Commit Graph

31 Commits

Author SHA1 Message Date
Amir Goldstein fa0096e3ba ovl: do not cleanup unsupported index entries
With index=on, ovl_indexdir_cleanup() tries to cleanup invalid index
entries (e.g. bad index name). This behavior could result in cleaning of
entries created by newer kernels and is therefore undesirable.
Instead, abort mount if such entries are encountered. We still cleanup
'stale' entries and 'orphan' entries, both those cases can be a result
of offline changes to lower and upper dirs.

When encoutering an index entry of type directory or whiteout, kernel
was supposed to fallback to read-only mount, but the fill_super()
operation returns EROFS in this case instead of returning success with
read-only mount flag, so mount fails when encoutering directory or
whiteout index entries. Bless this behavior by returning -EINVAL on
directory and whiteout index entries as we do for all unsupported index
entries.

Fixes: 61b674710c ("ovl: do not cleanup directory and whiteout index..")
Cc: <stable@vger.kernel.org> # v4.13
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
2017-10-24 16:06:17 +02:00
Amir Goldstein 7937a56fdf ovl: handle ENOENT on index lookup
Treat ENOENT from index entry lookup the same way as treating a returned
negative dentry. Apparently, either could be returned if file is not
found, depending on the underlying file system.

Fixes: 359f392ca5 ("ovl: lookup index entry for copy up origin")
Cc: <stable@vger.kernel.org> # v4.13
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
2017-10-24 16:06:17 +02:00
Amir Goldstein 6eaf011144 ovl: fix EIO from lookup of non-indexed upper
Commit fbaf94ee3c ("ovl: don't set origin on broken lower hardlink")
attempt to avoid the condition of non-indexed upper inode with lower
hardlink as origin. If this condition is found, lookup returns EIO.

The protection of commit mentioned above does not cover the case of lower
that is not a hardlink when it is copied up (with either index=off/on)
and then lower is hardlinked while overlay is offline.

Changes to lower layer while overlayfs is offline should not result in
unexpected behavior, so a permanent EIO error after creating a link in
lower layer should not be considered as correct behavior.

This fix replaces EIO error with success in cases where upper has origin
but no index is found, or index is found that does not match upper
inode. In those cases, lookup will not fail and the returned overlay inode
will be hashed by upper inode instead of by lower origin inode.

Fixes: 359f392ca5 ("ovl: lookup index entry for copy up origin")
Cc: <stable@vger.kernel.org> # v4.13
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-10-24 16:06:16 +02:00
Dan Carpenter 0ce5cdc9d7 ovl: Return -ENOMEM if an allocation fails ovl_lookup()
The error code is missing here so it means we return ERR_PTR(0) or NULL.
The other error paths all return an error code so this probably should
as well.

Fixes: 02b69b284c ("ovl: lookup redirects")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-10-19 16:19:52 +02:00
Amir Goldstein e0082a0f04 ovl: fix error value printed in ovl_lookup_index()
Fixes: 359f392ca5 ("ovl: lookup index entry for copy up origin")
Cc: <stable@vger.kernel.org> # v4.13
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-10-05 15:53:18 +02:00
Michal Hocko 0ee931c4e3 mm: treewide: remove GFP_TEMPORARY allocation flag
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE.  It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation.  As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag.  How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.

The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory.  So
this is rather misleading and hard to evaluate for any benefits.

I have checked some random users and none of them has added the flag
with a specific justification.  I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring.  This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.

I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse.  Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL.  Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.

I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.

This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic.  It
seems to be a heuristic without any measured advantage for most (if not
all) its current users.  The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers.  So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.

[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org

[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
  Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-13 18:53:16 -07:00
Amir Goldstein 0e082555ce ovl: check for bad and whiteout index on lookup
Index should always be of the same file type as origin, except for
the case of a whiteout index.  A whiteout index should only exist
if all lower aliases have been unlinked, which means that finding
a lower origin on lookup whose index is a whiteout should be treated
as a lookup error.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-20 11:08:21 +02:00
Amir Goldstein 61b674710c ovl: do not cleanup directory and whiteout index entries
Directory index entries are going to be used for looking up
redirected upper dirs by lower dir fh when decoding an overlay
file handle of a merge dir.

Whiteout index entries are going to be used as an indication that
an exported overlay file handle should be treated as stale (i.e.
after unlink of the overlay inode).

We don't know the verification rules for directory and whiteout
index entries, because they have not been implemented yet, so fail
to mount overlay rw if those entries are found to avoid corrupting
an index that was created by a newer kernel.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-20 11:08:21 +02:00
Amir Goldstein caf70cb2ba ovl: cleanup orphan index entries
index entry should live only as long as there are upper or lower
hardlinks.

Cleanup orphan index entries on mount and when dropping the last
overlay inode nlink.

When about to cleanup or link up to orphan index and the index inode
nlink > 1, admit that something went wrong and adjust overlay nlink
to index inode nlink - 1 to prevent it from dropping below zero.
This could happen when adding lower hardlinks underneath a mounted
overlay and then trying to unlink them.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:19 +02:00
Miklos Szeredi 55acc66182 ovl: add flag for upper in ovl_entry
For rename, we need to ensure that an upper alias exists for hard links
before attempting the operation.  Introduce a flag in ovl_entry to track
the state of the upper alias.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:18 +02:00
Miklos Szeredi b9ac5c274b ovl: hash overlay non-dir inodes by copy up origin
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Amir Goldstein 415543d5c6 ovl: cleanup bad and stale index entries on mount
Bad index entries are entries whose name does not match the
origin file handle stored in trusted.overlay.origin xattr.
Bad index entries could be a result of a system power off in
the middle of copy up.

Stale index entries are entries whose origin file handle is
stale. Stale index entries could be a result of copying layers
or removing lower entries while the overlay is not mounted.
The case of copying layers should be detected earlier by the
verification of upper root dir origin and index dir origin.

Both bad and stale index entries are detected and removed
on mount.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Amir Goldstein 359f392ca5 ovl: lookup index entry for copy up origin
When inodes index feature is enabled, lookup in indexdir for the index
entry of lower real inode or copy up origin inode. The index entry name
is the hex representation of the lower inode file handle.

If the index dentry in negative, then either no lower aliases have been
copied up yet, or aliases have been copied up in older kernels and are
not indexed.

If the index dentry for a copy up origin inode is positive, but points
to an inode different than the upper inode, then either the upper inode
has been copied up and not indexed or it was indexed, but since then
index dir was cleared. Either way, that index cannot be used to indentify
the overlay inode.

If a positive dentry that matches the upper inode was found, then it is
safe to use the copy up origin st_ino for upper hardlinks, because all
indexed upper hardlinks are represented by the same overlay inode as the
copy up origin.

Set the INDEX type flag on an indexed upper dentry. A non-upper dentry
may also have a positive index from copy up of another lower hardlink.
This situation will be handled by following patches.

Index lookup is going to be used to prevent breaking hardlinks on copy up.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Amir Goldstein 54fb347e83 ovl: verify index dir matches upper dir
An index dir contains persistent hardlinks to files in upper dir.
Therefore, we must never mount an existing index dir with a differnt
upper dir.

Store the upper root dir file handle in index dir inode when index
dir is created and verify the file handle before using an existing
index dir on mount.

Add an 'is_upper' flag to the overlay file handle encoding and set it
when encoding the upper root file handle. This is not critical for index
dir verification, but it is good practice towards a standard overlayfs
file handle format for NFS export.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Amir Goldstein 8b88a2e640 ovl: verify upper root dir matches lower root dir
When inodes index feature is enabled, verify that the file handle stored
in upper root dir matches the lower root dir or fail to mount.

If upper root dir has no stored file handle, encode and store the lower
root dir file handle in overlay.origin xattr.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Amir Goldstein f7d3daca7c ovl: relax same fs constrain for ovl_check_origin()
For the case of all layers not on the same fs, try to decode the copy up
origin file handle on any of the lower layers.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:17 +02:00
Miklos Szeredi 13c72075ac ovl: move impure to ovl_inode
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:16 +02:00
Miklos Szeredi cf31c46347 ovl: move redirect to ovl_inode
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:16 +02:00
Miklos Szeredi 09d8b58673 ovl: move __upperdentry to ovl_inode
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:16 +02:00
Miklos Szeredi e6d2ebddbc ovl: simplify getting inode
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-07-04 22:03:16 +02:00
Christoph Hellwig 85787090a2 fs: switch ->s_uuid to uuid_t
For some file systems we still memcpy into it, but in various places this
already allows us to use the proper uuid helpers.  More to come..

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com> (Changes to IMA/EVM)
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
2017-06-05 16:59:12 +02:00
Amir Goldstein f3a1568582 ovl: mark upper merge dir with type origin entries "impure"
An upper dir is marked "impure" to let ovl_iterate() know that this
directory may contain non pure upper entries whose d_ino may need to be
read from the origin inode.

We already mark a non-merge dir "impure" when moving a non-pure child
entry inside it, to let ovl_iterate() know not to iterate the non-merge
dir directly.

Mark also a merge dir "impure" when moving a non-pure child entry inside
it and when copying up a child entry inside it.

This can be used to optimize ovl_iterate() to perform a "pure merge" of
upper and lower directories, merging the content of the directories,
without having to read d_ino from origin inodes.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-05-29 11:48:00 +02:00
Amir Goldstein ee1d6d37b6 ovl: mark upper dir with type origin entries "impure"
When moving a merge dir or non-dir with copy up origin into a non-merge
upper dir (a.k.a pure upper dir), we are marking the target parent dir
"impure". ovl_iterate() iterates pure upper dirs directly, because there is
no need to filter out whiteouts and merge dir content with lower dir. But
for the case of an "impure" upper dir, ovl_iterate() will not be able to
iterate the real upper dir directly, because it will need to lookup the
origin inode and use it to fill d_ino.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-05-19 09:33:49 +02:00
Amir Goldstein a9d019573e ovl: lookup non-dir copy-up-origin by file handle
If overlay.origin xattr is found on a non-dir upper inode try to get lower
dentry by calling exportfs_decode_fh().

On failure to lookup by file handle to lower layer, do not lookup the copy
up origin by name, because the lower found by name could be another file in
case the upper file was renamed.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-05-05 11:38:58 +02:00
Amir Goldstein c22205d058 ovl: use an auxiliary var for overlay root entry
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-05-05 11:38:58 +02:00
Ingo Molnar 5b825c3af1 sched/headers: Prepare to remove <linux/cred.h> inclusion from <linux/sched.h>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.

Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:31 +01:00
Amir Goldstein 4c7d0c9cb7 ovl: fix possible use after free on redirect dir lookup
ovl_lookup_layer() iterates on path elements of d->name.name
but also frees and allocates a new pointer for d->name.name.

For the case of lookup in upper layer, the initial d->name.name
pointer is stable (dentry->d_name), but for lower layers, the
initial d->name.name can be d->redirect, which can be freed during
iteration.

[SzM]
Keep the count of remaining characters in the redirect path and calculate
the current position from that.  This works becuase only the prefix is
modified, the ending always stays the same.

Fixes: 02b69b284c ("ovl: lookup redirects")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-01-18 15:19:54 +01:00
Miklos Szeredi 02b69b284c ovl: lookup redirects
If a directory has the "trusted.overlay.redirect" xattr, it means that the
value of the xattr should be used to find the underlying directory on the
next lower layer.

The redirect may be relative or absolute.  Absolute redirects begin with a
slash.

A relative redirect means: instead of the current dentry's name use the
value of the redirect to find the directory in the next lower
layer. Relative redirects must not contain a slash.

An absolute redirect means: look up the directory relative to the root of
the overlay using the value of the redirect in the next lower layer.

Redirects work on lower layers as well.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-12-16 11:02:56 +01:00
Miklos Szeredi e28edc46b8 ovl: consolidate lookup for underlying layers
Use a common helper for lookup of upper and lower layers.  This paves the
way for looking up directory redirects.

No functional change.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-12-16 11:02:56 +01:00
Miklos Szeredi 6b2d5fe46f ovl: check namelen
We already calculate f_namelen in statfs as the maximum of the name lengths
provided by the filesystems taking part in the overlay.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-12-16 11:02:56 +01:00
Miklos Szeredi bbb1e54dd5 ovl: split super.c
fs/overlayfs/super.c is the biggest of the overlayfs source files and it
contains various utility functions as well as the rather complicated lookup
code.  Split these parts out to separate files.

Before:

 1446 fs/overlayfs/super.c

After:

  919 fs/overlayfs/super.c
  267 fs/overlayfs/namei.c
  235 fs/overlayfs/util.c
   51 fs/overlayfs/ovl_entry.h

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-12-16 11:02:56 +01:00