- Restore terminal stack frame records. Their previous removal caused
traces which cross secondary_start_kernel to terminate one entry too
late, with a spurious "0" entry.
- Fix boot warning with pseudo-NMI due to the way we manipulate the PMR
register.
- ACPI fixes: avoid corruption of interrupt mappings on watchdog probe
failure (GTDT), prevent unregistering of GIC SGIs.
- Force SPARSEMEM_VMEMMAP as the only memory model, it saves with having
to test all the other combinations.
- Documentation fixes and updates: tagged address ABI exceptions on
brk/mmap/mremap(), event stream frequency, update booting requirements
on the configuration of traps.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmCVba0ACgkQa9axLQDI
XvEClxAAsqigp+Mnotdr8YUOuXLjHWU41EMShV6WbFcmlViEyZxxtZ5qavw19T3L
rPxb8hq9QqI8kCd+j4MAU7cdc0ry+047njJmQ3Va0WeiDsbgEfPvLWPguDbeDFXW
EjKKib+F/u58IffDkn6rVA7ZVPgYHRH+8yw6EdApp0BN4JuxEFzGBzG4EWKXnNHH
IOu4IIXlbLX+U1kTtUFR4u6i4uBs2pZdEYzo1NF/Joacg14F01CBRuh8U04eeWFD
HF4pWd4eCl/bLYPurF1rOi1dIUyrPuaPgNInGEdSaocD0hIvQH0r0wyIt+aMmqvK
9Jm+dDEGeLxQn2nDrXfyldYG5EbFa3OplkUt2MVDDMWwN2Gpsjlnf/ucff/SBT/N
7D6AL2OH6KDDCsNgU1JH9H6rAlh4nWJcsMBrWmP7aQtBMRyccQLywrt4HXB8cy7E
+MyhTit05P3lpsrK2uZSFujK35Ts8hxywA7lAlU7YP4ADKu3Noc6qXSaxZRe+1Gb
O5k3Qdcih0VLE843PjJj8f8fW1ysJW5J60cK9BaZxpB77gNufKkh/hS6YAiA8qkt
PT3J0jk/cgGvwKK54rW52dG7qvDImgUMGkXGKQnEimgb62DatCZ4ZOPC+UoiDiqO
SEd1DSW0Lt1VxVIulAjatVgzIJGM0jGCm9L7/vBguR0+Lahakbg=
=vYok
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"A mix of fixes and clean-ups that turned up too late for the first
pull request:
- Restore terminal stack frame records. Their previous removal caused
traces which cross secondary_start_kernel to terminate one entry
too late, with a spurious "0" entry.
- Fix boot warning with pseudo-NMI due to the way we manipulate the
PMR register.
- ACPI fixes: avoid corruption of interrupt mappings on watchdog
probe failure (GTDT), prevent unregistering of GIC SGIs.
- Force SPARSEMEM_VMEMMAP as the only memory model, it saves with
having to test all the other combinations.
- Documentation fixes and updates: tagged address ABI exceptions on
brk/mmap/mremap(), event stream frequency, update booting
requirements on the configuration of traps"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: kernel: Update the stale comment
arm64: Fix the documented event stream frequency
arm64: entry: always set GIC_PRIO_PSR_I_SET during entry
arm64: Explicitly document boot requirements for SVE
arm64: Explicitly require that FPSIMD instructions do not trap
arm64: Relax booting requirements for configuration of traps
arm64: cpufeatures: use min and max
arm64: stacktrace: restore terminal records
arm64/vdso: Discard .note.gnu.property sections in vDSO
arm64: doc: Add brk/mmap/mremap() to the Tagged Address ABI Exceptions
psci: Remove unneeded semicolon
ACPI: irq: Prevent unregistering of GIC SGIs
ACPI: GTDT: Don't corrupt interrupt mappings on watchdow probe failure
arm64: Show three registers per line
arm64: remove HAVE_DEBUG_BUGVERBOSE
arm64: alternative: simplify passing alt_region
arm64: Force SPARSEMEM_VMEMMAP as the only memory management model
arm64: vdso32: drop -no-integrated-as flag
Zenghui reports that booting a kernel with "irqchip.gicv3_pseudo_nmi=1"
on the command line hits a warning during kernel entry, due to the way
we manipulate the PMR.
Early in the entry sequence, we call lockdep_hardirqs_off() to inform
lockdep that interrupts have been masked (as the HW sets DAIF wqhen
entering an exception). Architecturally PMR_EL1 is not affected by
exception entry, and we don't set GIC_PRIO_PSR_I_SET in the PMR early in
the exception entry sequence, so early in exception entry the PMR can
indicate that interrupts are unmasked even though they are masked by
DAIF.
If DEBUG_LOCKDEP is selected, lockdep_hardirqs_off() will check that
interrupts are masked, before we set GIC_PRIO_PSR_I_SET in any of the
exception entry paths, and hence lockdep_hardirqs_off() will WARN() that
something is amiss.
We can avoid this by consistently setting GIC_PRIO_PSR_I_SET during
exception entry so that kernel code sees a consistent environment. We
must also update local_daif_inherit() to undo this, as currently only
touches DAIF. For other paths, local_daif_restore() will update both
DAIF and the PMR. With this done, we can remove the existing special
cases which set this later in the entry code.
We always use (GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET) for consistency with
local_daif_save(), as this will warn if it ever encounters
(GIC_PRIO_IRQOFF | GIC_PRIO_PSR_I_SET), and never sets this itself. This
matches the gic_prio_kentry_setup that we have to retain for
ret_to_user.
The original splat from Zenghui's report was:
| DEBUG_LOCKS_WARN_ON(!irqs_disabled())
| WARNING: CPU: 3 PID: 125 at kernel/locking/lockdep.c:4258 lockdep_hardirqs_off+0xd4/0xe8
| Modules linked in:
| CPU: 3 PID: 125 Comm: modprobe Tainted: G W 5.12.0-rc8+ #463
| Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
| pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : lockdep_hardirqs_off+0xd4/0xe8
| lr : lockdep_hardirqs_off+0xd4/0xe8
| sp : ffff80002a39bad0
| pmr_save: 000000e0
| x29: ffff80002a39bad0 x28: ffff0000de214bc0
| x27: ffff0000de1c0400 x26: 000000000049b328
| x25: 0000000000406f30 x24: ffff0000de1c00a0
| x23: 0000000020400005 x22: ffff8000105f747c
| x21: 0000000096000044 x20: 0000000000498ef9
| x19: ffff80002a39bc88 x18: ffffffffffffffff
| x17: 0000000000000000 x16: ffff800011c61eb0
| x15: ffff800011700a88 x14: 0720072007200720
| x13: 0720072007200720 x12: 0720072007200720
| x11: 0720072007200720 x10: 0720072007200720
| x9 : ffff80002a39bad0 x8 : ffff80002a39bad0
| x7 : ffff8000119f0800 x6 : c0000000ffff7fff
| x5 : ffff8000119f07a8 x4 : 0000000000000001
| x3 : 9bcdab23f2432800 x2 : ffff800011730538
| x1 : 9bcdab23f2432800 x0 : 0000000000000000
| Call trace:
| lockdep_hardirqs_off+0xd4/0xe8
| enter_from_kernel_mode.isra.5+0x7c/0xa8
| el1_abort+0x24/0x100
| el1_sync_handler+0x80/0xd0
| el1_sync+0x6c/0x100
| __arch_clear_user+0xc/0x90
| load_elf_binary+0x9fc/0x1450
| bprm_execve+0x404/0x880
| kernel_execve+0x180/0x188
| call_usermodehelper_exec_async+0xdc/0x158
| ret_from_fork+0x10/0x18
Fixes: 23529049c6 ("arm64: entry: fix non-NMI user<->kernel transitions")
Fixes: 7cd1ea1010 ("arm64: entry: fix non-NMI kernel<->kernel transitions")
Fixes: f0cd5ac1e4 ("arm64: entry: fix NMI {user, kernel}->kernel transitions")
Fixes: 2a9b3e6ac6 ("arm64: entry: fix EL1 debug transitions")
Link: https://lore.kernel.org/r/f4012761-026f-4e51-3a0c-7524e434e8b3@huawei.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210428111555.50880-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We removed the terminal frame records in commit:
6106e1112c ("arm64: remove EL0 exception frame record")
... on the assumption that as we no longer used them to find the pt_regs
at exception boundaries, they were no longer necessary.
However, Leo reports that as an unintended side-effect, this causes
traces which cross secondary_start_kernel to terminate one entry too
late, with a spurious "0" entry.
There are a few ways we could sovle this, but as we're planning to use
terminal records for RELIABLE_STACKTRACE, let's revert the logic change
for now, keeping the update comments and accounting for the changes in
commit:
3c02600144 ("arm64: stacktrace: Report when we reach the end of the stack")
This is effectively a partial revert of commit:
6106e1112c ("arm64: remove EL0 exception frame record")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 6106e1112c ("arm64: remove EL0 exception frame record")
Reported-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: "Madhavan T. Venkataraman" <madvenka@linux.microsoft.com>
Link: https://lore.kernel.org/r/20210429104813.GA33550@C02TD0UTHF1T.local
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not allow
precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON in
softirq context for crypto performance improvements. The conditional
yield support is modified to take softirqs into account and reduce the
latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers, new
functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmB5xkkACgkQa9axLQDI
XvEBgRAAsr6r8gsBQJP3FDHmbtbVf2ej5QJTCOAQAGHbTt0JH7Pk03pWSBr7h5nF
vsddRDxxeDgB6xd7jWP7EvDaPxHeB0CdSj5gG8EP/ZdOm8sFAwB1ZIHWikgUgSwW
nu6R28yXTMSj+EkyFtahMhTMJ1EMF4sCPuIgAo59ST5w/UMMqLCJByOu4ej6RPKZ
aeSJJWaDLBmbgnTKWxRvCc/MgIx4J/LAHWGkdpGjuMK6SLp38Kdf86XcrklXtzwf
K30ZYeoKq8zZ+nFOsK9gBVlOlocZcbS1jEbN842jD6imb6vKLQtBWrKk9A6o4v5E
XulORWcSBhkZb3ItIU9+6SmelUExf0VeVlSp657QXYPgquoIIGvFl6rCwhrdGMGO
bi6NZKCfJvcFZJoIN1oyhuHejgZSBnzGEcvhvzNdg7ItvOCed7q3uXcGHz/OI6tL
2TZKddzHSEMVfTo0D+RUsYfasZHI1qAiQ0mWVC31c+YHuRuW/K/jlc3a5TXlSBUa
Dwu0/zzMLiqx65ISx9i7XNMrngk55uzrS6MnwSByPoz4M4xsElZxt3cbUxQ8YAQz
jhxTHs1Pwes8i7f4n61ay/nHCFbmVvN/LlsPRpZdwd8JumThLrDolF3tc6aaY0xO
hOssKtnGY4Xvh/WitfJ5uvDb1vMObJKTXQEoZEJh4hlNQDxdeUE=
=6NGI
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not
allow precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON
in softirq context for crypto performance improvements. The
conditional yield support is modified to take softirqs into account
and reduce the latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers,
new functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (86 commits)
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64: pac: Optimize kernel entry/exit key installation code paths
arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS)
arm64: mte: make the per-task SCTLR_EL1 field usable elsewhere
arm64/sve: Remove redundant system_supports_sve() tests
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
kasan, arm64: tests supports for HW_TAGS async mode
arm64: mte: Report async tag faults before suspend
arm64: mte: Enable async tag check fault
arm64: mte: Conditionally compile mte_enable_kernel_*()
arm64: mte: Enable TCO in functions that can read beyond buffer limits
kasan: Add report for async mode
arm64: mte: Drop arch_enable_tagging()
kasan: Add KASAN mode kernel parameter
arm64: mte: Add asynchronous mode support
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
...
* for-next/misc:
: Miscellaneous patches
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64/sve: Remove redundant system_supports_sve() tests
arm64: mte: Remove unused mte_assign_mem_tag_range()
arm64: Add __init section marker to some functions
arm64/sve: Rework SVE access trap to convert state in registers
docs: arm64: Fix a grammar error
arm64: smp: Add missing prototype for some smp.c functions
arm64: setup: name `tcr` register
arm64: setup: name `mair` register
arm64: stacktrace: Move start_backtrace() out of the header
arm64: barrier: Remove spec_bar() macro
arm64: entry: remove test_irqs_unmasked macro
ARM64: enable GENERIC_FIND_FIRST_BIT
arm64: defconfig: Use DEBUG_INFO_REDUCED
* for-next/kselftest:
: Various kselftests for arm64
kselftest: arm64: Add BTI tests
kselftest/arm64: mte: Report filename on failing temp file creation
kselftest/arm64: mte: Fix clang warning
kselftest/arm64: mte: Makefile: Fix clang compilation
kselftest/arm64: mte: Output warning about failing compiler
kselftest/arm64: mte: Use cross-compiler if specified
kselftest/arm64: mte: Fix MTE feature detection
kselftest/arm64: mte: common: Fix write() warnings
kselftest/arm64: mte: user_mem: Fix write() warning
kselftest/arm64: mte: ksm_options: Fix fscanf warning
kselftest/arm64: mte: Fix pthread linking
kselftest/arm64: mte: Fix compilation with native compiler
* for-next/xntable:
: Add hierarchical XN permissions for all page tables
arm64: mm: use XN table mapping attributes for user/kernel mappings
arm64: mm: use XN table mapping attributes for the linear region
arm64: mm: add missing P4D definitions and use them consistently
* for-next/vdso:
: Minor improvements to the compat vdso and sigpage
arm64: compat: Poison the compat sigpage
arm64: vdso: Avoid ISB after reading from cntvct_el0
arm64: compat: Allow signal page to be remapped
arm64: vdso: Remove redundant calls to flush_dcache_page()
arm64: vdso: Use GFP_KERNEL for allocating compat vdso and signal pages
* for-next/fiq:
: Support arm64 FIQ controller registration
arm64: irq: allow FIQs to be handled
arm64: Always keep DAIF.[IF] in sync
arm64: entry: factor irq triage logic into macros
arm64: irq: rework root IRQ handler registration
arm64: don't use GENERIC_IRQ_MULTI_HANDLER
genirq: Allow architectures to override set_handle_irq() fallback
* for-next/epan:
: Support for Enhanced PAN (execute-only permissions)
arm64: Support execute-only permissions with Enhanced PAN
* for-next/kasan-vmalloc:
: Support CONFIG_KASAN_VMALLOC on arm64
arm64: Kconfig: select KASAN_VMALLOC if KANSAN_GENERIC is enabled
arm64: kaslr: support randomized module area with KASAN_VMALLOC
arm64: Kconfig: support CONFIG_KASAN_VMALLOC
arm64: kasan: abstract _text and _end to KERNEL_START/END
arm64: kasan: don't populate vmalloc area for CONFIG_KASAN_VMALLOC
* for-next/fgt-boot-init:
: Booting clarifications and fine grained traps setup
arm64: Require that system registers at all visible ELs be initialized
arm64: Disable fine grained traps on boot
arm64: Document requirements for fine grained traps at boot
* for-next/vhe-only:
: Dealing with VHE-only CPUs (a.k.a. M1)
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
arm64: cpufeature: Allow early filtering of feature override
* arm64/for-next/perf:
arm64: perf: Remove redundant initialization in perf_event.c
perf/arm_pmu_platform: Clean up with dev_printk
perf/arm_pmu_platform: Fix error handling
perf/arm_pmu_platform: Use dev_err_probe() for IRQ errors
docs: perf: Address some html build warnings
docs: perf: Add new description on HiSilicon uncore PMU v2
drivers/perf: hisi: Add support for HiSilicon PA PMU driver
drivers/perf: hisi: Add support for HiSilicon SLLC PMU driver
drivers/perf: hisi: Update DDRC PMU for programmable counter
drivers/perf: hisi: Add new functions for HHA PMU
drivers/perf: hisi: Add new functions for L3C PMU
drivers/perf: hisi: Add PMU version for uncore PMU drivers.
drivers/perf: hisi: Refactor code for more uncore PMUs
drivers/perf: hisi: Remove unnecessary check of counter index
drivers/perf: Simplify the SMMUv3 PMU event attributes
drivers/perf: convert sysfs sprintf family to sysfs_emit
drivers/perf: convert sysfs scnprintf family to sysfs_emit_at() and sysfs_emit()
drivers/perf: convert sysfs snprintf family to sysfs_emit
* for-next/neon-softirqs-disabled:
: Run kernel mode SIMD with softirqs disabled
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
The kernel does not use any keys besides IA so we don't need to
install IB/DA/DB/GA on kernel exit if we arrange to install them
on task switch instead, which we can expect to happen an order of
magnitude less often.
Furthermore we can avoid installing the user IA in the case where the
user task has IA disabled and just leave the kernel IA installed. This
also lets us avoid needing to install IA on kernel entry.
On an Apple M1 under a hypervisor, the overhead of kernel entry/exit
has been measured to be reduced by 15.6ns in the case where IA is
enabled, and 31.9ns in the case where IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/Ieddf6b580d23c9e0bed45a822dabe72d2ffc9a8e
Link: https://lore.kernel.org/r/2d653d055f38f779937f2b92f8ddd5cf9e4af4f4.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This change introduces a prctl that allows the user program to control
which PAC keys are enabled in a particular task. The main reason
why this is useful is to enable a userspace ABI that uses PAC to
sign and authenticate function pointers and other pointers exposed
outside of the function, while still allowing binaries conforming
to the ABI to interoperate with legacy binaries that do not sign or
authenticate pointers.
The idea is that a dynamic loader or early startup code would issue
this prctl very early after establishing that a process may load legacy
binaries, but before executing any PAC instructions.
This change adds a small amount of overhead to kernel entry and exit
due to additional required instruction sequences.
On a DragonBoard 845c (Cortex-A75) with the powersave governor, the
overhead of similar instruction sequences was measured as 4.9ns when
simulating the common case where IA is left enabled, or 43.7ns when
simulating the uncommon case where IA is disabled. These numbers can
be seen as the worst case scenario, since in more realistic scenarios
a better performing governor would be used and a newer chip would be
used that would support PAC unlike Cortex-A75 and would be expected
to be faster than Cortex-A75.
On an Apple M1 under a hypervisor, the overhead of the entry/exit
instruction sequences introduced by this patch was measured as 0.3ns
in the case where IA is left enabled, and 33.0ns in the case where
IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5
Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The entry from EL0 code checks the TFSRE0_EL1 register for any
asynchronous tag check faults in user space and sets the
TIF_MTE_ASYNC_FAULT flag. This is not done atomically, potentially
racing with another CPU calling set_tsk_thread_flag().
Replace the non-atomic ORR+STR with an STSET instruction. While STSET
requires ARMv8.1 and an assembler that understands LSE atomics, the MTE
feature is part of ARMv8.5 and already requires an updated assembler.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 637ec831ea ("arm64: mte: Handle synchronous and asynchronous tag check faults")
Cc: <stable@vger.kernel.org> # 5.10.x
Reported-by: Will Deacon <will@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210409173710.18582-1-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
We haven't needed the test_irqs_unmasked macro since commit:
105fc33520 ("arm64: entry: move el1 irq/nmi logic to C")
... and as we convert more of the entry logic to C it is decreasingly
likely we'll need it in future, so let's remove the unused macro.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210323181201.18889-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On contemporary platforms we don't use FIQ, and treat any stray FIQ as a
fatal event. However, some platforms have an interrupt controller wired
to FIQ, and need to handle FIQ as part of regular operation.
So that we can support both cases dynamically, this patch updates the
FIQ exception handling code to operate the same way as the IRQ handling
code, with its own handle_arch_fiq handler. Where a root FIQ handler is
not registered, an unexpected FIQ exception will trigger the default FIQ
handler, which will panic() as today. Where a root FIQ handler is
registered, handling of the FIQ is deferred to that handler.
As el0_fiq_invalid_compat is supplanted by el0_fiq, the former is
removed. For !CONFIG_COMPAT builds we never expect to take an exception
from AArch32 EL0, so we keep the common el0_fiq_invalid handler.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Apple SoCs (A11 and newer) have some interrupt sources hardwired to the
FIQ line. We implement support for this by simply treating IRQs and FIQs
the same way in the interrupt vectors.
To support these systems, the FIQ mask bit needs to be kept in sync with
the IRQ mask bit, so both kinds of exceptions are masked together. No
other platforms should be delivering FIQ exceptions right now, and we
already unmask FIQ in normal process context, so this should not have an
effect on other systems - if spurious FIQs were arriving, they would
already panic the kernel.
Signed-off-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll allow an FIQ handler to be registered, and
FIQ exceptions will need to be triaged very similarly to IRQ exceptions.
So that we can reuse the existing logic, this patch factors the IRQ
triage logic out into macros that can be reused for FIQ.
The macros are named to follow the elX_foo_handler scheme used by the C
exception handlers. For consistency with other top-level exception
handlers, the kernel_entry/kernel_exit logic is not moved into the
macros. As FIQ will use a different C handler, this handler name is
provided as an argument to the macros.
There should be no functional change as a result of this patch.
Signed-off-by: Marc Zyngier <maz@kernel.org>
[Mark: rework macros, commit message, rebase before DAIF rework]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add TRAMP_SWAPPER_OFFSET and use that instead of hardcoding
the offset between swapper_pg_dir and tramp_pg_dir.
Then use TRAMP_SWAPPER_OFFSET to assert that the offset is
correct at link time.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210202123658.22308-3-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
When entering an exception from EL0, the entry code creates a synthetic
frame record with a NULL PC. This was used by the code introduced in
commit:
7326749801 ("arm64: unwind: reference pt_regs via embedded stack frame")
... to discover exception entries on the stack and dump the associated
pt_regs. Since the NULL PC was undesirable for the stacktrace, we added
a special case to unwind_frame() to prevent the NULL PC from being
logged.
Since commit:
a25ffd3a63 ("arm64: traps: Don't print stack or raw PC/LR values in backtraces")
... we no longer try to dump the pt_regs as part of a stacktrace, and
hence no longer need the synthetic exception record.
This patch removes the synthetic exception record and the associated
special case in unwind_frame(). Instead, EL0 exceptions set the FP to
NULL, as is the case for other terminal records (e.g. when a kernel
thread starts). The synthetic record for exceptions from EL1 is
retrained as this has useful unwind information for the interrupted
context.
To make the terminal case a bit clearer, an explicit check is added to
the start of unwind_frame(). This would otherwise be caught implicitly
by the on_accessible_stack() checks.
Reported-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210113173155.43063-1-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
S_FRAME_SIZE is the size of the pt_regs structure, no longer the size of
the kernel stack frame, the name is misleading. In keeping with arm32,
rename S_FRAME_SIZE to PT_REGS_SIZE.
Signed-off-by: Jianlin Lv <Jianlin.Lv@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210112015813.2340969-1-Jianlin.Lv@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When MTE is present, the GCR_EL1 register contains the tags mask that
allows to exclude tags from the random generation via the IRG instruction.
With the introduction of the new Tag-Based KASAN API that provides a
mechanism to reserve tags for special reasons, the MTE implementation has
to make sure that the GCR_EL1 setting for the kernel does not affect the
userspace processes and viceversa.
Save and restore the kernel/user mask in GCR_EL1 in kernel entry and exit.
Link: https://lkml.kernel.org/r/578b03294708cc7258fad0dc9c2a2e809e5a8214.1606161801.git.andreyknvl@google.com
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the uaccess primitives dont take addr_limit into account, we
have no need to manipulate this via set_fs() and get_fs(). Remove
support for these, along with some infrastructure this renders
redundant.
We no longer need to flip UAO to access kernel memory under KERNEL_DS,
and head.S unconditionally clears UAO for all kernel configurations via
an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO,
nor do we need to context-switch it. However, we still need to adjust
PAN during SDEI entry.
Masking of __user pointers no longer needs to use the dynamic value of
addr_limit, and can use a constant derived from the maximum possible
userspace task size. A new TASK_SIZE_MAX constant is introduced for
this, which is also used by core code. In configurations supporting
52-bit VAs, this may include a region of unusable VA space above a
48-bit TTBR0 limit, but never includes any portion of TTBR1.
Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and
KERNEL_DS were inclusive limits, and is converted to a mask by
subtracting one.
As the SDEI entry code repurposes the otherwise unnecessary
pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted
context, for now we rename that to pt_regs::sdei_ttbr1. In future we can
consider factoring that out.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201202131558.39270-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Use scs_alloc() to allocate also IRQ and SDEI shadow stacks instead of
using statically allocated stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130233442.2562064-3-samitolvanen@google.com
[will: Move CONFIG_SHADOW_CALL_STACK check into init_irq_scs()]
Signed-off-by: Will Deacon <will@kernel.org>
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In preparation for reworking the EL1 irq/nmi entry code, move the
existing logic to C. We no longer need the asm_nmi_enter() and
asm_nmi_exit() wrappers, so these are removed. The new C functions are
marked noinstr, which prevents compiler instrumentation and runtime
probing.
In subsequent patches we'll want the new C helpers to be called in all
cases, so we don't bother wrapping the calls with ifdeferry. Even when
the new C functions are stubs the trivial calls are unlikely to have a
measurable impact on the IRQ or NMI paths anyway.
Prototypes are added to <asm/exception.h> as otherwise (in some
configurations) GCC will complain about the lack of a forward
declaration. We already do this for existing function, e.g.
enter_from_user_mode().
The new helpers are marked as noinstr (which prevents all
instrumentation, tracing, and kprobes). Otherwise, there should be no
functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-7-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In a subsequent patch ret_to_user will need to make a C function call
(in some configurations) which may clobber x0-x18 at the start of the
finish_ret_to_user block, before enable_step_tsk consumes the flags
loaded into x1.
In preparation for this, let's load the flags into x19, which is
preserved across C function calls. This avoids a redundant reload of the
flags and ensures we operate on a consistent shapshot regardless.
There should be no functional change as a result of this patch. At this
point of the entry/exit paths we only need to preserve x28 (tsk) and the
sp, and x19 is free for this use.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-6-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Depending on configuration options and specific code paths, we either
use the empty_zero_page or the configuration-dependent reserved_ttbr0
as a reserved value for TTBR{0,1}_EL1.
To simplify this code, let's always allocate and use the same
reserved_pg_dir, replacing reserved_ttbr0. Note that this is allocated
(and hence pre-zeroed), and is also marked as read-only in the kernel
Image mapping.
Keeping this separate from the empty_zero_page potentially helps with
robustness as the empty_zero_page is used in a number of cases where a
failure to map it read-only could allow it to become corrupted.
The (presently unused) swapper_pg_end symbol is also removed, and
comments are added wherever we rely on the offsets between the
pre-allocated pg_dirs to keep these cases easily identifiable.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103102229.8542-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On Cortex-A77 r0p0 and r1p0, a sequence of a non-cacheable or device load
and a store exclusive or PAR_EL1 read can cause a deadlock.
The workaround requires a DMB SY before and after a PAR_EL1 register
read. In addition, it's possible an interrupt (doing a device read) or
KVM guest exit could be taken between the DMB and PAR read, so we
also need a DMB before returning from interrupt and before returning to
a guest.
A deadlock is still possible with the workaround as KVM guests must also
have the workaround. IOW, a malicious guest can deadlock an affected
systems.
This workaround also depends on a firmware counterpart to enable the h/w
to insert DMB SY after load and store exclusive instructions. See the
errata document SDEN-1152370 v10 [1] for more information.
[1] https://static.docs.arm.com/101992/0010/Arm_Cortex_A77_MP074_Software_Developer_Errata_Notice_v10.pdf
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: kvmarm@lists.cs.columbia.edu
Link: https://lore.kernel.org/r/20201028182839.166037-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
Rewrite the Spectre-v4 mitigation handling code to follow the same
approach as that taken by Spectre-v2.
For now, report to KVM that the system is vulnerable (by forcing
'ssbd_state' to ARM64_SSBD_UNKNOWN), as this will be cleared up in
subsequent steps.
Signed-off-by: Will Deacon <will@kernel.org>
The spectre mitigations are too configurable for their own good, leading
to confusing logic trying to figure out when we should mitigate and when
we shouldn't. Although the plethora of command-line options need to stick
around for backwards compatibility, the default-on CONFIG options that
depend on EXPERT can be dropped, as the mitigations only do anything if
the system is vulnerable, a mitigation is available and the command-line
hasn't disabled it.
Remove CONFIG_HARDEN_BRANCH_PREDICTOR and CONFIG_ARM64_SSBD in favour of
enabling this code unconditionally.
Signed-off-by: Will Deacon <will@kernel.org>
The Memory Tagging Extension has two modes of notifying a tag check
fault at EL0, configurable through the SCTLR_EL1.TCF0 field:
1. Synchronous raising of a Data Abort exception with DFSC 17.
2. Asynchronous setting of a cumulative bit in TFSRE0_EL1.
Add the exception handler for the synchronous exception and handling of
the asynchronous TFSRE0_EL1.TF0 bit setting via a new TIF flag in
do_notify_resume().
On a tag check failure in user-space, whether synchronous or
asynchronous, a SIGSEGV will be raised on the faulting thread.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Instead of dealing with erratum 1418040 on each entry and exit,
let's move the handling to __switch_to() instead, which has
several advantages:
- It can be applied when it matters (switching between 32 and 64
bit tasks).
- It is written in C (yay!)
- It can rely on static keys rather than alternatives
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200731173824.107480-2-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Removal of the tremendously unpopular read_barrier_depends() barrier,
which is a NOP on all architectures apart from Alpha, in favour of
allowing architectures to override READ_ONCE() and do whatever dance
they need to do to ensure address dependencies provide LOAD ->
LOAD/STORE ordering. This work also offers a potential solution if
compilers are shown to convert LOAD -> LOAD address dependencies into
control dependencies (e.g. under LTO), as weakly ordered architectures
will effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic, augment
the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the device
ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions and
kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl8oTcsACgkQa9axLQDI
XvEj6hAAkn39mO5xrR/Vhpg3DyFPk63ZlMSX9SsOeVyaLbovT6stTs1XAZXPpnkt
rV3gwACyGSrqH6+uey9pHgHJuPF2TdrGEVK08yVKo9KGW/6yXSIncdKFE4jUJ/WJ
wF5j7eMET2aGzcpm5AlzMmq6HOrKB8nZac9H8/x6H+Ox2WdgJkEjOkDvyqACUyum
N3FsTZkWj2pIkTXHNgDZ8KjxVLO8HlFaB2hkxFDl9NPlX2UTCQJ8Tg1KiPLafKaK
gUvH4usQDFdb5RU/UWogre37J4emO0ZTApZOyju+U+PMMWlWVHjZ4isUIS9zz/AE
JNZ23dnKZX2HrYa5p8HZx175zwj/vXUqUHCZPLvQXaAudCEhF8BVljPiG0e80FV5
GHFUgUbylKspp01I/9L+2JvsG96Mr0e+P3Sx7L2HTI42cmtoSa14+MpoSRj7zlft
Qcl8hfrVOjCjUnFRHa/1y1cGvnD9GbgnKJR7zgVxl9bD/Jd48r1HUtwRORZCzWFr
mRPVbPS72fWxMzMV9DZYJm02jJY9kLX2BMl49njbB8MhAhzOvrMVzoVVtMMeRFLR
XHeJpmg36W09FiRGe7LRXlkXIhCQzQG2bJfiphuupCfhjRAitPoq8I925G6Pig60
c8RWaXGU7PrEsdMNrL83vekvGKgqrkoFkRVtsCoQ2X6Hvu/XdYI=
=mh79
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 and cross-arch updates from Catalin Marinas:
"Here's a slightly wider-spread set of updates for 5.9.
Going outside the usual arch/arm64/ area is the removal of
read_barrier_depends() series from Will and the MSI/IOMMU ID
translation series from Lorenzo.
The notable arm64 updates include ARMv8.4 TLBI range operations and
translation level hint, time namespace support, and perf.
Summary:
- Removal of the tremendously unpopular read_barrier_depends()
barrier, which is a NOP on all architectures apart from Alpha, in
favour of allowing architectures to override READ_ONCE() and do
whatever dance they need to do to ensure address dependencies
provide LOAD -> LOAD/STORE ordering.
This work also offers a potential solution if compilers are shown
to convert LOAD -> LOAD address dependencies into control
dependencies (e.g. under LTO), as weakly ordered architectures will
effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at
LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic,
augment the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the
device ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions
and kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words"
Link: http://lkml.kernel.org/r/20200710165203.31284-1-will@kernel.org
Link: http://lkml.kernel.org/r/20200619082013.13661-1-lorenzo.pieralisi@arm.com
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (82 commits)
arm64: use IRQ_STACK_SIZE instead of THREAD_SIZE for irq stack
arm64/mm: save memory access in check_and_switch_context() fast switch path
arm64: sigcontext.h: delete duplicated word
arm64: ptrace.h: delete duplicated word
arm64: pgtable-hwdef.h: delete duplicated words
bus: fsl-mc: Add ACPI support for fsl-mc
bus/fsl-mc: Refactor the MSI domain creation in the DPRC driver
of/irq: Make of_msi_map_rid() PCI bus agnostic
of/irq: make of_msi_map_get_device_domain() bus agnostic
dt-bindings: arm: fsl: Add msi-map device-tree binding for fsl-mc bus
of/device: Add input id to of_dma_configure()
of/iommu: Make of_map_rid() PCI agnostic
ACPI/IORT: Add an input ID to acpi_dma_configure()
ACPI/IORT: Remove useless PCI bus walk
ACPI/IORT: Make iort_msi_map_rid() PCI agnostic
ACPI/IORT: Make iort_get_device_domain IRQ domain agnostic
ACPI/IORT: Make iort_match_node_callback walk the ACPI namespace for NC
arm64: enable time namespace support
arm64/vdso: Restrict splitting VVAR VMA
arm64/vdso: Handle faults on timens page
...
* for-next/read-barrier-depends:
: Allow architectures to override __READ_ONCE()
arm64: Reduce the number of header files pulled into vmlinux.lds.S
compiler.h: Move compiletime_assert() macros into compiler_types.h
checkpatch: Remove checks relating to [smp_]read_barrier_depends()
include/linux: Remove smp_read_barrier_depends() from comments
tools/memory-model: Remove smp_read_barrier_depends() from informal doc
Documentation/barriers/kokr: Remove references to [smp_]read_barrier_depends()
Documentation/barriers: Remove references to [smp_]read_barrier_depends()
locking/barriers: Remove definitions for [smp_]read_barrier_depends()
alpha: Replace smp_read_barrier_depends() usage with smp_[r]mb()
vhost: Remove redundant use of read_barrier_depends() barrier
asm/rwonce: Don't pull <asm/barrier.h> into 'asm-generic/rwonce.h'
asm/rwonce: Remove smp_read_barrier_depends() invocation
alpha: Override READ_ONCE() with barriered implementation
asm/rwonce: Allow __READ_ONCE to be overridden by the architecture
compiler.h: Split {READ,WRITE}_ONCE definitions out into rwonce.h
tools: bpf: Use local copy of headers including uapi/linux/filter.h
Factor the 12 copies of the SW PAN entry and exit code into callable
subroutines, and use alternatives patching to either emit a 'bl'
instruction to call them, or a NOP if h/w PAN is found to be available
at runtime.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200721083315.4816-1-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Although vmlinux.lds.S smells like an assembly file and is compiled
with __ASSEMBLY__ defined, it's actually just fed to the preprocessor to
create our linker script. This means that any assembly macros defined
by headers that it includes will result in a helpful link error:
| aarch64-linux-gnu-ld:./arch/arm64/kernel/vmlinux.lds:1: syntax error
In preparation for an arm64-private asm/rwonce.h implementation, which
will end up pulling assembly macros into linux/compiler.h, reduce the
number of headers we include directly and transitively in vmlinux.lds.S
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Will Deacon <will@kernel.org>
Continually butchering our entry code with CPU errata workarounds has
led to it looking a little scruffy. Consistently used /* */ comment
style for multi-line block comments and ensure that small numeric labels
use consecutive integers.
No functional change, but the state of things was irritating.
Signed-off-by: Will Deacon <will@kernel.org>
The current handling of erratum 1414080 has the side effect that
cntkctl_el1 can get changed for both 32 and 64bit tasks.
This isn't a problem so far, but if we ever need to mitigate another
of these errata on the 64bit side, we'd better keep the messing with
cntkctl_el1 local to 32bit tasks.
For that, make sure that on entering the kernel from a 32bit tasks,
userspace access to cntvct gets enabled, and disabled returning to
userspace, while it never gets changed for 64bit tasks.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200706163802.1836732-5-maz@kernel.org
[will: removed branch instructions per Mark's review comments]
Signed-off-by: Will Deacon <will@kernel.org>
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
arm64: entry-ftrace.S: Update comment to indicate that x18 is live
scs: Move DEFINE_SCS macro into core code
scs: Remove references to asm/scs.h from core code
scs: Move scs_overflow_check() out of architecture code
arm64: scs: Use 'scs_sp' register alias for x18
scs: Move accounting into alloc/free functions
arm64: scs: Store absolute SCS stack pointer value in thread_info
efi/libstub: Disable Shadow Call Stack
arm64: scs: Add shadow stacks for SDEI
arm64: Implement Shadow Call Stack
arm64: Disable SCS for hypervisor code
arm64: vdso: Disable Shadow Call Stack
arm64: efi: Restore register x18 if it was corrupted
arm64: Preserve register x18 when CPU is suspended
arm64: Reserve register x18 from general allocation with SCS
scs: Disable when function graph tracing is enabled
scs: Add support for stack usage debugging
scs: Add page accounting for shadow call stack allocations
scs: Add support for Clang's Shadow Call Stack (SCS)
Support for Branch Target Identification (BTI) in user and kernel
(Mark Brown and others)
* for-next/bti: (39 commits)
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
arm64: bti: Fix support for userspace only BTI
arm64: kconfig: Update and comment GCC version check for kernel BTI
arm64: vdso: Map the vDSO text with guarded pages when built for BTI
arm64: vdso: Force the vDSO to be linked as BTI when built for BTI
arm64: vdso: Annotate for BTI
arm64: asm: Provide a mechanism for generating ELF note for BTI
arm64: bti: Provide Kconfig for kernel mode BTI
arm64: mm: Mark executable text as guarded pages
arm64: bpf: Annotate JITed code for BTI
arm64: Set GP bit in kernel page tables to enable BTI for the kernel
arm64: asm: Override SYM_FUNC_START when building the kernel with BTI
arm64: bti: Support building kernel C code using BTI
arm64: Document why we enable PAC support for leaf functions
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
arm64: Disable old style assembly annotations
...
x18 holds the SCS stack pointer value, so introduce a register alias to
make this easier to read in assembly code.
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
This change adds per-CPU shadow call stacks for the SDEI handler.
Similarly to how the kernel stacks are handled, we add separate shadow
stacks for normal and critical events.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
As part of an effort to clarify and clean up the assembler annotations
new macros have been introduced which annotate the start and end of blocks
of code in assembler files. Currently ret_to_user has an out of line slow
path work_pending placed above the main function which makes annotating the
start and end of these blocks of code awkward.
Since work_pending is only referenced from within ret_to_user try to make
things a bit clearer by moving it after the current ret_to_user and then
marking both ret_to_user and work_pending as part of a single ret_to_user
code block.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200501115430.37315-2-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The 'sync' argument to ptrauth_keys_install_kernel macro is somewhat
opaque at callsites, so instead lets have regular and _nosync variants
of the macro to make this a little more obvious.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This patch restores the kernel keys from current task during cpu resume
after the mmu is turned on and ptrauth is enabled.
A flag is added in macro ptrauth_keys_install_kernel to check if isb
instruction needs to be executed.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Set up keys to use pointer authentication within the kernel. The kernel
will be compiled with APIAKey instructions, the other keys are currently
unused. Each task is given its own APIAKey, which is initialized during
fork. The key is changed during context switch and on kernel entry from
EL0.
The keys for idle threads need to be set before calling any C functions,
because it is not possible to enter and exit a function with different
keys.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Modified secondary cores key structure, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>