this reason, if the freezer
continues to send fake signals to kernel threads and the freezing of kernel
threads fails, some of them may be running with TIF_SIGPENDING set forever.
Accordingly, recalc_sigpending_tsk() shouldn't set the task's TIF_SIGPENDING
flag if TIF_FREEZE is set.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>