My colleague ran into a program stall on a x86_64 server, where
n_tty_read() was waiting for data even if there was data in the buffer
in the pty. kernel stack for the stuck process looks like below.
#0 [ffff88303d107b58] __schedule at ffffffff815c4b20
#1 [ffff88303d107bd0] schedule at ffffffff815c513e
#2 [ffff88303d107bf0] schedule_timeout at ffffffff815c7818
#3 [ffff88303d107ca0] wait_woken at ffffffff81096bd2
#4 [ffff88303d107ce0] n_tty_read at ffffffff8136fa23
#5 [ffff88303d107dd0] tty_read at ffffffff81368013
#6 [ffff88303d107e20] __vfs_read at ffffffff811a3704
#7 [ffff88303d107ec0] vfs_read at ffffffff811a3a57
#8 [ffff88303d107f00] sys_read at ffffffff811a4306
#9 [ffff88303d107f50] entry_SYSCALL_64_fastpath at ffffffff815c86d7
There seems to be two problems causing this issue.
First, in drivers/tty/n_tty.c, __receive_buf() stores the data and
updates ldata->commit_head using smp_store_release() and then checks
the wait queue using waitqueue_active(). However, since there is no
memory barrier, __receive_buf() could return without calling
wake_up_interactive_poll(), and at the same time, n_tty_read() could
start to wait in wait_woken() as in the following chart.
__receive_buf() n_tty_read()
------------------------------------------------------------------------
if (waitqueue_active(&tty->read_wait))
/* Memory operations issued after the
RELEASE may be completed before the
RELEASE operation has completed */
add_wait_queue(&tty->read_wait, &wait);
...
if (!input_available_p(tty, 0)) {
smp_store_release(&ldata->commit_head,
ldata->read_head);
...
timeout = wait_woken(&wait,
TASK_INTERRUPTIBLE, timeout);
------------------------------------------------------------------------
The second problem is that n_tty_read() also lacks a memory barrier
call and could also cause __receive_buf() to return without calling
wake_up_interactive_poll(), and n_tty_read() to wait in wait_woken()
as in the chart below.
__receive_buf() n_tty_read()
------------------------------------------------------------------------
spin_lock_irqsave(&q->lock, flags);
/* from add_wait_queue() */
...
if (!input_available_p(tty, 0)) {
/* Memory operations issued after the
RELEASE may be completed before the
RELEASE operation has completed */
smp_store_release(&ldata->commit_head,
ldata->read_head);
if (waitqueue_active(&tty->read_wait))
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock,flags);
/* from add_wait_queue() */
...
timeout = wait_woken(&wait,
TASK_INTERRUPTIBLE, timeout);
------------------------------------------------------------------------
There are also other places in drivers/tty/n_tty.c which have similar
calls to waitqueue_active(), so instead of adding many memory barrier
calls, this patch simply removes the call to waitqueue_active(),
leaving just wake_up*() behind.
This fixes both problems because, even though the memory access before
or after the spinlocks in both wake_up*() and add_wait_queue() can
sneak into the critical section, it cannot go past it and the critical
section assures that they will be serialized (please see "INTER-CPU
ACQUIRING BARRIER EFFECTS" in Documentation/memory-barriers.txt for a
better explanation). Moreover, the resulting code is much simpler.
Latency measurement using a ping-pong test over a pty doesn't show any
visible performance drop.
Signed-off-by: Kosuke Tatsukawa <tatsu@ab.jp.nec.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Other serial driver work wants to build on patches now in 4.2-rc4 so
merge the branch so this can properly happen.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
task_pgrp requires an rcu or tasklist lock to be obtained if the returned pid
is to be dereferenced, which kill_pgrp does. Obtain an RCU lock for the
duration of use.
Signed-off-by: Patrick Donnelly <batrick@batbytes.com>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When handling signalling char, claim the termios write lock before
signalling waiting readers and writers to prevent further i/o
before flushing the echo and output buffers. This prevents a
userspace signal handler which may output from racing the terminal
flush.
Reference: Bugzilla #99351 ("Output truncated in ssh session after...")
Fixes: commit d2b6f44779 ("n_tty: Fix signal handling flushes")
Reported-by: Filipe Brandenburger <filbranden@google.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This fixes up a merge issue with the amba-pl011.c driver, and we want
the fixes in this branch as well.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 32f13521ca
("n_tty: Line copy to user buffer in canonical mode")
changed cannonical mode copying to use copy_to_user
but missed adding the call to the audit framework.
Add in the appropriate functions to get audit support.
Fixes: 32f13521ca ("n_tty: Line copy to user buffer in canonical mode")
Reported-by: Miloslav Trmač <mitr@redhat.com>
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There was a hardcoded value of 4096 which should have been N_TTY_BUF_SIZE.
This caused reads from tty to fail with EFAULT when they shouldn't have
done if N_TTY_BUF_SIZE was declared to be something other than 4096.
Signed-off-by: Mark Tomlinson <mark.tomlinson@alliedtelesis.co.nz>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A read() from a pty master may mistakenly indicate EOF (errno == -EIO)
after the pty slave has closed, even though input data remains to be read.
For example,
pty slave | input worker | pty master
| |
| | n_tty_read()
pty_write() | | input avail? no
add data | | sleep
schedule worker --->| | .
|---> flush_to_ldisc() | .
pty_close() | fill read buffer | .
wait for worker | wakeup reader --->| .
| read buffer full? |---> input avail ? yes
|<--- yes - exit worker | copy 4096 bytes to user
TTY_OTHER_CLOSED <---| |<--- kick worker
| |
**** New read() before worker starts ****
| | n_tty_read()
| | input avail? no
| | TTY_OTHER_CLOSED? yes
| | return -EIO
Several conditions are required to trigger this race:
1. the ldisc read buffer must become full so the input worker exits
2. the read() count parameter must be >= 4096 so the ldisc read buffer
is empty
3. the subsequent read() occurs before the kicked worker has processed
more input
However, the underlying cause of the race is that data is pipelined, while
tty state is not; ie., data already written by the pty slave end is not
yet visible to the pty master end, but state changes by the pty slave end
are visible to the pty master end immediately.
Pipeline the TTY_OTHER_CLOSED state through input worker to the reader.
1. Introduce TTY_OTHER_DONE which is set by the input worker when
TTY_OTHER_CLOSED is set and either the input buffers are flushed or
input processing has completed. Readers/polls are woken when
TTY_OTHER_DONE is set.
2. Reader/poll checks TTY_OTHER_DONE instead of TTY_OTHER_CLOSED.
3. A new input worker is started from pty_close() after setting
TTY_OTHER_CLOSED, which ensures the TTY_OTHER_DONE state will be
set if the last input worker is already finished (or just about to
exit).
Remove tty_flush_to_ldisc(); no in-tree callers.
Fixes: 52bce7f8d4 ("pty, n_tty: Simplify input processing on final close")
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=96311
BugLink: http://bugs.launchpad.net/bugs/1429756
Cc: <stable@vger.kernel.org> # 3.19+
Reported-by: Andy Whitcroft <apw@canonical.com>
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
tty_name no longer uses the buf parameter, so remove it along with all
the 64 byte stack buffers that used to be passed in.
Mostly generated by the coccinelle script
@depends on patch@
identifier buf;
constant C;
expression tty;
@@
- char buf[C];
<+...
- tty_name(tty, buf)
+ tty_name(tty)
...+>
allmodconfig compiles, so I'm fairly confident the stack buffers
weren't used for other purposes as well.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
BRKINT and ISIG requires input and output flush when a signal char
is received. However, the order of operations is significant since
parallel i/o may be ongoing.
Merge the signal handling for BRKINT with ISIG handling.
Process the signal first. This ensures any ongoing i/o is aborted;
without this, a waiting writer may continue writing after the flush
occurs and after the signal char has been echoed.
Write lock the termios_rwsem, which excludes parallel writers from
pushing new i/o until after the output buffers are flushed; claiming
the write lock is necessary anyway to exclude parallel readers while
the read buffer is flushed.
Subclass the termios_rwsem for ptys since the slave pty performing
the flush may appear to reorder the termios_rwsem->tty buffer lock
lock order; adding annotation clarifies that
slave tty_buffer lock-> slave termios_rwsem -> master tty_buffer lock
is a valid lock order.
Flush the echo buffer. In this context, the echo buffer is 'output'.
Otherwise, the output will appear discontinuous because the output buffer
was cleared which contains older output than the echo buffer.
Open-code the read buffer flush since the input worker does not need
kicking (this is the input worker).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In canon mode, the read buffer head will advance over the buffer tail
if the input > 4095 bytes without receiving a line termination char.
Discard additional input until a line termination is received.
Before evaluating for overflow, the 'room' value is normalized for
I_PARMRK and 1 byte is reserved for line termination (even in !icanon
mode, in case the mode is switched). The following table shows the
transform:
actual buffer | 'room' value before overflow calc
space avail | !I_PARMRK | I_PARMRK
--------------------------------------------------
0 | -1 | -1
1 | 0 | 0
2 | 1 | 0
3 | 2 | 0
4+ | 3 | 1
When !icanon or when icanon and the read buffer contains newlines,
normalized 'room' values of -1 and 0 are clamped to 0, and
'overflow' is 0, so read_head is not adjusted and the input i/o loop
exits (setting no_room if called from flush_to_ldisc()). No input
is discarded since the reader does have input available to read
which ensures forward progress.
When icanon and the read buffer does not contain newlines and the
normalized 'room' value is 0, then overflow and room are reset to 1,
so that the i/o loop will process the next input char normally
(except for parity errors which are ignored). Thus, erasures, signalling
chars, 7-bit mode, etc. will continue to be handled properly.
If the input char processed was not a line termination char, then
the canon_head index will not have advanced, so the normalized 'room'
value will now be -1 and 'overflow' will be set, which indicates the
read_head can safely be reset, effectively erasing the last char
processed.
If the input char processed was a line termination, then the
canon_head index will have advanced, so 'overflow' is cleared to 0,
the read_head is not reset, and 'room' is cleared to 0, which exits
the i/o loop (because the reader now have input available to read
which ensures forward progress).
Note that it is possible for a line termination to be received, and
for the reader to copy the line to the user buffer before the
input i/o loop is ready to process the next input char. This is
why the i/o loop recomputes the room/overflow state with every
input char while handling overflow.
Finally, if the input data was processed without receiving
a line termination (so that overflow is still set), the pty
driver must receive a write wakeup. A pty writer may be waiting
to write more data in n_tty_write() but without unthrottling
here that wakeup will not arrive, and forward progress will halt.
(Normally, the pty writer is woken when the reader reads data out
of the buffer and more space become available).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If PARMRK is enabled, the available read buffer space computation is
overly-pessimistic, which results in severely throttled i/o, even
in the absence of parity errors. For example, if the 4k read buffer
contains 1k processed data, the input worker will compute available
space of 333 bytes, despite 3k being available. At 1365 chars of
processed data, 0 space available is computed.
*Divide remaining space* by 3, truncating down (if left == 2, left = 0).
Reported-by: Christian Riesch <christian.riesch@omicron.at>
Conflicts:
drivers/tty/n_tty.c
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add commit_head buffer index, which the producer-side publishes
after input processing in non-canon mode. This ensures the consumer-side
observes correctly-ordered writes in non-canonical mode (ie., the buffer
data is written before the buffer index is advanced). Fix consumer-side
uses of read_cnt() to use commit_head instead.
Add required memory barriers to the tail index to guarantee
the consumer-side has completed the loads before the producer-side
begins writing new data. Open-code the producer-side receive_room()
into the i/o loop.
Remove no-longer-referenced receive_room().
Based on work by Christian Riesch <christian.riesch@omicron.at>
Cc: Christian Riesch <christian.riesch@omicron.at>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The adjustments performed by receive_room() are to ensure a line
termination can always be written to the read buffer. However,
these adjustments are irrelevant to the throttle threshold (because
the threshold < buffer limit).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty driver will be mistakenly throttled if a line termination
has not been received, and the line exceeds 3967 chars. Thus, it is
possible for the driver to stop sending when it has not yet sent
the newline. This does not apply to the pty driver.
Don't throttle until at least one line termination has been
received.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The input worker never reschedules itself; it only processes input until
either there is no more input or the read buffer is full. So the reader
is responsible for restarting the input worker only if the read buffer
was previously full (no_room == 1) _and_ space is now available to process
more input because the reader has consumed data from the read buffer.
However, computing the actual space available is not required to determine
if the reader has consumed data from the read buffer. This condition is
evaluated in 5 situations, each of which the space avail is already known:
1. n_tty_flush_buffer() - the read buffer is empty; kick the worker
2. n_tty_set_termios() - no data has been consumed; do not kick the worker
(although it may have kicked the reader so data _will be_ consumed)
3. n_tty_check_unthrottle - avail space > 3968; kick the worker
4. n_tty_read, before leaving - only kick the worker if the reader has
moved the tail. This prevents unnecessarily kicking the worker
when timeout-style reading is used.
5. n_tty_read, before sleeping - although it is possible for the read
buffer to be full and input_available_p() to be false, this can
only happen when the input worker is racing the reader, in which
case the reader will have been woken and won't sleep.
Rename n_tty_set_room() to n_tty_kick_worker() to reflect what the
function actually does.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit c4dc304677.
This fix is superseded by commit 52bce7f8d4,
'pty, n_tty: Simplify input processing on final close'.
The final close now waits for input processing to complete before
destroying the pty, so poll() does not need to special case this
condition.
Cc: Francesco Ruggeri <fruggeri@arista.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Here's the big tty/serial driver update for 3.19-rc1.
There are a number of TTY core changes/fixes in here from Peter Hurley
that have all been teted in linux-next for a long time now. There are
also the normal serial driver updates as well, full details in the
changelog below.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlSOD/MACgkQMUfUDdst+ymW+wCfbSzoYMRObIImMPWfoQtxkvvN
rpkAnAtyEP/zZIfkQIuKTSH6FJxocF8V
=WZt3
-----END PGP SIGNATURE-----
Merge tag 'tty-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here's the big tty/serial driver update for 3.19-rc1.
There are a number of TTY core changes/fixes in here from Peter Hurley
that have all been teted in linux-next for a long time now. There are
also the normal serial driver updates as well, full details in the
changelog below"
* tag 'tty-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (219 commits)
serial: pxa: hold port.lock when reporting modem line changes
tty-hvsi_lib: Deletion of an unnecessary check before the function call "tty_kref_put"
tty: Deletion of unnecessary checks before two function calls
n_tty: Fix read_buf race condition, increment read_head after pushing data
serial: of-serial: add PM suspend/resume support
Revert "serial: of-serial: add PM suspend/resume support"
Revert "serial: of-serial: fix up PM ops on no_console_suspend and port type"
serial: 8250: don't attempt a trylock if in sysrq
serial: core: Add big-endian iotype
serial: samsung: use port->fifosize instead of hardcoded values
serial: samsung: prefer to use fifosize from driver data
serial: samsung: fix style problems
serial: samsung: wait for transfer completion before clock disable
serial: icom: fix error return code
serial: tegra: clean up tty-flag assignments
serial: Fix io address assign flow with Fintek PCI-to-UART Product
serial: mxs-auart: fix tx_empty against shift register
serial: mxs-auart: fix gpio change detection on interrupt
serial: mxs-auart: Fix mxs_auart_set_ldisc()
serial: 8250_dw: Use 64-bit access for OCTEON.
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- 'Nested Sleep Debugging', activated when CONFIG_DEBUG_ATOMIC_SLEEP=y.
This instruments might_sleep() checks to catch places that nest
blocking primitives - such as mutex usage in a wait loop. Such
bugs can result in hard to debug races/hangs.
Another category of invalid nesting that this facility will detect
is the calling of blocking functions from within schedule() ->
sched_submit_work() -> blk_schedule_flush_plug().
There's some potential for false positives (if secondary blocking
primitives themselves are not ready yet for this facility), but the
kernel will warn once about such bugs per bootup, so the warning
isn't much of a nuisance.
This feature comes with a number of fixes, for problems uncovered
with it, so no messages are expected normally.
- Another round of sched/numa optimizations and refinements, for
CONFIG_NUMA_BALANCING=y.
- Another round of sched/dl fixes and refinements.
Plus various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched: Add missing rcu protection to wake_up_all_idle_cpus
sched/deadline: Introduce start_hrtick_dl() for !CONFIG_SCHED_HRTICK
sched/numa: Init numa balancing fields of init_task
sched/deadline: Remove unnecessary definitions in cpudeadline.h
sched/cpupri: Remove unnecessary definitions in cpupri.h
sched/deadline: Fix rq->dl.pushable_tasks bug in push_dl_task()
sched/fair: Fix stale overloaded status in the busiest group finding logic
sched: Move p->nr_cpus_allowed check to select_task_rq()
sched/completion: Document when to use wait_for_completion_io_*()
sched: Update comments about CLONE_NEWUTS and CLONE_NEWIPC
sched/fair: Kill task_struct::numa_entry and numa_group::task_list
sched: Refactor task_struct to use numa_faults instead of numa_* pointers
sched/deadline: Don't check CONFIG_SMP in switched_from_dl()
sched/deadline: Reschedule from switched_from_dl() after a successful pull
sched/deadline: Push task away if the deadline is equal to curr during wakeup
sched/deadline: Add deadline rq status print
sched/deadline: Fix artificial overrun introduced by yield_task_dl()
sched/rt: Clean up check_preempt_equal_prio()
sched/core: Use dl_bw_of() under rcu_read_lock_sched()
sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
...
Commit 19e2ad6a09 ("n_tty: Remove overflow
tests from receive_buf() path") moved the increment of read_head into
the arguments list of read_buf_addr(). Function calls represent a
sequence point in C. Therefore read_head is incremented before the
character c is placed in the buffer. Since the circular read buffer is
a lock-less design since commit 6d76bd2618
("n_tty: Make N_TTY ldisc receive path lockless"), this creates a race
condition that leads to communication errors.
This patch modifies the code to increment read_head _after_ the data
is placed in the buffer and thus fixes the race for non-SMP machines.
To fix the problem for SMP machines, memory barriers must be added in
a separate patch.
Signed-off-by: Christian Riesch <christian.riesch@omicron.at>
Cc: <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit f95499c303 ("n_tty: Don't wait for buffer work in read() loop")
introduces a race window where a pty master can be signalled that the pty
slave was closed before all the data that the slave wrote is delivered.
Commit f8747d4a46 ("tty: Fix pty master read() after slave closes") fixed the
problem in case of n_tty_read, but the problem still exists for n_tty_poll.
This can be seen by running 'for ((i=0; i<100;i++));do ./test.py ;done'
where test.py is:
import os, select, pty
(pid, pty_fd) = pty.fork()
if pid == 0:
os.write(1, 'This string should be received by parent')
else:
poller = select.epoll()
poller.register( pty_fd, select.EPOLLIN )
ready = poller.poll( 1 * 1000 )
for fd, events in ready:
if not events & select.EPOLLIN:
print 'missed POLLIN event'
else:
print os.read(fd, 100)
poller.close()
The string from the slave is missed several times.
This patch takes the same approach as the fix for read and special cases
this condition for poll.
Tested on 3.16.
Signed-off-by: Francesco Ruggeri <fruggeri@arista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When releasing one end of a pty pair, that end may just have written
to the other, which the input processing worker, flush_to_ldisc(), is
still working on but has not completed the copy to the other end's
read buffer. So input may not appear to be available to a waiting
reader but yet TTY_OTHER_CLOSED is now observed. The n_tty line
discipline has worked around this by waiting for input processing
to complete and then re-checking if input is available before
exiting with -EIO.
Since the tty/ldisc lock reordering, the wait for input processing
to complete can now occur during final close before setting
TTY_OTHER_CLOSED. In this way, a waiting reader is guaranteed to
see input available (if any) before observing TTY_OTHER_CLOSED.
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The stale comment refers to lock behavior which was eliminated in
commit 6d76bd2618,
n_tty: Make N_TTY ldisc receive path lockless.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Packet mode can only be set for a pty master, and a pty master is
always in raw mode since its termios cannot be changed.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The pty master read() can miss the wake up for a packet mode
status change. For example,
CPU 0 | CPU 1
n_tty_read() | n_tty_packet_mode_flush()
... | .
if (packet & link->ctrl_status) { | .
/* no new ctrl_status ATM */ | .
| spin_lock
| ctrl_status |= TIOCPKT_FLUSHREAD
| spin_unlock
| wake_up(link->read_wait)
} |
set_current_state(TASK_INTERRUPTIBLE) |
... |
The pty master read() will now sleep (assuming there is no input) having
missed the read_wait wakeup.
Set the task state before the condition test.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The slave's ctrl_lock serializes updates to the ctrl_status field
only, whereas the master's ctrl_lock serializes updates to the
packet mode enable (ie., the master does not have ctrl_status and
the slave does not have packet mode). Thus, claiming the slave's
ctrl_lock to access ->packet is useless.
Unlocked reads of ->packet are already smp-safe.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Interrupts are enabled in the n_tty_read() loop, ioctl(TIOCPKT)
and pty driver flush_buffer() routine; no need to save and restore
local interrupt state.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Reviewed-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
n_tty_{read,write} are wait loops with sleeps in. Wait loops rely on
task_struct::state and sleeps do too, since that's the only means of
actually sleeping. Therefore the nested sleeps destroy the wait loop
state.
Fix this by using the new woken_wake_function and wait_woken() stuff,
which registers wakeups in wait and thereby allows shrinking the
task_state::state changes to the actual sleep part.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Link: http://lkml.kernel.org/r/20140924082242.323011233@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the N_TTY line discipline receives data and wakes readers to
process the input, polling writers are also mistakenly woken. This
is because, although readers and writers are differentiated by
different wait queues (tty->read_wait & tty->write_wait), both
wait queues are polled together. Thus, reader wakeups without poll
flags still cause poll(POLLOUT) to wakeup.
For received data, wakeup readers with POLLIN. Preserve the
unspecific wakeup in n_tty_packet_mode_flush(), as this action
should flag both POLLIN and POLLOUT.
Fixes epoll_wait() for edge-triggered EPOLLOUT.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If INPCK is not set, input parity detection should be disabled. This means
parity errors should not be received from the tty driver, and the data
received should be treated normally.
SUS v3, 11.2.2, General Terminal Interface - Input Modes, states:
"If INPCK is set, input parity checking shall be enabled. If INPCK is
not set, input parity checking shall be disabled, allowing output parity
generation without input parity errors. Note that whether input parity
checking is enabled or disabled is independent of whether parity detection
is enabled or disabled (see Control Modes). If parity detection is enabled
but input parity checking is disabled, the hardware to which the terminal
is connected shall recognize the parity bit, but the terminal special file
shall not check whether or not this bit is correctly set."
Ignore parity errors reported by the tty driver when INPCK is not set, and
handle the received data normally.
Fixes: Bugzilla #71681, 'Improvement of n_tty_receive_parity_error from n_tty.c'
Reported-by: Ivan <athlon_@mail.ru>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The tty atomic_write_lock does not provide an exclusion guarantee for
the tty driver if the termios settings are LECHO & !OPOST. And since
it is unexpected and not allowed to call TTY buffer helpers like
tty_insert_flip_string concurrently, this may lead to crashes when
concurrect writers call pty_write. In that case the following two
writers:
* the ECHOing from a workqueue and
* pty_write from the process
race and can overflow the corresponding TTY buffer like follows.
If we look into tty_insert_flip_string_fixed_flag, there is:
int space = __tty_buffer_request_room(port, goal, flags);
struct tty_buffer *tb = port->buf.tail;
...
memcpy(char_buf_ptr(tb, tb->used), chars, space);
...
tb->used += space;
so the race of the two can result in something like this:
A B
__tty_buffer_request_room
__tty_buffer_request_room
memcpy(buf(tb->used), ...)
tb->used += space;
memcpy(buf(tb->used), ...) ->BOOM
B's memcpy is past the tty_buffer due to the previous A's tb->used
increment.
Since the N_TTY line discipline input processing can output
concurrently with a tty write, obtain the N_TTY ldisc output_lock to
serialize echo output with normal tty writes. This ensures the tty
buffer helper tty_insert_flip_string is not called concurrently and
everything is fine.
Note that this is nicely reproducible by an ordinary user using
forkpty and some setup around that (raw termios + ECHO). And it is
present in kernels at least after commit
d945cb9cce (pty: Rework the pty layer to
use the normal buffering logic) in 2.6.31-rc3.
js: add more info to the commit log
js: switch to bool
js: lock unconditionally
js: lock only the tty->ops->write call
References: CVE-2014-0196
Reported-and-tested-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When echoes cannot be flushed to output (usually because the tty
has no more write room) and L_ECHO is subsequently turned off, then
when L_ECHO is turned back on, stale echoes are output.
Output completed echoes regardless of the L_ECHO setting:
1. before normal writes to that tty
2. if the tty was stopped by soft flow control and is being
restarted
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@vger.kernel.org> # 3.13.x
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit eafbe67f84,
n_tty: Refactor input_available_p() by call site
broke poll() when TIME_CHAR(tty) and MIN_CHAR(tty) are both 0.
When TIME_CHAR and MIN_CHAR are both 0, input is available if the
read_cnt is 1 (not 0).
Reported-by: Eric Dumazet <edumazet@google.com>
Tested-by: Eric Dumazet <edumazet@google.com>
Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: David Ahern <dsahern@gmail.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With block processing of echoed output, observed output order is still
required. Push completed echoes and echo commands prior to output.
Introduce echo_mark echo buffer index, which tracks completed echo
commands; ie., those submitted via commit_echoes but which may not
have been committed. Ensure that completed echoes are output prior
to subsequent terminal writes in process_echoes().
Fixes newline/prompt output order in cooked mode shell.
Cc: <stable@vger.kernel.org> # 3.12.x : 39434ab n_tty: Fix missing newline echo
Reported-by: Karl Dahlke <eklhad@comcast.net>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Tested-by: Karl Dahlke <eklhad@comcast.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
readline() inadvertently triggers an error recovery path when
pastes larger than 4k overrun the line discipline buffer. The
error recovery path discards input when the line discipline buffer
is full and operating in canonical mode and no newline has been
received. Because readline() changes the termios to non-canonical
mode to read the line char-by-char, the line discipline buffer
can become full, and then when readline() restores termios back
to canonical mode for the caller, the now-full line discipline
buffer triggers the error recovery.
When changing termios from non-canon to canon mode and the read
buffer contains data, simulate an EOF push _without_ the
DISABLED_CHAR in the read buffer.
Importantly for the readline() problem, the termios can be
changed back to non-canonical mode without changes to the read
buffer occurring; ie., as if the previous termios change had not
happened (as long as no intervening read took place).
Preserve existing userspace behavior which allows '\0's already
received in non-canon mode to be read as '\0's in canon mode
(rather than trigger add'l EOF pushes or an actual EOF).
Patch based on original proposal and discussion here
https://bugzilla.kernel.org/show_bug.cgi?id=55991
by Stas Sergeev <stsp@users.sourceforge.net>
Reported-by: Margarita Manterola <margamanterola@gmail.com>
Cc: Maximiliano Curia <maxy@gnuservers.com.ar>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Acked-by: Stas Sergeev <stsp@users.sourceforge.net>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Distinguish if caller is n_tty_poll() or n_tty_read(), and
set the read/wakeup threshold accordingly.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although n_tty_receive_char_closing() only has one call-site,
let the compiler inline instead.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit e60d27c4d8,
n_tty: Factor LNEXT processing from per-char i/o path,
mistakenly inlined the non-inline alias, n_tty_receive_char(),
for the inline function, n_tty_receive_char_inline().
As n_tty_receive_char() is intended for slow-path char
processing only, un-inline it.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
N_TTY's direct and flow-controlled flavors of the .receive_buf()
method are nearly identical; fold together.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When L_ECHONL is on, newlines are echoed regardless of the L_ECHO
state; if set, ensure accumulated echoes are flushed before finishing
the current input processing and before more output.
Cc: <stable@vger.kernel.org> # 3.12.x
Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com
Tested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With multiple, concurrent readers (each waiting to acquire the
atomic_read_lock mutex), a departing reader may mistakenly reset
minimum_to_wake after a new reader has already set a new value.
Protect the minimum_to_wake reset with the atomic_read_lock critical
section.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>