In preparation for adding support for SRCU, rename "crit" to
"rcu-rscs", rename "rscs" to "rcu-rscsi", and remove the restriction
to only the outermost level of nesting.
The name change is needed for disambiguating RCU read-side critical
sections from SRCU read-side critical sections. Adding the "i" at the
end of "rcu-rscsi" emphasizes that the relation is inverted; it links
rcu_read_unlock() events to their corresponding preceding
rcu_read_lock() events.
The restriction to outermost nesting levels was never essential; it
was included mostly to show that it could be done. Rather than add
equivalent unnecessary code for SRCU lock nesting, it seemed better to
remove the existing code.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
The https://github.com/paulmckrcu/litmus repository contains a large
number of C-language litmus tests that include "Result:" comments
predicting the verification result. This commit adds a number of scripts
that run tests on these litmus tests:
checkghlitmus.sh:
Runs all litmus tests in the https://github.com/paulmckrcu/litmus
archive that are C-language and that have "Result:" comment lines
documenting expected results, comparing the actual results to
those expected. Clones the repository if it has not already
been cloned into the "tools/memory-model/litmus" directory.
initlitmushist.sh
Run all litmus tests having no more than the specified number
of processes given a specified timeout, recording the results in
.litmus.out files. Clones the repository if it has not already
been cloned into the "tools/memory-model/litmus" directory.
newlitmushist.sh
For all new or updated litmus tests having no more than the
specified number of processes given a specified timeout, run
and record the results in .litmus.out files.
checklitmushist.sh
Run all litmus tests having .litmus.out files from previous
initlitmushist.sh or newlitmushist.sh runs, comparing the
herd output to that of the original runs.
The above scripts will run litmus tests concurrently, by default with
one job per available CPU. Giving any of these scripts the --help
argument will cause them to print usage information.
This commit also adds a number of helper scripts that are not intended
to be invoked from the command line:
cmplitmushist.sh: Compare the output of two different runs of the same
litmus test.
judgelitmus.sh: Compare the output of a litmus test to its "Result:"
comment line.
parseargs.sh: Parse command-line arguments.
runlitmushist.sh: Run the litmus tests whose pathnames are provided one
per line on standard input.
While in the area, this commit also makes the existing checklitmus.sh
and checkalllitmus.sh scripts use parseargs.sh in order to provide a
bit of uniformity. In addition, per-litmus-test status output is directed
to stdout, while end-of-test summary information is directed to stderr.
Finally, the error flag standardizes on "!!!" to assist those familiar
with rcutorture output.
The defaults for the parseargs.sh arguments may be overridden by using
environment variables: LKMM_DESTDIR for --destdir, LKMM_HERD_OPTIONS
for --herdoptions, LKMM_JOBS for --jobs, LKMM_PROCS for --procs, and
LKMM_TIMEOUT for --timeout.
[ paulmck: History-check summary-line changes per Alan Stern feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/20181203230451.28921-2-paulmck@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel documents smp_mb__after_unlock_lock() the following way:
"Place this after a lock-acquisition primitive to guarantee that
an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
if the UNLOCK and LOCK are executed by the same CPU or if the
UNLOCK and LOCK operate on the same lock variable."
Formalize in LKMM the above guarantee by defining (new) mb-links according
to the law:
([M] ; po ; [UL] ; (co | po) ; [LKW] ;
fencerel(After-unlock-lock) ; [M])
where the component ([UL] ; co ; [LKW]) identifies "UNLOCK+LOCK pairs on
the same lock variable" and the component ([UL] ; po ; [LKW]) identifies
"UNLOCK+LOCK pairs executed by the same CPU".
In particular, the LKMM forbids the following two behaviors (the second
litmus test below is based on:
Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
c.f., Section "Tree RCU Grace Period Memory Ordering Building Blocks"):
C after-unlock-lock-same-cpu
(*
* Result: Never
*)
{}
P0(spinlock_t *s, spinlock_t *t, int *x, int *y)
{
int r0;
spin_lock(s);
WRITE_ONCE(*x, 1);
spin_unlock(s);
spin_lock(t);
smp_mb__after_unlock_lock();
r0 = READ_ONCE(*y);
spin_unlock(t);
}
P1(int *x, int *y)
{
int r0;
WRITE_ONCE(*y, 1);
smp_mb();
r0 = READ_ONCE(*x);
}
exists (0:r0=0 /\ 1:r0=0)
C after-unlock-lock-same-lock-variable
(*
* Result: Never
*)
{}
P0(spinlock_t *s, int *x, int *y)
{
int r0;
spin_lock(s);
WRITE_ONCE(*x, 1);
r0 = READ_ONCE(*y);
spin_unlock(s);
}
P1(spinlock_t *s, int *y, int *z)
{
int r0;
spin_lock(s);
smp_mb__after_unlock_lock();
WRITE_ONCE(*y, 1);
r0 = READ_ONCE(*z);
spin_unlock(s);
}
P2(int *z, int *x)
{
int r0;
WRITE_ONCE(*z, 1);
smp_mb();
r0 = READ_ONCE(*x);
}
exists (0:r0=0 /\ 1:r0=0 /\ 2:r0=0)
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Daniel Lustig <dlustig@nvidia.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20181203230451.28921-1-paulmck@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
More than one kernel developer has expressed the opinion that the LKMM
should enforce ordering of writes by locking. In other words, given
the following code:
WRITE_ONCE(x, 1);
spin_unlock(&s):
spin_lock(&s);
WRITE_ONCE(y, 1);
the stores to x and y should be propagated in order to all other CPUs,
even though those other CPUs might not access the lock s. In terms of
the memory model, this means expanding the cumul-fence relation.
Locks should also provide read-read (and read-write) ordering in a
similar way. Given:
READ_ONCE(x);
spin_unlock(&s);
spin_lock(&s);
READ_ONCE(y); // or WRITE_ONCE(y, 1);
the load of x should be executed before the load of (or store to) y.
The LKMM already provides this ordering, but it provides it even in
the case where the two accesses are separated by a release/acquire
pair of fences rather than unlock/lock. This would prevent
architectures from using weakly ordered implementations of release and
acquire, which seems like an unnecessary restriction. The patch
therefore removes the ordering requirement from the LKMM for that
case.
There are several arguments both for and against this change. Let us
refer to these enhanced ordering properties by saying that the LKMM
would require locks to be RCtso (a bit of a misnomer, but analogous to
RCpc and RCsc) and it would require ordinary acquire/release only to
be RCpc. (Note: In the following, the phrase "all supported
architectures" is meant not to include RISC-V. Although RISC-V is
indeed supported by the kernel, the implementation is still somewhat
in a state of flux and therefore statements about it would be
premature.)
Pros:
The kernel already provides RCtso ordering for locks on all
supported architectures, even though this is not stated
explicitly anywhere. Therefore the LKMM should formalize it.
In theory, guaranteeing RCtso ordering would reduce the need
for additional barrier-like constructs meant to increase the
ordering strength of locks.
Will Deacon and Peter Zijlstra are strongly in favor of
formalizing the RCtso requirement. Linus Torvalds and Will
would like to go even further, requiring locks to have RCsc
behavior (ordering preceding writes against later reads), but
they recognize that this would incur a noticeable performance
degradation on the POWER architecture. Linus also points out
that people have made the mistake, in the past, of assuming
that locking has stronger ordering properties than is
currently guaranteed, and this change would reduce the
likelihood of such mistakes.
Not requiring ordinary acquire/release to be any stronger than
RCpc may prove advantageous for future architectures, allowing
them to implement smp_load_acquire() and smp_store_release()
with more efficient machine instructions than would be
possible if the operations had to be RCtso. Will and Linus
approve this rationale, hypothetical though it is at the
moment (it may end up affecting the RISC-V implementation).
The same argument may or may not apply to RMW-acquire/release;
see also the second Con entry below.
Linus feels that locks should be easy for people to use
without worrying about memory consistency issues, since they
are so pervasive in the kernel, whereas acquire/release is
much more of an "experts only" tool. Requiring locks to be
RCtso is a step in this direction.
Cons:
Andrea Parri and Luc Maranget think that locks should have the
same ordering properties as ordinary acquire/release (indeed,
Luc points out that the names "acquire" and "release" derive
from the usage of locks). Andrea points out that having
different ordering properties for different forms of acquires
and releases is not only unnecessary, it would also be
confusing and unmaintainable.
Locks are constructed from lower-level primitives, typically
RMW-acquire (for locking) and ordinary release (for unlock).
It is illogical to require stronger ordering properties from
the high-level operations than from the low-level operations
they comprise. Thus, this change would make
while (cmpxchg_acquire(&s, 0, 1) != 0)
cpu_relax();
an incorrect implementation of spin_lock(&s) as far as the
LKMM is concerned. In theory this weakness can be ameliorated
by changing the LKMM even further, requiring
RMW-acquire/release also to be RCtso (which it already is on
all supported architectures).
As far as I know, nobody has singled out any examples of code
in the kernel that actually relies on locks being RCtso.
(People mumble about RCU and the scheduler, but nobody has
pointed to any actual code. If there are any real cases,
their number is likely quite small.) If RCtso ordering is not
needed, why require it?
A handful of locking constructs (qspinlocks, qrwlocks, and
mcs_spinlocks) are built on top of smp_cond_load_acquire()
instead of an RMW-acquire instruction. It currently provides
only the ordinary acquire semantics, not the stronger ordering
this patch would require of locks. In theory this could be
ameliorated by requiring smp_cond_load_acquire() in
combination with ordinary release also to be RCtso (which is
currently true on all supported architectures).
On future weakly ordered architectures, people may be able to
implement locks in a non-RCtso fashion with significant
performance improvement. Meeting the RCtso requirement would
necessarily add run-time overhead.
Overall, the technical aspects of these arguments seem relatively
minor, and it appears mostly to boil down to a matter of opinion.
Since the opinions of senior kernel maintainers such as Linus,
Peter, and Will carry more weight than those of Luc and Andrea, this
patch changes the model in accordance with the maintainers' wishes.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180926182920.27644-2-paulmck@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
norm7 produces the 'normalized' name of a litmus test, when the test
can be generated from a single cycle that passes through each process
exactly once. The commit renames such tests in order to comply to the
naming scheme implemented by this tool.
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180716180605.16115-14-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
b899a85043 ("compiler.h: Remove ACCESS_ONCE()")
... there has been no definition of ACCESS_ONCE() in the kernel tree,
and it has been necessary to use READ_ONCE() or WRITE_ONCE() instead.
Correspondingly, let's remove ACCESS_ONCE() from the kernel memory
model.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180716180605.16115-6-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
b899a85043 ("compiler.h: Remove ACCESS_ONCE()")
... there has been no definition of ACCESS_ONCE() in the kernel tree,
and it has been necessary to use READ_ONCE() or WRITE_ONCE() instead.
Let's update the exmaples in recipes.txt likewise for consistency, using
READ_ONCE() for reads.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180716180605.16115-5-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit adds a litmus test suggested by Alan Stern that is forbidden
on fully multicopy atomic systems, but allowed on other-multicopy and
on non-multicopy atomic systems. For reference, s390 is fully multicopy
atomic, x86 and ARMv8 are other-multicopy atomic, and ARMv7 and powerpc
are non-multicopy atomic.
Suggested-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/20180716180605.16115-1-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The paper discusses the revised ARMv8 memory model; such revision
had an important impact on the design of the LKMM.
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ASPLOS 2018 was held in March: make sure this is reflected in
header comments and references.
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-18-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
lock.cat contains old comments and code referring to the possibility
of LKR events that are not part of an RMW pair. This is a holdover
from when I though we might end up using LKR events to implement
spin_is_locked(). Reword the comments to remove this assumption and
replace domain(lk-rmw) in the code with LKR.
Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
[ paulmck: Pulled as lock-nest into previous line as discussed. ]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-15-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The code in lock.cat which checks for normal read/write accesses to
spinlock variables doesn't take into account the newly added RL and RU
events. Add them into the test, and move the resulting code up near
the start of the file, since a violation would indicate a pretty
severe conceptual error in a litmus test.
Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-14-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch improves the comments in tools/memory-model/lock.cat. In
addition to making the text more uniform and removing redundant
comments, it adds a description of all the possible locking events
that herd can generate.
Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-13-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch simplifies the implementation of spin_is_locked in the
LKMM. It capitalizes on the fact that a failed spin_trylock() and a
spin_is_locked() which returns True have exactly the same semantics
(those of READ_ONCE) and ordering properties (none). Therefore the
two kinds of events can be combined and handled by the same code,
instead of treated separately as they are currently.
Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-12-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit flags WRC+pooncerelease+rmbonceonce+Once.litmus
as being forbidden by smp_store_release() A-cumulativity and
IRIW+mbonceonces+OnceOnce.litmus as being forbidden by the LKMM
propagation rule.
Suggested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
[ paulmck: Updated wording as suggested by Alan Stern. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-11-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit first adds a trivial macro for spin_is_locked() to
linux-kernel.def.
It also adds cat code for enumerating all possible matches of lock
write events (set LKW) with islocked events returning true (set RL,
for Read from Lock), and unlock write events (set UL) with islocked
events returning false (set RU, for Read from Unlock). Note that this
intentionally does not model uniprocessor kernels (CONFIG_SMP=n) built
with CONFIG_DEBUG_SPINLOCK=n, in which spin_is_locked() unconditionally
returns zero.
It also adds a pair of litmus tests demonstrating the minimal ordering
provided by spin_is_locked() in conjunction with spin_lock(). Will Deacon
noted that this minimal ordering happens on ARMv8:
https://lkml.kernel.org/r/20180226162426.GB17158@arm.com
Notice that herd7 installations strictly older than version 7.49
do not handle the new constructs.
Signed-off-by: Luc Maranget <luc.maranget@inria.fr>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <Luc.Maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/1526340837-12222-10-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit adds a pair of scripts that run the memory model on litmus
tests, checking that the verification result of each litmus test matches
the result flagged in the litmus test itself. These scripts permit easier
checking of changes to the memory model against preconceived notions.
To run the scripts, go to the tools/memory-model directory and type
"scripts/checkalllitmus.sh". If all is well, the last line printed will
be "All litmus tests verified as was expected."
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Link: http://lkml.kernel.org/r/1526340837-12222-9-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Code generated by klitmus7 version 7.48 doesn't compile with kernel
header of 4.15 and later due to the absence of ACCESS_ONCE().
As the issue has been resolved in herdtools7 7.49, bump the required
version number in README.
Signed-off-by: Akira Yokosawa <akiyks@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/1526340837-12222-3-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch reorganizes the definition of rb in the Linux Kernel Memory
Consistency Model. The relation is now expressed in terms of
rcu-fence, which consists of a sequence of gp and rscs links separated
by rcu-link links, in which the number of occurrences of gp is >= the
number of occurrences of rscs.
Arguments similar to those published in
http://diy.inria.fr/linux/long.pdf show that rcu-fence behaves like an
inter-CPU strong fence. Furthermore, the definition of rb in terms of
rcu-fence is highly analogous to the definition of pb in terms of
strong-fence, which can help explain why rcu-path expresses a form of
temporal ordering.
This change should not affect the semantics of the memory model, just
its internal organization.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-2-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch makes a simple non-functional change to the RCU portion of
the Linux Kernel Memory Consistency Model by renaming the "link" and
"rcu-path" relations to "rcu-link" and "rb", respectively.
The name "link" was an unfortunate choice, because it was too generic
and subject to confusion with other meanings of the same word, which
occur quite often in LKMM documentation. The name "rcu-path" is not
very appropriate, because the relation is analogous to the
happens-before (hb) and propagates-before (pb) relations -- although
that fact won't become apparent until the second patch in this series.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/1526340837-12222-1-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
bf28ae5627 ("tools/memory-model: Remove rb-dep, smp_read_barrier_depends, and lockless_dereference")
was merged too early, while it was still in RFC form. This patch adds in
the missing pieces.
Akira pointed out some typos in the original patch, and he noted that
cheatsheet.txt should indicate that READ_ONCE() now implies an address
dependency. Andrea suggested documenting the relationship betwwen
unsuccessful RMW operations and address dependencies.
Andrea pointed out that the macro for rcu_dereference() in linux.def
should now use the "once" annotation instead of "deref". He also
suggested that the comments should mention commit:
5a8897cc76 ("locking/atomics/alpha: Add smp_read_barrier_depends() to _release()/_relaxed() atomics")
... as an important precursor, and he contributed commit:
cb13b424e9 ("locking/xchg/alpha: Add unconditional memory barrier to cmpxchg()")
which is another prerequisite.
Suggested-by: Akira Yokosawa <akiyks@gmail.com>
Suggested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
[ Fixed read_read_lock() typo reported by Akira. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Andrea Parri <parri.andrea@gmail.com>
Acked-by: Akira Yokosawa <akiyks@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: will.deacon@arm.com
Fixes: bf28ae5627 ("tools/memory-model: Remove rb-dep, smp_read_barrier_depends, and lockless_dereference")
Link: http://lkml.kernel.org/r/1520443660-16858-4-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit adds a litmus test in which P0() and P1() form a lock-based S
litmus test, with the addition of P2(), which observes P0()'s and P1()'s
accesses with a full memory barrier but without the lock. This litmus
test asks whether writes carried out by two different processes under the
same lock will be seen in order by a third process not holding that lock.
The answer to this question is "yes" for all architectures supporting
the Linux kernel, but is "no" according to the current version of LKMM.
A patch to LKMM is under development.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: nborisov@suse.com
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1519169112-20593-10-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo pointed out that:
"The "memory model" name is overly generic, ambiguous and somewhat
misleading, as we usually mean the virtual memory layout/model
when we say "memory model". GCC too uses it in that sense [...]"
Make it clear that tools/memory-model/ uses the term "memory model" as
shorthand for "memory consistency model" by calling out this convention
in tools/memory-model/README.
Stick to the original "memory model" term in sources' headers and for
the subsystem name.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: nborisov@suse.com
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/1519169112-20593-1-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is some reason to believe that Documentation/memory-barriers.txt
could use some help, and a major purpose of this patch is to provide
that help in the form of a design-time tool that can produce all valid
executions of a small fragment of concurrent Linux-kernel code, which is
called a "litmus test". This tool's functionality is roughly similar to
a full state-space search. Please note that this is a design-time tool,
not useful for regression testing. However, we hope that the underlying
Linux-kernel memory model will be incorporated into other tools capable
of analyzing large bodies of code for regression-testing purposes.
The main tool is herd7, together with the linux-kernel.bell,
linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files
added by this patch. The herd7 executable takes the other files as input,
and all of these files collectively define the Linux-kernel memory memory
model. A brief description of each of these other files is provided
in the README file. Although this tool does have its limitations,
which are documented in the README file, it does improve on the version
reported on in the LWN series (https://lwn.net/Articles/718628/ and
https://lwn.net/Articles/720550/) by supporting locking and arithmetic,
including a much wider variety of read-modify-write atomic operations.
Please note that herd7 is not part of this submission, but is freely
available from http://diy.inria.fr/sources/index.html (and via "git"
at https://github.com/herd/herdtools7).
A second tool is klitmus7, which converts litmus tests to loadable
kernel modules for direct testing. As with herd7, the klitmus7
code is freely available from http://diy.inria.fr/sources/index.html
(and via "git" at https://github.com/herd/herdtools7).
Of course, litmus tests are not always the best way to fully understand a
memory model, so this patch also includes Documentation/explanation.txt,
which describes the memory model in detail. In addition,
Documentation/recipes.txt provides example known-good and known-bad use
cases for those who prefer working by example.
This patch also includes a few sample litmus tests, and a great many
more litmus tests are available at https://github.com/paulmckrcu/litmus.
This patch was the result of a most excellent collaboration founded
by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc
Maranget. For more details on the history of this collaboration, please
refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU,
2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au,
or 2017 Linux Plumbers Conference microconference. However, one aspect
of the history does bear repeating due to weak copyright tracking earlier
in this project, which extends back to early 2015. This weakness came
to light in late 2017 after an LKMM presentation by Paul in which an
audience member noted the similarity of some LKMM code to code in early
published papers. This prompted a copyright review.
From Alan Stern:
To say that the model was mine is not entirely accurate.
Pieces of it (especially the Scpv and Atomic axioms) were taken
directly from Jade's models. And of course the Happens-before
and Propagation relations and axioms were heavily based on
Jade and Luc's work, even though they weren't identical to the
earlier versions. Only the RCU portion was completely original.
. . .
One can make a much better case that I wrote the bulk of lock.cat.
However, it was inspired by Luc's earlier version (and still
shares some elements in common), and of course it benefited from
feedback and testing from all members of our group.
The model prior to Alan's was Luc Maranget's. From Luc:
I totally agree on Alan Stern's account of the linux kernel model
genesis. I thank him for his acknowledgments of my participation
to previous model drafts. I'd like to complete Alan Stern's
statement: any bell cat code I have written has its roots in
discussions with Jade Alglave and Paul McKenney. Moreover I
have borrowed cat and bell code written by Jade Alglave freely.
This copyright review therefore resulted in late adds to the copyright
statements of several files.
Discussion of v1 has raised several issues, which we do not believe should
block acceptance given that this level of change will be ongoing, just
as it has been with memory-barriers.txt:
o Under what conditions should ordering provided by pure locking
be seen by CPUs not holding the relevant lock(s)? In particular,
should the message-passing pattern be forbidden?
o Should examples involving C11 release sequences be forbidden?
Note that this C11 is still a moving target for this issue:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html
o Some details of the handling of internal dependencies for atomic
read-modify-write atomic operations are still subject to debate.
o Changes recently accepted into mainline greatly reduce the need
to handle DEC Alpha as a special case. These changes add an
smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha
to respect ordering of dependent reads. If these changes stick,
the memory model can be simplified accordingly.
o Will changes be required to accommodate RISC-V?
Differences from v1:
(http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com)
o Add SPDX notations to .bell and .cat files, replacing
textual license statements.
o Add reference to upcoming ASPLOS paper to .bell and .cat files.
o Updated identifier names in .bell and .cat files to match those
used in the ASPLOS paper.
o Updates to READMEs and other documentation based on review
feedback.
o Added a memory-ordering cheatsheet.
o Update sigs to new Co-Developed-by and add acks and
reviewed-bys.
o Simplify rules detecting nested RCU read-side critical sections.
o Update copyright statements as noted above.
Co-Developed-by: Alan Stern <stern@rowland.harvard.edu>
Co-Developed-by: Andrea Parri <parri.andrea@gmail.com>
Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk>
Co-Developed-by: Luc Maranget <luc.maranget@inria.fr>
Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk>
Signed-off-by: Luc Maranget <luc.maranget@inria.fr>
Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Akira Yokosawa <akiyks@gmail.com>
Cc: <linux-arch@vger.kernel.org>