When MSI_FLAG_ACTIVATE_EARLY is set (which is the case for PCI),
__msi_domain_alloc_irqs() performs the activation of the interrupt (which
in the case of PCI results in the endpoint being programmed) as soon as the
interrupt is allocated.
But it appears that this is only done for the first vector, introducing an
inconsistent behaviour for PCI Multi-MSI.
Fix it by iterating over the number of vectors allocated to each MSI
descriptor. This is easily achieved by introducing a new
"for_each_msi_vector" iterator, together with a tiny bit of refactoring.
Fixes: f3b0946d62 ("genirq/msi: Make sure PCI MSIs are activated early")
Reported-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210123122759.1781359-1-maz@kernel.org
Since commit 5fe71d271d ("irqchip/gic-v3-its: Tag ITS device as shared if
allocating for a proxy device"), some of the devices are wrongly marked as
"shared" by the ITS driver on systems equipped with the ITS(es). The
problem is that the @info->flags may not be initialized anywhere and we end
up looking at random bits on the stack. That's obviously not good.
We can perform the initialization in the IRQ core layer before calling
msi_domain_prepare_irqs(), which is neat enough.
Fixes: 5fe71d271d ("irqchip/gic-v3-its: Tag ITS device as shared if allocating for a proxy device")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201218060039.1770-1-yuzenghui@huawei.com
To support MSI irq domains which do not fit at all into the regular MSI
irqdomain scheme, like the XEN MSI interrupt management for PV/HVM/DOM0,
it's necessary to allow to override the alloc/free implementation.
This is a preperatory step to switch X86 away from arch_*_msi_irqs() and
store the irq domain pointer right in struct device.
No functional change for existing MSI irq domain users.
Aside of the evil XEN wrapper this is also useful for special MSI domains
which need to do extra alloc/free work before/after calling the generic
core function. Work like allocating/freeing MSI descriptors, MSI storage
space etc.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200826112333.526797548@linutronix.de
PCI devices behind a VMD bus are not subject to interrupt remapping, but
the irq domain for VMD MSI cannot be distinguished from a regular PCI/MSI
irq domain.
Add a new domain bus token and allow it in the bus token check in
msi_check_reservation_mode() to keep the functionality the same once VMD
uses this token.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Jon Derrick <jonathan.derrick@intel.com>
Link: https://lore.kernel.org/r/20200826112332.954409970@linutronix.de
pci_msi_get_hwirq() and pci_msi_set_desc are not longer special. Enable the
generic MSI domain ops in the core and PCI MSI code unconditionally and get
rid of the x86 specific implementations in the X86 MSI code and in the
hyperv PCI driver.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200826112332.564274859@linutronix.de
Evan tracked down a subtle race between the update of the MSI message and
the device raising an interrupt internally on PCI devices which do not
support MSI masking. The update of the MSI message is non-atomic and
consists of either 2 or 3 sequential 32bit wide writes to the PCI config
space.
- Write address low 32bits
- Write address high 32bits (If supported by device)
- Write data
When an interrupt is migrated then both address and data might change, so
the kernel attempts to mask the MSI interrupt first. But for MSI masking is
optional, so there exist devices which do not provide it. That means that
if the device raises an interrupt internally between the writes then a MSI
message is sent built from half updated state.
On x86 this can lead to spurious interrupts on the wrong interrupt
vector when the affinity setting changes both address and data. As a
consequence the device interrupt can be lost causing the device to
become stuck or malfunctioning.
Evan tried to handle that by disabling MSI accross an MSI message
update. That's not feasible because disabling MSI has issues on its own:
If MSI is disabled the PCI device is routing an interrupt to the legacy
INTx mechanism. The INTx delivery can be disabled, but the disablement is
not working on all devices.
Some devices lose interrupts when both MSI and INTx delivery are disabled.
Another way to solve this would be to enforce the allocation of the same
vector on all CPUs in the system for this kind of screwed devices. That
could be done, but it would bring back the vector space exhaustion problems
which got solved a few years ago.
Fortunately the high address (if supported by the device) is only relevant
when X2APIC is enabled which implies interrupt remapping. In the interrupt
remapping case the affinity setting is happening at the interrupt remapping
unit and the PCI MSI message is programmed only once when the PCI device is
initialized.
That makes it possible to solve it with a two step update:
1) Target the MSI msg to the new vector on the current target CPU
2) Target the MSI msg to the new vector on the new target CPU
In both cases writing the MSI message is only changing a single 32bit word
which prevents the issue of inconsistency.
After writing the final destination it is necessary to check whether the
device issued an interrupt while the intermediate state #1 (new vector,
current CPU) was in effect.
This is possible because the affinity change is always happening on the
current target CPU. The code runs with interrupts disabled, so the
interrupt can be detected by checking the IRR of the local APIC. If the
vector is pending in the IRR then the interrupt is retriggered on the new
target CPU by sending an IPI for the associated vector on the target CPU.
This can cause spurious interrupts on both the local and the new target
CPU.
1) If the new vector is not in use on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then interrupt entry code will
ignore that spurious interrupt. The vector is marked so that the
'No irq handler for vector' warning is supressed once.
2) If the new vector is in use already on the local CPU then the IRR check
might see an pending interrupt from the device which is using this
vector. The IPI to the new target CPU will then invoke the handler of
the device, which got the affinity change, even if that device did not
issue an interrupt
3) If the new vector is in use already on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then the handler of the device which
uses that vector on the local CPU will be invoked.
expose issues in device driver interrupt handlers which are not prepared to
handle a spurious interrupt correctly. This not a regression, it's just
exposing something which was already broken as spurious interrupts can
happen for a lot of reasons and all driver handlers need to be able to deal
with them.
Reported-by: Evan Green <evgreen@chromium.org>
Debugged-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Evan Green <evgreen@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87imkr4s7n.fsf@nanos.tec.linutronix.de
The interrupt affinity management uses straight cpumask pointers to convey
the automatically assigned affinity masks for managed interrupts. The core
interrupt descriptor allocation also decides based on the pointer being non
NULL whether an interrupt is managed or not.
Devices which use managed interrupts usually have two classes of
interrupts:
- Interrupts for multiple device queues
- Interrupts for general device management
Currently both classes are treated the same way, i.e. as managed
interrupts. The general interrupts get the default affinity mask assigned
while the device queue interrupts are spread out over the possible CPUs.
Treating the general interrupts as managed is both a limitation and under
certain circumstances a bug. Assume the following situation:
default_irq_affinity = 4..7
So if CPUs 4-7 are offlined, then the core code will shut down the device
management interrupts because the last CPU in their affinity mask went
offline.
It's also a limitation because it's desired to allow manual placement of
the general device interrupts for various reasons. If they are marked
managed then the interrupt affinity setting from both user and kernel space
is disabled.
To remedy that situation it's required to convey more information than the
cpumasks through various interfaces related to interrupt descriptor
allocation.
Instead of adding yet another argument, create a new data structure
'irq_affinity_desc' which for now just contains the cpumask. This struct
can be expanded to convey auxilliary information in the next step.
No functional change, just preparatory work.
[ tglx: Simplified logic and clarified changelog ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Dou Liyang <douliyangs@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-pci@vger.kernel.org
Cc: kashyap.desai@broadcom.com
Cc: shivasharan.srikanteshwara@broadcom.com
Cc: sumit.saxena@broadcom.com
Cc: ming.lei@redhat.com
Cc: hch@lst.de
Cc: douliyang1@huawei.com
Link: https://lkml.kernel.org/r/20181204155122.6327-2-douliyangs@gmail.com
So far, MSIs have been used to signal edge-triggered interrupts, as
a write is a good model for an edge (you can't "unwrite" something).
On the other hand, routing zillions of wires in an SoC because you
need level interrupts is a bit extreme.
People have come up with a variety of schemes to support this, which
involves sending two messages: one to signal the interrupt, and one
to clear it. Since the kernel cannot represent this, we've ended up
with side-band mechanisms that are pretty awful.
Instead, let's acknoledge the requirement, and ensure that, under the
right circumstances, the irq_compose_msg and irq_write_msg can take
as a parameter an array of two messages instead of a pointer to a
single one. We also add some checking that the compose method only
clobbers the second message if the MSI domain has been created with
the MSI_FLAG_LEVEL_CAPABLE flags.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Cc: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lkml.kernel.org/r/20180508121438.11301-2-marc.zyngier@arm.com
Add SPDX identifiers to files
- which contain an explicit license boiler plate or reference
- which do not contain a license reference and were not updated in the
initial SPDX conversion because the license was deduced by the scanners
via EXPORT_SYMBOL_GPL as GPL2.0 only.
[ tglx: Moved adding identifiers from the patch which removes the
references/boilerplate ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Link: https://lkml.kernel.org/r/20180314212030.668321222@linutronix.de
Remove pointless references to the file name itself and condense the
information so it wastes less space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Link: https://lkml.kernel.org/r/20180314212030.412095827@linutronix.de
The new reservation mode for interrupts assigns a dummy vector when the
interrupt is allocated and assigns a real vector when the interrupt is
requested. The reservation mode prevents vector pressure when devices with
a large amount of queues/interrupts are initialized, but only a minimal
subset of those queues/interrupts is actually used.
This mode has an issue with MSI interrupts which cannot be masked. If the
driver is not careful or the hardware emits an interrupt before the device
irq is requestd by the driver then the interrupt ends up on the dummy
vector as a spurious interrupt which can cause malfunction of the device or
in the worst case a lockup of the machine.
Change the logic for the reservation mode so that the early activation of
MSI interrupts checks whether:
- the device is a PCI/MSI device
- the reservation mode of the underlying irqdomain is activated
- PCI/MSI masking is globally enabled
- the PCI/MSI device uses either MSI-X, which supports masking, or
MSI with the maskbit supported.
If one of those conditions is false, then clear the reservation mode flag
in the irq data of the interrupt and invoke irq_domain_activate_irq() with
the reserve argument cleared. In the x86 vector code, clear the can_reserve
flag in the vector allocation data so a subsequent free_irq() won't create
the same situation again. The interrupt stays assigned to a real vector
until pci_disable_msi() is invoked and all allocations are undone.
Fixes: 4900be8360 ("x86/vector/msi: Switch to global reservation mode")
Reported-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Mikael Pettersson <mikpelinux@gmail.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Cc: Mihai Costache <v-micos@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-pci@vger.kernel.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: devel@linuxdriverproject.org
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Sakari Ailus <sakari.ailus@intel.com>,
Cc: linux-media@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712291406420.1899@nanos
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712291409460.1899@nanos
When analyzing the fallout of the x86 vector allocation rework it turned
out that the error handling in msi_domain_alloc_irqs() is broken.
If MSI_FLAG_MUST_REACTIVATE is set for a MSI domain then it clears the
activation flag for a successfully initialized msi descriptor. If a
subsequent initialization fails then the error handling code path does not
deactivate the interrupt because the activation flag got cleared.
Move the clearing of the activation flag outside of the initialization loop
so that an eventual failure can be cleaned up correctly.
Fixes: 22d0b12f35 ("genirq/irqdomain: Add force reactivation flag to irq domains")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Mikael Pettersson <mikpelinux@gmail.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Cc: Mihai Costache <v-micos@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-pci@vger.kernel.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: devel@linuxdriverproject.org
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Sakari Ailus <sakari.ailus@intel.com>,
Cc: linux-media@vger.kernel.org
Allow irqdomains to tell the core code, that after early activation the
interrupt needs to be reactivated at request_irq() time.
This allows reservation of vectors at early activation time and actual
vector assignment at request_irq() time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.106242536@linutronix.de
Propagate the early activation mode to the irqdomain activate()
callbacks. This is required for the upcoming reservation, late vector
assignment scheme, so that the early activation call can act accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.028353660@linutronix.de
Allow irq_domain_activate_irq() to fail. This is required to support a
reservation and late vector assignment scheme.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213152.933882227@linutronix.de
The irq_domain_ops.activate() callback has no return value and no way to
tell the function that the activation is early.
The upcoming changes to support a reservation scheme which allows to assign
interrupt vectors on x86 only when the interrupt is actually requested
requires:
- A return value, so activation can fail at request_irq() time
- Information that the activate invocation is early, i.e. before
request_irq().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213152.848490816@linutronix.de
For debugging the allocation of unused or potentially leaked interrupt
descriptor it's helpful to have some information about the site which
allocated them. In case of MSI this is simple because the caller hands the
device struct pointer into the domain allocation function.
Duplicate the device name and show it in the debugfs entry of the interrupt
descriptor.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213152.433038426@linutronix.de
On allocating the interrupts routed via a wire-to-MSI bridge, the allocator
iterates over the MSI descriptors to build the hierarchy, but fails to use
the descriptor interrupt number, and instead uses the base number,
generating the wrong IRQ domain mappings.
The fix is to use the MSI descriptor interrupt number when setting up
the interrupt instead of the base interrupt for the allocation range.
The only saving grace is that although the MSI descriptors are allocated
in bulk, the wired interrupts are only allocated one by one (so
desc->irq == virq) and the bug went unnoticed so far.
Fixes: 2145ac9310 ("genirq/msi: Add msi_domain_populate_irqs")
Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170906103540.373864a2.john@metanate.com
It did seem like a good idea at the time, but it never really
caught on, and auto-recursive domains remain unused 3 years after
having been introduced.
Oh well, time for a late spring cleanup.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prevent overwriting an already assigned domain name. Remove the extra check
for chip->name, because if domain->name is NULL overwriting it with NULL is
not a problem.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.510684976@linutronix.de
In order to ease debug, let's populate the domain name upfront, before any
MSI gets requested. This allows the domain to appear in the
irq_domain_mapping, and the user to easily find the expected data.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Link: http://lkml.kernel.org/r/20170512115538.10767-4-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now we have a flag value indicating an IRQ domain implements MSI,
let's set it on msi_create_irq_domain().
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Tomasz Nowicki <tomasz.nowicki@caviumnetworks.com>
Tested-by: Bharat Bhushan <bharat.bhushan@nxp.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The generic MSI layer doesn't have any PCI ties anymore, and the
build hack should have been removed some time ago.
Fixes: d9109698be ("genirq: Introduce msi_domain_alloc/free_irqs()")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Link: http://lkml.kernel.org/r/1479806476-20801-1-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For irq spreading want to store affinity masks in the msi_entry. Add the
infrastructure for it.
We allocate an array of cpumasks with an array size of the number of used
vectors in the entry, so we can hand in the information per linux interrupt
later.
As we hand in the number of used vectors, we assign them right
away. Convert all the call sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: axboe@fb.com
Cc: keith.busch@intel.com
Cc: agordeev@redhat.com
Cc: linux-block@vger.kernel.org
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/1473862739-15032-2-git-send-email-hch@lst.de
Bharat Kumar Gogada reported issues with the generic MSI code, where the
end-point ended up with garbage in its MSI configuration (both for the vector
and the message).
It turns out that the two MSI paths in the kernel are doing slightly different
things:
generic MSI: disable MSI -> allocate MSI -> enable MSI -> setup EP
PCI MSI: disable MSI -> allocate MSI -> setup EP -> enable MSI
And it turns out that end-points are allowed to latch the content of the MSI
configuration registers as soon as MSIs are enabled. In Bharat's case, the
end-point ends up using whatever was there already, which is not what you
want.
In order to make things converge, we introduce a new MSI domain flag
(MSI_FLAG_ACTIVATE_EARLY) that is unconditionally set for PCI/MSI. When set,
this flag forces the programming of the end-point as soon as the MSIs are
allocated.
A consequence of this is that we have an extra activate in irq_startup, but
that should be without much consequence.
tglx:
- Several people reported a VMWare regression with PCI/MSI-X passthrough. It
turns out that the patch also cures that issue.
- We need to have a look at the MSI disable interrupt path, where we write
the msg to all zeros without disabling MSI in the PCI device. Is that
correct?
Fixes: 52f518a3a7 "x86/MSI: Use hierarchical irqdomains to manage MSI interrupts"
Reported-and-tested-by: Bharat Kumar Gogada <bharat.kumar.gogada@xilinx.com>
Reported-and-tested-by: Foster Snowhill <forst@forstwoof.ru>
Reported-by: Matthias Prager <linux@matthiasprager.de>
Reported-by: Jason Taylor <jason.taylor@simplivity.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-pci@vger.kernel.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1468426713-31431-1-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
virq is not required to be the same for all msi descs. Use the base irq number
from the desc in the debug printk.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Previously msi_domain_alloc() assumed MSI irqdomains always had parent
irqdomains, but that's not true for the new Intel VMD devices. Relax
msi_domain_alloc() to support parentless MSI irqdomains.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
To be able to allocate interrupts from the MSI layer down,
add a new msi_domain_populate_irqs entry point.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The .prepare callbacks are so far only called from msi_domain_alloc_irqs.
In order to reuse that code, split that code and create a
msi_domain_prepare_irqs function that the existing code can call into.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Pull irq updates from Thomas Gleixner:
"The irq departement delivers:
- Rework the irqdomain core infrastructure to accomodate ACPI based
systems. This is required to support ARM64 without creating
artificial device tree nodes.
- Sanitize the ACPI based ARM GIC initialization by making use of the
new firmware independent irqdomain core
- Further improvements to the generic MSI management
- Generalize the irq migration on CPU hotplug
- Improvements to the threaded interrupt infrastructure
- Allow the migration of "chained" low level interrupt handlers
- Allow optional force masking of interrupts in disable_irq[_nosysnc]
- Support for two new interrupt chips - Sigh!
- A larger set of errata fixes for ARM gicv3
- The usual pile of fixes, updates, improvements and cleanups all
over the place"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
Document that IRQ_NONE should be returned when IRQ not actually handled
PCI/MSI: Allow the MSI domain to be device-specific
PCI: Add per-device MSI domain hook
of/irq: Use the msi-map property to provide device-specific MSI domain
of/irq: Split of_msi_map_rid to reuse msi-map lookup
irqchip/gic-v3-its: Parse new version of msi-parent property
PCI/MSI: Use of_msi_get_domain instead of open-coded "msi-parent" parsing
of/irq: Use of_msi_get_domain instead of open-coded "msi-parent" parsing
of/irq: Add support code for multi-parent version of "msi-parent"
irqchip/gic-v3-its: Add handling of PCI requester id.
PCI/MSI: Add helper function pci_msi_domain_get_msi_rid().
of/irq: Add new function of_msi_map_rid()
Docs: dt: Add PCI MSI map bindings
irqchip/gic-v2m: Add support for multiple MSI frames
irqchip/gic-v3: Fix translation of LPIs after conversion to irq_fwspec
irqchip/mxs: Add Alphascale ASM9260 support
irqchip/mxs: Prepare driver for hardware with different offsets
irqchip/mxs: Panic if ioremap or domain creation fails
irqdomain: Documentation updates
irqdomain/msi: Use fwnode instead of of_node
...
When we create a generic MSI domain, that MSI_FLAG_USE_DEF_CHIP_OPS
is set, and that any of .mask or .unmask are NULL in the irq_chip
structure, we set them to pci_msi_[un]mask_irq.
This is a bad idea for at least two reasons:
- PCI_MSI might not be selected, kernel fails to build (yes, this is
legitimate, at least on arm64!)
- This may not be a PCI/MSI domain at all (platform MSI, for example)
Either way, this looks wrong. Move the overriding of mask/unmask to
the PCI counterpart, and panic is any of these two methods is not
set in the core code (they really should be present).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Link: http://lkml.kernel.org/r/1444760085-27857-1-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As we continue to push of_node towards the outskirts of irq domains,
let's start tackling the case of msi_create_irq_domain and its little
friends.
This has limited impact in both PCI/MSI, platform MSI, and a few
drivers.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Graeme Gregory <graeme@xora.org.uk>
Cc: Jake Oshins <jakeo@microsoft.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Link: http://lkml.kernel.org/r/1444737105-31573-17-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move alloc_msi_entry() from PCI MSI code into generic MSI code, so it
can be reused by other generic MSI drivers. Also introduce
free_msi_entry() for completeness.
Suggested-by: Stuart Yoder <stuart.yoder@freescale.com>.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Yijing Wang <wangyijing@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alexander Gordeev <agordeev@redhat.com>
Link: http://lkml.kernel.org/r/1436428847-8886-13-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
While debugging an unrelated issue with the GICv3 ITS driver, the
following trace triggered:
WARNING: CPU: 1 PID: 1 at kernel/irq/irqdomain.c:1121 irq_domain_free_irqs+0x160/0x17c()
NULL pointer, cannot free irq
Modules linked in:
CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.19.0-rc6+ #3690
Hardware name: FVP Base (DT)
Call trace:
[<ffffffc000089398>] dump_backtrace+0x0/0x13c
[<ffffffc0000894e4>] show_stack+0x10/0x1c
[<ffffffc00066d134>] dump_stack+0x74/0x94
[<ffffffc0000a92f8>] warn_slowpath_common+0x9c/0xd4
[<ffffffc0000a938c>] warn_slowpath_fmt+0x5c/0x80
[<ffffffc0000ee04c>] irq_domain_free_irqs+0x15c/0x17c
[<ffffffc0000ef918>] msi_domain_free_irqs+0x58/0x74
[<ffffffc000386f58>] free_msi_irqs+0xb4/0x1c0
// The msi_prepare callback fails here
[<ffffffc0003872c0>] pci_enable_msix+0x25c/0x3d4
[<ffffffc00038746c>] pci_enable_msix_range+0x34/0x80
[<ffffffc0003924ac>] vp_try_to_find_vqs+0xec/0x528
[<ffffffc000392954>] vp_find_vqs+0x6c/0xa8
[<ffffffc0003ee2a8>] init_vq+0x120/0x248
[<ffffffc0003eefb0>] virtblk_probe+0xb0/0x6bc
[<ffffffc00038fc34>] virtio_dev_probe+0x17c/0x214
[<ffffffc0003d4a04>] driver_probe_device+0x7c/0x23c
[<ffffffc0003d4cb0>] __driver_attach+0x98/0xa0
[<ffffffc0003d2c60>] bus_for_each_dev+0x60/0xb4
[<ffffffc0003d455c>] driver_attach+0x1c/0x28
[<ffffffc0003d41b0>] bus_add_driver+0x150/0x208
[<ffffffc0003d54c0>] driver_register+0x64/0x130
[<ffffffc00038f9e8>] register_virtio_driver+0x24/0x68
[<ffffffc00091320c>] init+0x70/0xac
[<ffffffc0000828f0>] do_one_initcall+0x94/0x1d0
[<ffffffc0008e9b00>] kernel_init_freeable+0x144/0x1e4
[<ffffffc00066a434>] kernel_init+0xc/0xd8
---[ end trace f9ee562a77cc7bae ]---
The ITS msi_prepare callback having failed, we end-up trying to
free MSIs that have never been allocated. Oddly enough, the kernel
is pretty upset about it.
It turns out that this behaviour was expected before the MSI domain
was introduced (and dealt with in arch_teardown_msi_irqs).
The obvious fix is to detect this early enough and bail out.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Jiang Liu <jiang.liu@linux.intel.com>
Link: http://lkml.kernel.org/r/1422299419-6051-1-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point to expose this to the world. The only legitimate user is the
core code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Required to support non PCI based MSI.
[ tglx: Extracted from Jiangs patch series ]
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Implement the basic functions for MSI interrupt support with
hierarchical interrupt domains.
[ tglx: Extracted and combined from several patches ]
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>