Commit Graph

565 Commits

Author SHA1 Message Date
Frederic Weisbecker 7a10e2a919 x86: Use lockdep to assert IRQs are disabled/enabled
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.

It also makes no more sense to fix the IRQ flags when a bug is detected
as the assertion is now pure config-dependent debugging. And to quote
Peter Zijlstra:

	The whole if !disabled, disable logic is uber paranoid programming,
	but I don't think we've ever seen that WARN trigger, and if it does
	(and then burns the kernel) we at least know what happend.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-8-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 11:13:50 +01:00
Pavel Tatashin 76ce7cfe35 x86/smpboot: Make optimization of delay calibration work correctly
If the TSC has constant frequency then the delay calibration can be skipped
when it has been calibrated for a package already. This is checked in
calibrate_delay_is_known(), but that function is buggy in two aspects:

It returns 'false' if

  (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)

which is obviously the reverse of the intended check and the check for the
sibling mask cannot work either because the topology links have not been
set up yet.

Correct the condition and move the call to set_cpu_sibling_map() before
invoking calibrate_delay() so the sibling check works correctly.

[ tglx: Rewrote changelong ]

Fixes: c25323c073 ("x86/tsc: Use topology functions")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: bob.picco@oracle.com
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171028001100.26603-1-pasha.tatashin@oracle.com
2017-11-07 16:04:54 +01:00
Andy Lutomirski cd493a6deb x86/entry/32: Fix cpu_current_top_of_stack initialization at boot
cpu_current_top_of_stack's initialization forgot about
TOP_OF_KERNEL_STACK_PADDING.  This bug didn't matter because the
idle threads never enter user mode.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e5e370a7e6e4fddd1c4e4cf619765d96bb874b21.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02 11:04:47 +01:00
Dou Liyang ca5d376e17 x86/paravirt: Set up the virt_spin_lock_key after static keys get initialized
Commit:

  9043442b43 ("locking/paravirt: Use new static key for controlling call of virt_spin_lock()")

sets the static virt_spin_lock_key to a value before jump_label_init()
has been called, which will result in a WARN().

Reorder the initialization sequence:

 - Move the native_pv_lock_init() into native_smp_prepare_cpus()
 - set the value in xen_init_lock_cpu()

to avoid calling into the not yet initialized static keys subsystem.

Suggested-by: Juergen Gross <jgross@suse.com>
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: boris.ostrovsky@oracle.com
Cc: bp@suse.de
Cc: luto@kernel.org
Cc: vkuznets@redhat.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1509170804-3813-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-30 09:17:29 +01:00
Juergen Gross 9043442b43 locking/paravirt: Use new static key for controlling call of virt_spin_lock()
There are cases where a guest tries to switch spinlocks to bare metal
behavior (e.g. by setting "xen_nopvspin" boot parameter). Today this
has the downside of falling back to unfair test and set scheme for
qspinlocks due to virt_spin_lock() detecting the virtualized
environment.

Add a static key controlling whether virt_spin_lock() should be
called or not. When running on bare metal set the new key to false.

Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akataria@vmware.com
Cc: boris.ostrovsky@oracle.com
Cc: chrisw@sous-sol.org
Cc: hpa@zytor.com
Cc: jeremy@goop.org
Cc: rusty@rustcorp.com.au
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20170906173625.18158-2-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:50:12 +02:00
Jean Delvare a1652bb8a0 x86/boot: Spell out "boot CPU" for BP
It's not obvious to everybody that BP stands for boot processor. At
least it was not for me. And BP is also a CPU register on x86, so it
is ambiguous. Spell out "boot CPU" everywhere instead.

Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-03 18:41:23 +02:00
Thomas Gleixner 2cffad7bad x86/irq: Simplify hotplug vector accounting
Before a CPU is taken offline the number of active interrupt vectors on the
outgoing CPU and the number of vectors which are available on the other
online CPUs are counted and compared. If the active vectors are more than
the available vectors on the other CPUs then the CPU hot-unplug operation
is aborted. This again uses loop based search and is inaccurate.

The bitmap matrix allocator has accurate accounting information and can
tell exactly whether the vector space is sufficient or not.

Emit a message when the number of globaly reserved (unallocated) vectors is
larger than the number of available vectors after offlining a CPU because
after that point request_irq() might fail.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213156.351193962@linutronix.de
2017-09-25 20:52:02 +02:00
Thomas Gleixner 8ed4f3e666 x86/smpboot: Set online before setting up vectors
There is no reason to set the CPU online after establishing the vectors on
the upcoming CPU. The vector space is protected by the vector lock so no
changes can happen.

Marking the CPU online before setting up the vector space makes tracing
work in the early vector management cpu online code.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213155.264311994@linutronix.de
2017-09-25 20:51:57 +02:00
Thomas Gleixner 0fa115da40 x86/irq/vector: Initialize matrix allocator
Initialize the matrix allocator and add the proper accounting points to the
code.

No functional change, just preparation.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213155.108410660@linutronix.de
2017-09-25 20:51:56 +02:00
Thomas Gleixner ef9e56d894 x86/ioapic: Remove obsolete post hotplug update
With single CPU affinities the post SMP boot vector update is pointless as
it will just leave the affinities on the same vectors and the same CPUs.

Remove it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213154.308697243@linutronix.de
2017-09-25 20:51:52 +02:00
Dou Liyang 935356cecd x86/apic: Initialize interrupt mode after timer init
A cold or warm boot through BIOS sets the APIC in default interrupt
delivery mode. A dump-capture kernel will not go through a BIOS reset and
leave the interrupt delivery mode in the state which was active on the
crashed kernel, but the dump kernel startup code assumes default delivery
mode which can result in interrupt delivery/handling to fail.

To solve this problem, it's required to set up the final interrupt delivery
mode as soon as possible. As IOAPIC setup needs the timer initialized for
verifying the timer interrupt delivery mode, the earliest point is right
after timer setup in late_time_init().

That results in the following init order:

  1) Set up the legacy timer, if applicable on the platform

  2) Set up APIC/IOAPIC which includes the verification of the legacy timer
     interrupt delivery.

  3) TSC calibration

  4) Local APIC timer setup


Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-12-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:17 +02:00
Dou Liyang 34fba3e6b1 x86/init: Add intr_mode_init to x86_init_ops
X86 and XEN initialize interrupt delivery mode in different way.

To avoid conditionals, add a new x86_init_ops function which defaults to
the standard function and can be overridden by the early XEN platform code.

[ tglx: Folded the XEN part which was a separate patch to preserve
  	bisectability ]

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-10-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:17 +02:00
Dou Liyang 4f45ed9f84 x86/apic: Mark the apic_intr_mode extern for sanity check cleanup
Calling native_smp_prepare_cpus() to prepare for SMP bootup, does some
sanity checking, enables APIC mode and disables SMP feature.

Now, APIC mode setup has been unified to apic_intr_mode_init(), some sanity
checks are redundant and need to be cleanup.

Mark the apic_intr_mode extern to refine the switch and remove the
redundant sanity check.

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-7-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:16 +02:00
Dou Liyang 3e730dad3b x86/apic: Unify interrupt mode setup for SMP-capable system
On a SMP-capable system, the kernel enables and sets up the APIC interrupt
delivery mode in native_smp_prepare_cpus(). The decision how to setup the
APIC is intermingled with the decision of setting up SMP or not.

Split the initialization of the APIC interrupt mode independent from other
decisions and have a separate apic_intr_mode_init() function for it.

The invocation time stays the same for now.

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-6-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:15 +02:00
Dou Liyang 4b1244b45c x86/apic: Move logical APIC ID away from apic_bsp_setup()
apic_bsp_setup() sets and returns logical APIC ID for initializing
cpu0_logical_apicid in a SMP-capable system.

The id has nothing to do with the initialization of local APIC and I/O
APIC. And apic_bsp_setup() should be called for interrupt mode setup only.

Move the id setup into a separate helper function for cleanup and mark
apic_bsp_setup() void.

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-5-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:15 +02:00
Dou Liyang a2510d156e x86/apic: Split local APIC timer setup from the APIC setup
apic_bsp_setup() sets up the local APIC, I/O APIC and APIC timer.

The local APIC and I/O APIC setup belongs to interrupt delivery mode
setup. Setting up the local APIC timer for booting CPU is another job
and has nothing to do with interrupt delivery mode setup.

Split local APIC timer setup from the APIC setup, keep it in the original
position for SMP and UP kernel for now.

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-4-git-send-email-douly.fnst@cn.fujitsu.com
2017-09-25 15:03:14 +02:00
Andy Lutomirski 4ba55e65f4 x86/mm/32: Load a sane CR3 before cpu_init() on secondary CPUs
For unknown historical reasons (i.e. Borislav doesn't recall),
32-bit kernels invoke cpu_init() on secondary CPUs with
initial_page_table loaded into CR3.  Then they set
current->active_mm to &init_mm and call enter_lazy_tlb() before
fixing CR3.  This means that the x86 TLB code gets invoked while CR3
is inconsistent, and, with the improved PCID sanity checks I added,
we warn.

Fix it by loading swapper_pg_dir (i.e. init_mm.pgd) earlier.

Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 72c0098d92 ("x86/mm: Reinitialize TLB state on hotplug and resume")
Link: http://lkml.kernel.org/r/30cdfea504682ba3b9012e77717800a91c22097f.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-17 18:59:09 +02:00
Andy Lutomirski c7ad5ad297 x86/mm/64: Initialize CR4.PCIDE early
cpu_init() is weird: it's called rather late (after early
identification and after most MMU state is initialized) on the boot
CPU but is called extremely early (before identification) on secondary
CPUs.  It's called just late enough on the boot CPU that its CR4 value
isn't propagated to mmu_cr4_features.

Even if we put CR4.PCIDE into mmu_cr4_features, we'd hit two
problems.  First, we'd crash in the trampoline code.  That's
fixable, and I tried that.  It turns out that mmu_cr4_features is
totally ignored by secondary_start_64(), though, so even with the
trampoline code fixed, it wouldn't help.

This means that we don't currently have CR4.PCIDE reliably initialized
before we start playing with cpu_tlbstate.  This is very fragile and
tends to cause boot failures if I make even small changes to the TLB
handling code.

Make it more robust: initialize CR4.PCIDE earlier on the boot CPU
and propagate it to secondary CPUs in start_secondary().

( Yes, this is ugly.  I think we should have improved mmu_cr4_features
  to actually control CR4 during secondary bootup, but that would be
  fairly intrusive at this stage. )

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 660da7c922 ("x86/mm: Enable CR4.PCIDE on supported systems")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 09:54:43 +02:00
Alexey Dobriyan 9b130ad5bb treewide: make "nr_cpu_ids" unsigned
First, number of CPUs can't be negative number.

Second, different signnnedness leads to suboptimal code in the following
cases:

1)
	kmalloc(nr_cpu_ids * sizeof(X));

"int" has to be sign extended to size_t.

2)
	while (loff_t *pos < nr_cpu_ids)

MOVSXD is 1 byte longed than the same MOV.

Other cases exist as well. Basically compiler is told that nr_cpu_ids
can't be negative which can't be deduced if it is "int".

Code savings on allyesconfig kernel: -3KB

	add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370)
	function                                     old     new   delta
	coretemp_cpu_online                          450     512     +62
	rcu_init_one                                1234    1272     +38
	pci_device_probe                             374     399     +25

				...

	pgdat_reclaimable_pages                      628     556     -72
	select_fallback_rq                           446     369     -77
	task_numa_find_cpu                          1923    1807    -116

Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:48 -07:00
Vitaly Kuznetsov 10e66760fa x86/smpboot: Unbreak CPU0 hotplug
A hang on CPU0 onlining after a preceding offlining is observed. Trace
shows that CPU0 is stuck in check_tsc_sync_target() waiting for source
CPU to run check_tsc_sync_source() but this never happens. Source CPU,
in its turn, is stuck on synchronize_sched() which is called from
native_cpu_up() -> do_boot_cpu() -> unregister_nmi_handler().

So it's a classic ABBA deadlock, due to the use of synchronize_sched() in
unregister_nmi_handler().

Fix the bug by moving unregister_nmi_handler() from do_boot_cpu() to
native_cpu_up() after cpu onlining is done.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170803105818.9934-1-vkuznets@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10 17:02:47 +02:00
Linus Torvalds 7a69f9c60b Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Continued work to add support for 5-level paging provided by future
     Intel CPUs. In particular we switch the x86 GUP code to the generic
     implementation. (Kirill A. Shutemov)

   - Continued work to add PCID CPU support to native kernels as well.
     In this round most of the focus is on reworking/refreshing the TLB
     flush infrastructure for the upcoming PCID changes. (Andy
     Lutomirski)"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  x86/mm: Delete a big outdated comment about TLB flushing
  x86/mm: Don't reenter flush_tlb_func_common()
  x86/KASLR: Fix detection 32/64 bit bootloaders for 5-level paging
  x86/ftrace: Exclude functions in head64.c from function-tracing
  x86/mmap, ASLR: Do not treat unlimited-stack tasks as legacy mmap
  x86/mm: Remove reset_lazy_tlbstate()
  x86/ldt: Simplify the LDT switching logic
  x86/boot/64: Put __startup_64() into .head.text
  x86/mm: Add support for 5-level paging for KASLR
  x86/mm: Make kernel_physical_mapping_init() support 5-level paging
  x86/mm: Add sync_global_pgds() for configuration with 5-level paging
  x86/boot/64: Add support of additional page table level during early boot
  x86/boot/64: Rename init_level4_pgt and early_level4_pgt
  x86/boot/64: Rewrite startup_64() in C
  x86/boot/compressed: Enable 5-level paging during decompression stage
  x86/boot/efi: Define __KERNEL32_CS GDT on 64-bit configurations
  x86/boot/efi: Fix __KERNEL_CS definition of GDT entry on 64-bit configurations
  x86/boot/efi: Cleanup initialization of GDT entries
  x86/asm: Fix comment in return_from_SYSCALL_64()
  x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation
  ...
2017-07-03 14:45:09 -07:00
Andy Lutomirski d54368127a x86/mm: Remove reset_lazy_tlbstate()
The only call site also calls idle_task_exit(), and idle_task_exit()
puts us into a clean state by explicitly switching to init_mm.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/3acc7ad02a2ec060d2321a1e0f6de1cb90069517.1498022414.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-22 10:57:50 +02:00
Thomas Gleixner 719b3680d1 x86/smp: Adjust system_state check
To enable smp_processor_id() and might_sleep() debug checks earlier, it's
required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING.

Adjust the system_state check in announce_cpu() to handle the extra states.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170516184735.191715856@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-23 10:01:35 +02:00
Thomas Garnier 69218e4799 x86: Remap GDT tables in the fixmap section
Each processor holds a GDT in its per-cpu structure. The sgdt
instruction gives the base address of the current GDT. This address can
be used to bypass KASLR memory randomization. With another bug, an
attacker could target other per-cpu structures or deduce the base of
the main memory section (PAGE_OFFSET).

This patch relocates the GDT table for each processor inside the
fixmap section. The space is reserved based on number of supported
processors.

For consistency, the remapping is done by default on 32 and 64-bit.

Each processor switches to its remapped GDT at the end of
initialization. For hibernation, the main processor returns with the
original GDT and switches back to the remapping at completion.

This patch was tested on both architectures. Hibernation and KVM were
both tested specially for their usage of the GDT.

Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and
recommending changes for Xen support.

Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16 09:06:35 +01:00
Ingo Molnar 68db0cf106 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task_stack.h>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:36 +01:00
Ingo Molnar ef8bd77f33 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/hotplug.h>
We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/hotplug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar 105ab3d8ce sched/headers: Prepare for new header dependencies before moving code to <linux/sched/topology.h>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:26 +01:00
Linus Torvalds c945d0227d Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
 "Misc platform updates: SGI UV4 support additions, intel-mid Merrifield
  enhancements and purge of old code"

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  x86/platform/UV/NMI: Fix uneccessary kABI breakage
  x86/platform/UV: Clean up the NMI code to match current coding style
  x86/platform/UV: Ensure uv_system_init is called when necessary
  x86/platform/UV: Initialize PCH GPP_D_0 NMI Pin to be NMI source
  x86/platform/UV: Verify NMI action is valid, default is standard
  x86/platform/UV: Add basic CPU NMI health check
  x86/platform/UV: Add Support for UV4 Hubless NMIs
  x86/platform/UV: Add Support for UV4 Hubless systems
  x86/platform/UV: Clean up the UV APIC code
  x86/platform/intel-mid: Move watchdog registration to arch_initcall()
  x86/platform/intel-mid: Don't shadow error code of mp_map_gsi_to_irq()
  x86/platform/intel-mid: Allocate RTC interrupt for Merrifield
  x86/ioapic: Return suitable error code in mp_map_gsi_to_irq()
  x86/platform/UV: Fix 2 socket config problem
  x86/platform/UV: Fix panic with missing UVsystab support
  x86/platform/intel-mid: Enable RTC on Intel Merrifield
  x86/platform/intel: Remove PMIC GPIO block support
  x86/platform/intel-mid: Make intel_scu_device_register() static
  x86/platform/intel-mid: Enable GPIO keys on Merrifield
  x86/platform/intel-mid: Get rid of duplication of IPC handler
  ...
2017-02-20 16:26:57 -08:00
Borislav Petkov 79a8b9aa38 x86/CPU/AMD: Bring back Compute Unit ID
Commit:

  a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")

restored the initial approach we had with the Fam15h topology of
enumerating CU (Compute Unit) threads as cores. And this is still
correct - they're beefier than HT threads but still have some
shared functionality.

Our current approach has a problem with the Mad Max Steam game, for
example. Yves Dionne reported a certain "choppiness" while playing on
v4.9.5.

That problem stems most likely from the fact that the CU threads share
resources within one CU and when we schedule to a thread of a different
compute unit, this incurs latency due to migrating the working set to a
different CU through the caches.

When the thread siblings mask mirrors that aspect of the CUs and
threads, the scheduler pays attention to it and tries to schedule within
one CU first. Which takes care of the latency, of course.

Reported-by: Yves Dionne <yves.dionne@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170205105022.8705-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-05 12:18:45 +01:00
travis@sgi.com 9ec808a022 x86/platform/UV: Ensure uv_system_init is called when necessary
Move the check to whether this is a UV system that needs initialization
from is_uv_system() to the internal uv_system_init() function.  This is
because on a UV system without a HUB the is_uv_system() returns false.
But we still need some specific UV system initialization.  See the
uv_system_init() for change to a quick check if UV is applicable. This
change should not increase overhead since is_uv_system() also called
into this same area.

Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Russ Anderson <rja@hpe.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170125163518.256403963@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-01 10:21:00 +01:00
Thomas Gleixner 427d77a323 x86/smpboot: Prevent false positive out of bounds cpumask access warning
prefill_possible_map() reinitializes the cpu_possible_map by setting the
possible cpu bits and clearing all other bits up to NR_CPUS.

This is technically always correct because cpu_possible_map is statically
allocated and sized NR_CPUS. With CPUMASK_OFFSTACK and DEBUG_PER_CPU_MAPS
enabled the bounds check of cpu masks happens on nr_cpu_ids. nr_cpu_ids is
initialized to NR_CPUS and only limited after the set/clear bit loops have
been executed. 

But if the system was booted with "nr_cpus=N" on the command line, where N
is < NR_CPUS then nr_cpu_ids is limited in the parameter parsing function
before prefill_possible_map() is invoked. As a consequence the cpumask
bounds check triggers when clearing the bits past nr_cpu_ids.

Add a helper which allows to reset cpu_possible_map w/o the bounds check
and then set only the possible bits which are well inside bounds.

Reported-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: 0x7f454c46@gmail.com
Cc: Jan Beulich <JBeulich@novell.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612131836050.3415@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-15 11:32:31 +01:00
Thomas Gleixner 9d85eb9119 x86/smpboot: Make logical package management more robust
The logical package management has several issues:

 - The APIC ids provided by ACPI are not required to be the same as the
   initial APIC id which can be retrieved by CPUID. The APIC ids provided
   by ACPI are those which are written by the BIOS into the APIC. The
   initial id is set by hardware and can not be changed. The hardware
   provided ids contain the real hardware package information.

   Especially AMD sets the effective APIC id different from the hardware id
   as they need to reserve space for the IOAPIC ids starting at id 0.

   As a consequence those machines trigger the currently active firmware
   bug printouts in dmesg, These are obviously wrong.

 - Virtual machines have their own interesting of enumerating APICs and
   packages which are not reliably covered by the current implementation.

The sizing of the mapping array has been tweaked to be generously large to
handle systems which provide a wrong core count when HT is disabled so the
whole magic which checks for space in the physical hotplug case is not
needed anymore.

Simplify the whole machinery and do the mapping when the CPU starts and the
CPUID derived physical package information is available. This solves the
observed problems on AMD machines and works for the virtualization issues
as well.

Remove the extra call from XEN cpu bringup code as it is not longer
required.

Fixes: d49597fd3b ("x86/cpu: Deal with broken firmware (VMWare/XEN)")
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: M. Vefa Bicakci <m.v.b@runbox.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Cc: Charles (Chas) Williams <ciwillia@brocade.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612121102260.3429@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-13 10:22:39 +01:00
Linus Torvalds 212f30008a Merge branch 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 idle updates from Ingo Molnar:
 "There were two bigger changes in this development cycle:

   - remove idle notifiers:

       32 files changed, 74 insertions(+), 803 deletions(-)

     These notifiers were of questionable value and the main usecase,
     the i7300 driver, was essentially unmaintained and can be removed,
     plus modern power management concepts don't need the callback - so
     use this golden opportunity and get rid of this opaque and fragile
     callback from a latency sensitive code path.

     (Len Brown, Thomas Gleixner)

   - improve the AMD Erratum 400 workaround that used high overhead MSR
     polling in the idle loop (Borisla Petkov, Thomas Gleixner)"

* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86: Remove empty idle.h header
  x86/amd: Simplify AMD E400 aware idle routine
  x86/amd: Check for the C1E bug post ACPI subsystem init
  x86/bugs: Separate AMD E400 erratum and C1E bug
  x86/cpufeature: Provide helper to set bugs bits
  x86/idle: Remove enter_idle(), exit_idle()
  x86: Remove x86_test_and_clear_bit_percpu()
  x86/idle: Remove is_idle flag
  x86/idle: Remove idle_notifier
  i7300_idle: Remove this driver
2016-12-12 14:55:04 -08:00
Linus Torvalds 518bacf5a5 Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar:
 "The main changes in this cycle were:

   - do a large round of simplifications after all CPUs do 'eager' FPU
     context switching in v4.9: remove CR0 twiddling, remove leftover
     eager/lazy bts, etc (Andy Lutomirski)

   - more FPU code simplifications: remove struct fpu::counter, clarify
     nomenclature, remove unnecessary arguments/functions and better
     structure the code (Rik van Riel)"

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu: Remove clts()
  x86/fpu: Remove stts()
  x86/fpu: Handle #NM without FPU emulation as an error
  x86/fpu, lguest: Remove CR0.TS support
  x86/fpu, kvm: Remove host CR0.TS manipulation
  x86/fpu: Remove irq_ts_save() and irq_ts_restore()
  x86/fpu: Stop saving and restoring CR0.TS in fpu__init_check_bugs()
  x86/fpu: Get rid of two redundant clts() calls
  x86/fpu: Finish excising 'eagerfpu'
  x86/fpu: Split old_fpu & new_fpu handling into separate functions
  x86/fpu: Remove 'cpu' argument from __cpu_invalidate_fpregs_state()
  x86/fpu: Split old & new FPU code paths
  x86/fpu: Remove __fpregs_(de)activate()
  x86/fpu: Rename lazy restore functions to "register state valid"
  x86/fpu, kvm: Remove KVM vcpu->fpu_counter
  x86/fpu: Remove struct fpu::counter
  x86/fpu: Remove use_eager_fpu()
  x86/fpu: Remove the XFEATURE_MASK_EAGER/LAZY distinction
  x86/fpu: Hard-disable lazy FPU mode
  x86/crypto, x86/fpu: Remove X86_FEATURE_EAGER_FPU #ifdef from the crc32c code
2016-12-12 14:27:49 -08:00
Linus Torvalds 535b2f73f6 Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CPU updates from Ingo Molnar:
 "The changes in this development cycle were:

   - AMD CPU topology enhancements that are cleanups on current CPUs but
     which enable future Fam17 hardware. (Yazen Ghannam)

   - unify bugs.c and bugs_64.c (Borislav Petkov)

   - remove the show_msr= boot option (Borislav Petkov)

   - simplify a boot message (Borislav Petkov)"

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature
  x86/cpu: Get rid of the show_msr= boot option
  x86/cpu: Merge bugs.c and bugs_64.c
  x86/cpu: Remove the printk format specifier in "CPU0: "
2016-12-12 14:25:21 -08:00
Linus Torvalds 5645688f9d Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
 "The main changes in this development cycle were:

   - a large number of call stack dumping/printing improvements: higher
     robustness, better cross-context dumping, improved output, etc.
     (Josh Poimboeuf)

   - vDSO getcpu() performance improvement for future Intel CPUs with
     the RDPID instruction (Andy Lutomirski)

   - add two new Intel AVX512 features and the CPUID support
     infrastructure for it: AVX512IFMA and AVX512VBMI. (Gayatri Kammela,
     He Chen)

   - more copy-user unification (Borislav Petkov)

   - entry code assembly macro simplifications (Alexander Kuleshov)

   - vDSO C/R support improvements (Dmitry Safonov)

   - misc fixes and cleanups (Borislav Petkov, Paul Bolle)"

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
  scripts/decode_stacktrace.sh: Fix address line detection on x86
  x86/boot/64: Use defines for page size
  x86/dumpstack: Make stack name tags more comprehensible
  selftests/x86: Add test_vdso to test getcpu()
  x86/vdso: Use RDPID in preference to LSL when available
  x86/dumpstack: Handle NULL stack pointer in show_trace_log_lvl()
  x86/cpufeatures: Enable new AVX512 cpu features
  x86/cpuid: Provide get_scattered_cpuid_leaf()
  x86/cpuid: Cleanup cpuid_regs definitions
  x86/copy_user: Unify the code by removing the 64-bit asm _copy_*_user() variants
  x86/unwind: Ensure stack grows down
  x86/vdso: Set vDSO pointer only after success
  x86/prctl/uapi: Remove #ifdef for CHECKPOINT_RESTORE
  x86/unwind: Detect bad stack return address
  x86/dumpstack: Warn on stack recursion
  x86/unwind: Warn on bad frame pointer
  x86/decoder: Use stderr if insn sanity test fails
  x86/decoder: Use stdout if insn decoder test is successful
  mm/page_alloc: Remove kernel address exposure in free_reserved_area()
  x86/dumpstack: Remove raw stack dump
  ...
2016-12-12 13:49:57 -08:00
Linus Torvalds 92c020d08d Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main scheduler changes in this cycle were:

   - support Intel Turbo Boost Max Technology 3.0 (TBM3) by introducig a
     notion of 'better cores', which the scheduler will prefer to
     schedule single threaded workloads on. (Tim Chen, Srinivas
     Pandruvada)

   - enhance the handling of asymmetric capacity CPUs further (Morten
     Rasmussen)

   - improve/fix load handling when moving tasks between task groups
     (Vincent Guittot)

   - simplify and clean up the cputime code (Stanislaw Gruszka)

   - improve mass fork()ed task spread a.k.a. hackbench speedup (Vincent
     Guittot)

   - make struct kthread kmalloc()ed and related fixes (Oleg Nesterov)

   - add uaccess atomicity debugging (when using access_ok() in the
     wrong context), under CONFIG_DEBUG_ATOMIC_SLEEP=y (Peter Zijlstra)

   - implement various fixes, cleanups and other enhancements (Daniel
     Bristot de Oliveira, Martin Schwidefsky, Rafael J. Wysocki)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  sched/core: Use load_avg for selecting idlest group
  sched/core: Fix find_idlest_group() for fork
  kthread: Don't abuse kthread_create_on_cpu() in __kthread_create_worker()
  kthread: Don't use to_live_kthread() in kthread_[un]park()
  kthread: Don't use to_live_kthread() in kthread_stop()
  Revert "kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function"
  kthread: Make struct kthread kmalloc'ed
  x86/uaccess, sched/preempt: Verify access_ok() context
  sched/x86: Make CONFIG_SCHED_MC_PRIO=y easier to enable
  sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO
  x86/sched: Use #include <linux/mutex.h> instead of #include <asm/mutex.h>
  cpufreq/intel_pstate: Use CPPC to get max performance
  acpi/bus: Set _OSC for diverse core support
  acpi/bus: Enable HWP CPPC objects
  x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU
  x86/sysctl: Add sysctl for ITMT scheduling feature
  x86: Enable Intel Turbo Boost Max Technology 3.0
  x86/topology: Define x86's arch_update_cpu_topology
  sched: Extend scheduler's asym packing
  sched/fair: Clean up the tunable parameter definitions
  ...
2016-12-12 12:15:10 -08:00
Thomas Gleixner 34bc3560c6 x86: Remove empty idle.h header
One include less is always a good thing(tm). Good riddance.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-6-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09 21:23:22 +01:00
Borislav Petkov 07c94a3812 x86/amd: Simplify AMD E400 aware idle routine
Reorganize the E400 detection now that we have everything in place:
switch the CPUs to broadcast mode after the LAPIC has been initialized
and remove the facilities that were used previously on the idle path.

Unfortunately static_cpu_has_bug() cannpt be used in the E400 idle routine
because alternatives have been applied when the actual detection happens,
so the static switching does not take effect and the test will stay
false. Use boot_cpu_has_bug() instead which is definitely an improvement
over the RDMSR and the cpumask handling.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09 21:23:21 +01:00
Tim Chen d3d37d850d x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU
Some Intel cores in a package can be boosted to a higher turbo frequency
with ITMT 3.0 technology. The scheduler can use the asymmetric packing
feature to move tasks to the more capable cores.

If ITMT is enabled, add SD_ASYM_PACKING flag to the thread and core
sched domains to enable asymmetric packing.

Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/9bbb885bedbef4eb50e197305eb16b160cff0831.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-24 20:44:20 +01:00
Tim Chen 7d25127cef x86/topology: Define x86's arch_update_cpu_topology
The scheduler calls arch_update_cpu_topology() to check whether the
scheduler domains have to be rebuilt.

So far x86 has no requirement for this, but the upcoming ITMT support
makes this necessary.

Request the rebuild when the x86 internal update flag is set.

Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/bfbf5591276ec60b2af2da798adc1060df1e2a5f.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-24 20:44:19 +01:00
Ingo Molnar c29c716662 Merge branch 'core/urgent' into x86/fpu, to merge fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-01 07:47:40 +01:00
Ingo Molnar 05b93c19d5 Merge branch 'linus' into x86/asm, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-01 07:41:06 +01:00
Michael Ellerman 92b2327829 kernel/smp: Make the SMP boot message common on all arches
Currently after bringing up secondary CPUs all arches print "Brought up
%d CPUs". On x86 they also print the number of nodes that were brought
online.

It would be nice to also print the number of nodes on other arches.
Although we could override smp_announce() on the other ~10 NUMA aware
arches, it seems simpler to just always print the number of nodes. On
non-NUMA arches there is just always 1 node.

Having done that, smp_announce() is no longer weak, and seems small
enough to just pull directly into smp_init().

Also update the printing of "%d CPUs" to be smart when an SMP kernel is
booted on a single CPU system, or when only one CPU is available, eg:

   smp: Brought up 2 nodes, 1 CPU

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: akpm@osdl.org
Cc: jgross@suse.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: len.brown@intel.com
Cc: peterz@infradead.org
Cc: richard@nod.at
Cc: jolsa@redhat.com
Cc: boris.ostrovsky@oracle.com
Cc: mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1477460275-8266-2-git-send-email-mpe@ellerman.id.au
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-10-26 12:02:35 +02:00
Borislav Petkov d54ff31dd8 x86/cpu: Remove the printk format specifier in "CPU0: "
We're using a literal, move it into the string.

No functionality change.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161024173844.23038-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:48:49 +02:00
Ville Syrjälä ff8560512b x86/boot/smp: Don't try to poke disabled/non-existent APIC
Apparently trying to poke a disabled or non-existent APIC
leads to a box that doesn't even boot. Let's not do that.

No real clue if this is the right fix, but at least my
P3 machine boots again.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: dyoung@redhat.com
Cc: kexec@lists.infradead.org
Cc: stable@vger.kernel.org
Fixes: 2a51fe083e ("arch/x86: Handle non enumerated CPU after physical hotplug")
Link: http://lkml.kernel.org/r/1477102684-5092-1-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-22 10:47:54 +02:00
Josh Poimboeuf b9b1a9c363 x86/boot/smp/32: Fix initial idle stack location on 32-bit kernels
On 32-bit kernels, the initial idle stack calculation doesn't take into
account the TOP_OF_KERNEL_STACK_PADDING, making the stack end address
inconsistent with other tasks on 32-bit.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6cf569410bfa84cf923902fc4d628444cace94be.1474480779.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 09:15:23 +02:00
Ingo Molnar 4d69f155d5 Linux 4.9-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJYAoDuAAoJEHm+PkMAQRiGUeEH/03/cUjHeY5aJkcJ0JeHkoU5
 GR5nRGcjfFF6cGujw2cSXBf5NzZTcrvBBFSgGNJ/rqm4EeDBsmf6T8qSfEKky/SY
 3CNWSzayFU8Na3C8Z/a/xPTPicneX9zVnAi8XMAKXwWPmu21JCLR/hkKaxQ29qGr
 Nqe4kEdLEF80d5lFRfNjK3CX4bD6w6P7aTBaM6wuRe4u5AXKJlSF+j838o5+/tSQ
 Q1V7fyXlX+kwNmH4gViim8im0PLm7/7Li8e24pL3cAR2G6DHrUzcsYYoRMHpk5bv
 HdBeCgZL6TnIaJc0ui2FRqQsifaVfM5J+pK81wr/JhBP2hmuWIN7NMupfCYtCcM=
 =Mown
 -----END PGP SIGNATURE-----

Merge tag 'v4.9-rc1' into x86/fpu, to resolve conflict

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-16 13:04:34 +02:00
Rik van Riel 317b622cb2 x86/fpu: Remove 'cpu' argument from __cpu_invalidate_fpregs_state()
The __{fpu,cpu}_invalidate_fpregs_state() functions can only be used
to invalidate a resource they control.  Document that, and change
the API a little bit to reflect that.

Go back to open coding the fpu_fpregs_owner_ctx write in the CPU
hotplug code, which should be the exception, and move __kernel_fpu_begin()
to this API.

This patch has no functional changes to the current code.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1476447331-21566-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-16 11:38:31 +02:00
Prarit Bhargava 2a51fe083e arch/x86: Handle non enumerated CPU after physical hotplug
When a CPU is physically added to a system then the MADT table is not
updated.

If subsequently a kdump kernel is started on that physically added CPU then
the ACPI enumeration fails to provide the information for this CPU which is
now the boot CPU of the kdump kernel.

As a consequence, generic_processor_info() is not invoked for that CPU so
the number of enumerated processors is 0 and none of the initializations,
including the logical package id management, are performed.

We have code which relies on the correctness of the logical package map and
other information which is initialized via generic_processor_info().
Executing such code will result in undefined behaviour or kernel crashes.

This problem applies only to the kdump kernel because a normal kexec will
switch to the original boot CPU, which is enumerated in MADT, before
jumping into the kexec kernel.

The boot code already has a check for num_processors equal 0 in
prefill_possible_map(). We can use that check as an indicator that the
enumeration of the boot CPU did not happen and invoke generic_processor_info()
for it. That initializes the relevant data for the boot CPU and therefore
prevents subsequent failure.

[ tglx: Refined the code and rewrote the changelog ]

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: dyoung@redhat.com
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/1475514432-27682-1-git-send-email-prarit@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-10-07 15:22:15 +02:00
Rik van Riel 25d83b531c x86/fpu: Rename lazy restore functions to "register state valid"
Name the functions after the state they track, rather than the function
they currently enable. This should make it more obvious when we use the
fpu_register_state_valid() function for something else in the future.

Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pbonzini@redhat.com
Link: http://lkml.kernel.org/r/1475627678-20788-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-07 11:14:41 +02:00
Linus Torvalds 597f03f9d1 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
 "Yet another batch of cpu hotplug core updates and conversions:

   - Provide core infrastructure for multi instance drivers so the
     drivers do not have to keep custom lists.

   - Convert custom lists to the new infrastructure. The block-mq custom
     list conversion comes through the block tree and makes the diffstat
     tip over to more lines removed than added.

   - Handle unbalanced hotplug enable/disable calls more gracefully.

   - Remove the obsolete CPU_STARTING/DYING notifier support.

   - Convert another batch of notifier users.

   The relayfs changes which conflicted with the conversion have been
   shipped to me by Andrew.

   The remaining lot is targeted for 4.10 so that we finally can remove
   the rest of the notifiers"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
  cpufreq: Fix up conversion to hotplug state machine
  blk/mq: Reserve hotplug states for block multiqueue
  x86/apic/uv: Convert to hotplug state machine
  s390/mm/pfault: Convert to hotplug state machine
  mips/loongson/smp: Convert to hotplug state machine
  mips/octeon/smp: Convert to hotplug state machine
  fault-injection/cpu: Convert to hotplug state machine
  padata: Convert to hotplug state machine
  cpufreq: Convert to hotplug state machine
  ACPI/processor: Convert to hotplug state machine
  virtio scsi: Convert to hotplug state machine
  oprofile/timer: Convert to hotplug state machine
  block/softirq: Convert to hotplug state machine
  lib/irq_poll: Convert to hotplug state machine
  x86/microcode: Convert to hotplug state machine
  sh/SH-X3 SMP: Convert to hotplug state machine
  ia64/mca: Convert to hotplug state machine
  ARM/OMAP/wakeupgen: Convert to hotplug state machine
  ARM/shmobile: Convert to hotplug state machine
  arm64/FP/SIMD: Convert to hotplug state machine
  ...
2016-10-03 19:43:08 -07:00
Linus Torvalds 1a4a2bc460 Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull low-level x86 updates from Ingo Molnar:
 "In this cycle this topic tree has become one of those 'super topics'
  that accumulated a lot of changes:

   - Add CONFIG_VMAP_STACK=y support to the core kernel and enable it on
     x86 - preceded by an array of changes. v4.8 saw preparatory changes
     in this area already - this is the rest of the work. Includes the
     thread stack caching performance optimization. (Andy Lutomirski)

   - switch_to() cleanups and all around enhancements. (Brian Gerst)

   - A large number of dumpstack infrastructure enhancements and an
     unwinder abstraction. The secret long term plan is safe(r) live
     patching plus maybe another attempt at debuginfo based unwinding -
     but all these current bits are standalone enhancements in a frame
     pointer based debug environment as well. (Josh Poimboeuf)

   - More __ro_after_init and const annotations. (Kees Cook)

   - Enable KASLR for the vmemmap memory region. (Thomas Garnier)"

[ The virtually mapped stack changes are pretty fundamental, and not
  x86-specific per se, even if they are only used on x86 right now. ]

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
  x86/asm: Get rid of __read_cr4_safe()
  thread_info: Use unsigned long for flags
  x86/alternatives: Add stack frame dependency to alternative_call_2()
  x86/dumpstack: Fix show_stack() task pointer regression
  x86/dumpstack: Remove dump_trace() and related callbacks
  x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder
  oprofile/x86: Convert x86_backtrace() to use the new unwinder
  x86/stacktrace: Convert save_stack_trace_*() to use the new unwinder
  perf/x86: Convert perf_callchain_kernel() to use the new unwinder
  x86/unwind: Add new unwind interface and implementations
  x86/dumpstack: Remove NULL task pointer convention
  fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y
  sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
  lib/syscall: Pin the task stack in collect_syscall()
  x86/process: Pin the target stack in get_wchan()
  x86/dumpstack: Pin the target stack when dumping it
  kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function
  sched/core: Add try_get_task_stack() and put_task_stack()
  x86/entry/64: Fix a minor comment rebase error
  iommu/amd: Don't put completion-wait semaphore on stack
  ...
2016-10-03 16:13:28 -07:00
Linus Torvalds 110a9e42b6 Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Ingo Molnar:
 "The main changes are:

   - Persistent CPU/node numbering across CPU hotplug/unplug events.
     This is a pretty involved series of changes that first fetches all
     the information during bootup and then uses it for the various
     hotplug/unplug methods. (Gu Zheng, Dou Liyang)

   - IO-APIC hot-add/remove fixes and enhancements. (Rui Wang)

   - ... various fixes, cleanups and enhancements"

* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
  x86/apic: Fix silent & fatal merge conflict in __generic_processor_info()
  acpi: Fix broken error check in map_processor()
  acpi: Validate processor id when mapping the processor
  acpi: Provide mechanism to validate processors in the ACPI tables
  x86/acpi: Set persistent cpuid <-> nodeid mapping when booting
  x86/acpi: Enable MADT APIs to return disabled apicids
  x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping
  x86/acpi: Enable acpi to register all possible cpus at boot time
  x86/numa: Online memory-less nodes at boot time
  x86/apic: Get rid of apic_version[] array
  x86/apic: Order irq_enter/exit() calls correctly vs. ack_APIC_irq()
  x86/ioapic: Ignore root bridges without a companion ACPI device
  x86/apic: Update comment about disabling processor focus
  x86/smpboot: Check APIC ID before setting up default routing
  x86/ioapic: Fix IOAPIC failing to request resource
  x86/ioapic: Fix lost IOAPIC resource after hot-removal and hotadd
  x86/ioapic: Fix setup_res() failing to get resource
  x86/ioapic: Support hot-removal of IOAPICs present during boot
  x86/ioapic: Change prototype of acpi_ioapic_add()
  x86/apic, ACPI: Fix incorrect assignment when handling apic/x2apic entries
  ...
2016-10-03 15:36:06 -07:00
Tim Chen 8f37961cf2 sched/core, x86/topology: Fix NUMA in package topology bug
Current code can call set_cpu_sibling_map() and invoke sched_set_topology()
more than once (e.g. on CPU hot plug).  When this happens after
sched_init_smp() has been called, we lose the NUMA topology extension to
sched_domain_topology in sched_init_numa().  This results in incorrect
topology when the sched domain is rebuilt.

This patch fixes the bug and issues warning if we call sched_set_topology()
after sched_init_smp().

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1474485552-141429-2-git-send-email-srinivas.pandruvada@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 10:53:18 +02:00
Thomas Gleixner 1e1b37273c Merge branch 'x86/urgent' into x86/apic
Bring in the upstream modifications so we can fixup the silent merge
conflict which is introduced by this merge.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-26 15:47:03 -04:00
Denys Vlasenko cff9ab2b29 x86/apic: Get rid of apic_version[] array
The array has a size of MAX_LOCAL_APIC, which can be as large as 32k, so it
can consume up to 128k.

The array has been there forever and was never used for anything useful
other than a version mismatch check which was introduced in 2009.

There is no reason to store the version in an array. The kernel is not
prepared to handle different APIC versions anyway, so the real important
part is to detect a version mismatch and warn about it, which can be done
with a single variable as well.

[ tglx: Massaged changelog ]

Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Andy Lutomirski <luto@amacapital.net>
CC: Borislav Petkov <bp@alien8.de>
CC: Brian Gerst <brgerst@gmail.com>
CC: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/20160913181232.30815-1-dvlasenk@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-20 00:31:19 +02:00
Thomas Gleixner 0cb7bf61b1 Merge branch 'linus' into smp/hotplug
Apply upstream changes to avoid conflicts with pending patches.
2016-09-01 18:33:46 +02:00
Brian Gerst 0100301bfd sched/x86: Rewrite the switch_to() code
Move the low-level context switch code to an out-of-line asm stub instead of
using complex inline asm.  This allows constructing a new stack frame for the
child process to make it seamlessly flow to ret_from_fork without an extra
test and branch in __switch_to().  It also improves code generation for
__schedule() by using the C calling convention instead of clobbering all
registers.

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1471106302-10159-5-git-send-email-brgerst@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-24 12:31:41 +02:00
Wei Jiangang 384d9fe374 x86/smpboot: Check APIC ID before setting up default routing
This is not a bugfix, but code optimization.

If the BSP's APIC ID in local APIC is unexpected,
a kernel panic will occur and the system will halt.
That means no need to enable APIC mode, and no reason
to set up the default routing for APIC.

The combination of default_setup_apic_routing() and
apic_bsp_setup() are used to enable APIC mode.
They two should be kept together, rather than being
separated by the codes of checking APIC ID.
Just like their usage in APIC_init_uniprocessor().

Signed-off-by: Wei Jiangang <weijg.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/1471576957-12961-1-git-send-email-weijg.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-24 11:24:33 +02:00
Josh Poimboeuf b32f96c75d x86/asm/head: Rename 'stack_start' -> 'initial_stack'
The 'stack_start' variable is similar in usage to 'initial_code' and
'initial_gs': they're all stored in head_64.S and they're all updated by
SMP and ACPI suspend before starting a CPU.

Rename it to 'initial_stack' to be consistent with the others.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/87063d773a3212051b77e17b0ee427f6582a5050.1471535549.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18 18:41:29 +02:00
Jiri Olsa 7b0501b1e7 x86/smp: Fix __max_logical_packages value setup
Frank reported kernel panic when he disabled several cores in BIOS
via following option:

  Core Disable Bitmap(Hex)   [0]

with number 0xFFE, which leaves 16 CPUs in system (out of 48).

The kernel panic below goes along with following messages:

 smpboot: Max logical packages: 2^M
 smpboot: APIC(0) Converting physical 0 to logical package 0^M
 smpboot: APIC(20) Converting physical 1 to logical package 1^M
 smpboot: APIC(40) Package 2 exceeds logical package map^M
 smpboot: CPU 8 APICId 40 disabled^M
 smpboot: APIC(60) Package 3 exceeds logical package map^M
 smpboot: CPU 12 APICId 60 disabled^M
 ...
 general protection fault: 0000 [#1] SMP^M
 Modules linked in:^M
 CPU: 15 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc5+ #1^M
 Hardware name: SGI UV300/UV300, BIOS SGI UV 300 series BIOS 05/25/2016^M
 task: ffff8801673e0000 ti: ffff8801673ac000 task.ti: ffff8801673ac000^M
 RIP: 0010:[<ffffffff81014d54>]  [<ffffffff81014d54>] uncore_change_context+0xd4/0x180^M
 ...
  [<ffffffff810158ac>] uncore_event_init_cpu+0x6c/0x70^M
  [<ffffffff81d8c91c>] intel_uncore_init+0x1c2/0x2dd^M
  [<ffffffff81d8c75a>] ? uncore_cpu_setup+0x17/0x17^M
  [<ffffffff81002190>] do_one_initcall+0x50/0x190^M
  [<ffffffff810ab193>] ? parse_args+0x293/0x480^M
  [<ffffffff81d87365>] kernel_init_freeable+0x1a5/0x249^M
  [<ffffffff81d86a35>] ? set_debug_rodata+0x12/0x12^M
  [<ffffffff816dc19e>] kernel_init+0xe/0x110^M
  [<ffffffff816e93bf>] ret_from_fork+0x1f/0x40^M
  [<ffffffff816dc190>] ? rest_init+0x80/0x80^M

The reason for the panic is wrong value of __max_logical_packages,
which lets logical_package_map uninitialized and the uncore code
relying on this map being properly initialized (maybe we should
add some safety checks there as well).

The __max_logical_packages is computed as:

  DIV_ROUND_UP(total_cpus, ncpus);
  - ncpus being number of cores

With above BIOS setup we get total_cpus == 16 which set
__max_logical_packages to 2 (ncpus is 12).

Once topology_update_package_map processes CPU with logical
pkg over 2 we display above messages and fail to initialize
the physical_to_logical_pkg map, which makes the uncore code
crash.

The fix is to remove logical_package_map bitmap completely
and keep and update the logical_packages number instead.

After we enumerate all the present CPUs, we check if the
enumerated logical packages count is within its computed
maximum from BIOS data.

If it's not the case, we set this maximum to the new enumerated
value and freeze any new addition of logical packages.

The freeze is because lot of init code like uncore/rapl/cqm
depends on having maximum logical package value set to allocate
their data, so we can't change it later on.

Prarit Bhargava tested the patch and confirms that it solves
the problem:

  From dmidecode:
          Core Count: 24
          Core Enabled: 24
          Thread Count: 48

Orig kernel boot log:

 [    0.464981] smpboot: Max logical packages: 19
 [    0.469861] smpboot: APIC(0) Converting physical 0 to logical package 0
 [    0.477261] smpboot: APIC(40) Converting physical 1 to logical package 1
 [    0.484760] smpboot: APIC(80) Converting physical 2 to logical package 2
 [    0.492258] smpboot: APIC(c0) Converting physical 3 to logical package 3

1.  nr_cpus=8, should stop enumerating in package 0:

 [    0.533664] smpboot: APIC(0) Converting physical 0 to logical package 0
 [    0.539596] smpboot: Max logical packages: 19

2.  max_cpus=8, should still enumerate all packages:

 [    0.526494] smpboot: APIC(0) Converting physical 0 to logical package 0
 [    0.532428] smpboot: APIC(40) Converting physical 1 to logical package 1
 [    0.538456] smpboot: APIC(80) Converting physical 2 to logical package 2
 [    0.544486] smpboot: APIC(c0) Converting physical 3 to logical package 3
 [    0.550524] smpboot: Max logical packages: 19

3.  nr_cpus=49 ( 2 socket + 1 core on 3rd socket), should stop enumerating in
    package 2:

 [    0.521378] smpboot: APIC(0) Converting physical 0 to logical package 0
 [    0.527314] smpboot: APIC(40) Converting physical 1 to logical package 1
 [    0.533345] smpboot: APIC(80) Converting physical 2 to logical package 2
 [    0.539368] smpboot: Max logical packages: 19

4.  maxcpus=49, should still enumerate all packages:

 [    0.525591] smpboot: APIC(0) Converting physical 0 to logical package 0
 [    0.531525] smpboot: APIC(40) Converting physical 1 to logical package 1
 [    0.537547] smpboot: APIC(80) Converting physical 2 to logical package 2
 [    0.543579] smpboot: APIC(c0) Converting physical 3 to logical package 3
 [    0.549624] smpboot: Max logical packages: 19

5.  kdump (nr_cpus=1) works as well.

Reported-by: Frank Ramsay <framsay@redhat.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160815101700.GA30090@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18 10:14:48 +02:00
Boris Ostrovsky aa877175e7 cpu/hotplug: Prevent alloc/free of irq descriptors during CPU up/down (again)
Now that Xen no longer allocates irqs in _cpu_up() we can restore
commit:

  a899418167 ("hotplug: Prevent alloc/free of irq descriptors during cpu up/down")

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: david.vrabel@citrix.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1470244948-17674-3-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-10 15:42:57 +02:00
Linus Torvalds aeb35d6b74 Merge branch 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 header cleanups from Ingo Molnar:
 "This tree is a cleanup of the x86 tree reducing spurious uses of
  module.h - which should improve build performance a bit"

* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
  x86/apic: Remove duplicated include from probe_64.c
  x86/ce4100: Remove duplicated include from ce4100.c
  x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
  x86/platform: Delete extraneous MODULE_* tags fromm ts5500
  x86: Audit and remove any remaining unnecessary uses of module.h
  x86/kvm: Audit and remove any unnecessary uses of module.h
  x86/xen: Audit and remove any unnecessary uses of module.h
  x86/platform: Audit and remove any unnecessary uses of module.h
  x86/lib: Audit and remove any unnecessary uses of module.h
  x86/kernel: Audit and remove any unnecessary uses of module.h
  x86/mm: Audit and remove any unnecessary uses of module.h
  x86: Don't use module.h just for AUTHOR / LICENSE tags
2016-08-01 14:23:42 -04:00
Linus Torvalds 6453dbdda3 Power management material for v4.8-rc1
- Rework the cpufreq governor interface to make it more straightforward
    and modify the conservative governor to avoid using transition
    notifications (Rafael Wysocki).
 
  - Rework the handling of frequency tables by the cpufreq core to make
    it more efficient (Viresh Kumar).
 
  - Modify the schedutil governor to reduce the number of wakeups it
    causes to occur in cases when the CPU frequency doesn't need to be
    changed (Steve Muckle, Viresh Kumar).
 
  - Fix some minor issues and clean up code in the cpufreq core and
    governors (Rafael Wysocki, Viresh Kumar).
 
  - Add Intel Broxton support to the intel_pstate driver (Srinivas
    Pandruvada).
 
  - Fix problems related to the config TDP feature and to the validity
    of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
    Srinivas Pandruvada).
 
  - Make intel_pstate update the cpu_frequency tracepoint even if
    the frequency doesn't change to avoid confusing powertop (Rafael
    Wysocki).
 
  - Clean up the usage of __init/__initdata in intel_pstate, mark some
    of its internal variables as __read_mostly and drop an unused
    structure element from it (Jisheng Zhang, Carsten Emde).
 
  - Clean up the usage of some duplicate MSR symbols in intel_pstate
    and turbostat (Srinivas Pandruvada).
 
  - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
    Adiga, Viresh Kumar, Ben Dooks).
 
  - Fix a regression (introduced during the 4.5 cycle) in the
    pcc-cpufreq driver by reverting the problematic commit (Andreas
    Herrmann).
 
  - Add support for Intel Denverton to intel_idle, clean up Broxton
    support in it and make it explicitly non-modular (Jacob Pan,
    Jan Beulich, Paul Gortmaker).
 
  - Add support for Denverton and Ivy Bridge server to the Intel RAPL
    power capping driver and make it more careful about the handing
    of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
 
  - Fix resume from hibernation on x86-64 by making the CPU offline
    during resume avoid using MONITOR/MWAIT in the "play dead" loop
    which may lead to an inadvertent "revival" of a "dead" CPU and
    a page fault leading to a kernel crash from it (Rafael Wysocki).
 
  - Make memory management during resume from hibernation more
    straightforward (Rafael Wysocki).
 
  - Add debug features that should help to detect problems related
    to hibernation and resume from it (Rafael Wysocki, Chen Yu).
 
  - Clean up hibernation core somewhat (Rafael Wysocki).
 
  - Prevent KASAN from instrumenting the hibernation core which leads
    to large numbers of false-positives from it (James Morse).
 
  - Prevent PM (hibernate and suspend) notifiers from being called
    during the cleanup phase if they have not been called during the
    corresponding preparation phase which is possible if one of the
    other notifiers returns an error at that time (Lianwei Wang).
 
  - Improve suspend-related debug printout in the tasks freezer and
    clean up suspend-related console handling (Roger Lu, Borislav
    Petkov).
 
  - Update the AnalyzeSuspend script in the kernel sources to
    version 4.2 (Todd Brandt).
 
  - Modify the generic power domains framework to make it handle
    system suspend/resume better (Ulf Hansson).
 
  - Make the runtime PM framework avoid resuming devices synchronously
    when user space changes the runtime PM settings for them and
    improve its error reporting (Rafael Wysocki, Linus Walleij).
 
  - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
    and in the core, make some devfreq code explicitly non-modular and
    change some of it into tristate (Bartlomiej Zolnierkiewicz,
    Peter Chen, Paul Gortmaker).
 
  - Add DT support to the generic PM clocks management code and make
    it export some more symbols (Jon Hunter, Paul Gortmaker).
 
  - Make the PCI PM core code slightly more robust against possible
    driver errors (Andy Shevchenko).
 
  - Make it possible to change DESTDIR and PREFIX in turbostat
    (Andy Shevchenko).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
 5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
 oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
 jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
 bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
 UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
 ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
 FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
 SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
 8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
 xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
 JU1Cmumfdy2jJluT8xsR
 =uVGz
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael  Wysocki:
 "Again, the majority of changes go into the cpufreq subsystem, but
  there are no big features this time.  The cpufreq changes that stand
  out somewhat are the governor interface rework and improvements
  related to the handling of frequency tables.  Apart from those, there
  are fixes and new device/CPU IDs in drivers, cleanups and an
  improvement of the new schedutil governor.

  Next, there are some changes in the hibernation core, including a fix
  for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
  during resume from hibernation, a few core improvements related to
  memory management during resume, a couple of additional debug features
  and cleanups.

  Finally, we have some fixes and cleanups in the devfreq subsystem,
  generic power domains framework improvements related to system
  suspend/resume, support for some new chips in intel_idle and in the
  power capping RAPL driver, a new version of the AnalyzeSuspend utility
  and some assorted fixes and cleanups.

  Specifics:

   - Rework the cpufreq governor interface to make it more
     straightforward and modify the conservative governor to avoid using
     transition notifications (Rafael Wysocki).

   - Rework the handling of frequency tables by the cpufreq core to make
     it more efficient (Viresh Kumar).

   - Modify the schedutil governor to reduce the number of wakeups it
     causes to occur in cases when the CPU frequency doesn't need to be
     changed (Steve Muckle, Viresh Kumar).

   - Fix some minor issues and clean up code in the cpufreq core and
     governors (Rafael Wysocki, Viresh Kumar).

   - Add Intel Broxton support to the intel_pstate driver (Srinivas
     Pandruvada).

   - Fix problems related to the config TDP feature and to the validity
     of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
     Srinivas Pandruvada).

   - Make intel_pstate update the cpu_frequency tracepoint even if the
     frequency doesn't change to avoid confusing powertop (Rafael
     Wysocki).

   - Clean up the usage of __init/__initdata in intel_pstate, mark some
     of its internal variables as __read_mostly and drop an unused
     structure element from it (Jisheng Zhang, Carsten Emde).

   - Clean up the usage of some duplicate MSR symbols in intel_pstate
     and turbostat (Srinivas Pandruvada).

   - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
     Adiga, Viresh Kumar, Ben Dooks).

   - Fix a regression (introduced during the 4.5 cycle) in the
     pcc-cpufreq driver by reverting the problematic commit (Andreas
     Herrmann).

   - Add support for Intel Denverton to intel_idle, clean up Broxton
     support in it and make it explicitly non-modular (Jacob Pan, Jan
     Beulich, Paul Gortmaker).

   - Add support for Denverton and Ivy Bridge server to the Intel RAPL
     power capping driver and make it more careful about the handing of
     MSRs that may not be present (Jacob Pan, Xiaolong Wang).

   - Fix resume from hibernation on x86-64 by making the CPU offline
     during resume avoid using MONITOR/MWAIT in the "play dead" loop
     which may lead to an inadvertent "revival" of a "dead" CPU and a
     page fault leading to a kernel crash from it (Rafael Wysocki).

   - Make memory management during resume from hibernation more
     straightforward (Rafael Wysocki).

   - Add debug features that should help to detect problems related to
     hibernation and resume from it (Rafael Wysocki, Chen Yu).

   - Clean up hibernation core somewhat (Rafael Wysocki).

   - Prevent KASAN from instrumenting the hibernation core which leads
     to large numbers of false-positives from it (James Morse).

   - Prevent PM (hibernate and suspend) notifiers from being called
     during the cleanup phase if they have not been called during the
     corresponding preparation phase which is possible if one of the
     other notifiers returns an error at that time (Lianwei Wang).

   - Improve suspend-related debug printout in the tasks freezer and
     clean up suspend-related console handling (Roger Lu, Borislav
     Petkov).

   - Update the AnalyzeSuspend script in the kernel sources to version
     4.2 (Todd Brandt).

   - Modify the generic power domains framework to make it handle system
     suspend/resume better (Ulf Hansson).

   - Make the runtime PM framework avoid resuming devices synchronously
     when user space changes the runtime PM settings for them and
     improve its error reporting (Rafael Wysocki, Linus Walleij).

   - Fix error paths in devfreq drivers (exynos, exynos-ppmu,
     exynos-bus) and in the core, make some devfreq code explicitly
     non-modular and change some of it into tristate (Bartlomiej
     Zolnierkiewicz, Peter Chen, Paul Gortmaker).

   - Add DT support to the generic PM clocks management code and make it
     export some more symbols (Jon Hunter, Paul Gortmaker).

   - Make the PCI PM core code slightly more robust against possible
     driver errors (Andy Shevchenko).

   - Make it possible to change DESTDIR and PREFIX in turbostat (Andy
     Shevchenko)"

* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
  Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
  PM / hibernate: Introduce test_resume mode for hibernation
  cpufreq: export cpufreq_driver_resolve_freq()
  cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
  PCI / PM: check all fields in pci_set_platform_pm()
  cpufreq: acpi-cpufreq: use cached frequency mapping when possible
  cpufreq: schedutil: map raw required frequency to driver frequency
  cpufreq: add cpufreq_driver_resolve_freq()
  cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
  intel_pstate: Update cpu_frequency tracepoint every time
  cpufreq: intel_pstate: clean remnant struct element
  PM / tools: scripts: AnalyzeSuspend v4.2
  x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
  cpufreq: powernv: Replacing pstate_id with frequency table index
  intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
  PM / hibernate: Image data protection during restoration
  PM / hibernate: Add missing braces in __register_nosave_region()
  PM / hibernate: Clean up comments in snapshot.c
  PM / hibernate: Clean up function headers in snapshot.c
  PM / hibernate: Add missing braces in hibernate_setup()
  ...
2016-07-26 17:29:07 -07:00
Linus Torvalds 0f657262d5 Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "Various x86 low level modifications:

   - preparatory work to support virtually mapped kernel stacks (Andy
     Lutomirski)

   - support for 64-bit __get_user() on 32-bit kernels (Benjamin
     LaHaise)

   - (involved) workaround for Knights Landing CPU erratum (Dave Hansen)

   - MPX enhancements (Dave Hansen)

   - mremap() extension to allow remapping of the special VDSO vma, for
     purposes of user level context save/restore (Dmitry Safonov)

   - hweight and entry code cleanups (Borislav Petkov)

   - bitops code generation optimizations and cleanups with modern GCC
     (H. Peter Anvin)

   - syscall entry code optimizations (Paolo Bonzini)"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  x86/mm/cpa: Add missing comment in populate_pdg()
  x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs
  x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2
  x86/smp: Remove unnecessary initialization of thread_info::cpu
  x86/smp: Remove stack_smp_processor_id()
  x86/uaccess: Move thread_info::addr_limit to thread_struct
  x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err
  x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct
  x86/dumpstack: When OOPSing, rewind the stack before do_exit()
  x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm
  x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS
  x86/dumpstack: Try harder to get a call trace on stack overflow
  x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables()
  x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated
  x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()
  x86/mm: Use pte_none() to test for empty PTE
  x86/mm: Disallow running with 32-bit PTEs to work around erratum
  x86/mm: Ignore A/D bits in pte/pmd/pud_none()
  x86/mm: Move swap offset/type up in PTE to work around erratum
  x86/entry: Inline enter_from_user_mode()
  ...
2016-07-25 15:34:18 -07:00
Rafael J. Wysocki 406f992e4a x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
On Intel hardware, native_play_dead() uses mwait_play_dead() by
default and only falls back to the other methods if that fails.
That also happens during resume from hibernation, when the restore
(boot) kernel runs disable_nonboot_cpus() to take all of the CPUs
except for the boot one offline.

However, that is problematic, because the address passed to
__monitor() in mwait_play_dead() is likely to be written to in the
last phase of hibernate image restoration and that causes the "dead"
CPU to start executing instructions again.  Unfortunately, the page
containing the address in that CPU's instruction pointer may not be
valid any more at that point.

First, that page may have been overwritten with image kernel memory
contents already, so the instructions the CPU attempts to execute may
simply be invalid.  Second, the page tables previously used by that
CPU may have been overwritten by image kernel memory contents, so the
address in its instruction pointer is impossible to resolve then.

A report from Varun Koyyalagunta and investigation carried out by
Chen Yu show that the latter sometimes happens in practice.

To prevent it from happening, temporarily change the smp_ops.play_dead
pointer during resume from hibernation so that it points to a special
"play dead" routine which uses hlt_play_dead() and avoids the
inadvertent "revivals" of "dead" CPUs this way.

A slightly unpleasant consequence of this change is that if the
system is hibernated with one or more CPUs offline, it will generally
draw more power after resume than it did before hibernation, because
the physical state entered by CPUs via hlt_play_dead() is higher-power
than the mwait_play_dead() one in the majority of cases.  It is
possible to work around this, but it is unclear how much of a problem
that's going to be in practice, so the workaround will be implemented
later if it turns out to be necessary.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=106371
Reported-by: Varun Koyyalagunta <cpudebug@centtech.com>
Original-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
2016-07-15 22:42:48 +02:00
Andy Lutomirski eb43e8f85f x86/smp: Remove unnecessary initialization of thread_info::cpu
It's statically initialized to zero -- no need to dynamically
initialize it to zero as well.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6cf6314dce3051371a913ee19d1b88e29c68c560.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-15 10:26:31 +02:00
Paul Gortmaker 186f43608a x86/kernel: Audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends.  That changed
when we forked out support for the latter into the export.h file.

This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig.  The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.

Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.  Build testing
revealed some implicit header usage that was fixed up accordingly.

Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 15:06:41 +02:00
Andi Kleen 70b8301f6b x86/topology: Add topology_max_smt_threads()
For SMT specific workarounds it is useful to know if SMT is active
on any online CPU in the system. This currently requires a loop
over all online CPUs.

Add a global variable that is updated with the maximum number
of smt threads on any CPU on online/offline, and use it for
topology_max_smt_threads()

The single call is easier to use than a loop.

Not exported to user space because user space already can use
the existing sibling interfaces to find this out.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1463703002-19686-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-03 09:41:21 +02:00
Linus Torvalds 168f1a7163 Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
 "The main changes in this cycle were:

   - MSR access API fixes and enhancements (Andy Lutomirski)

   - early exception handling improvements (Andy Lutomirski)

   - user-space FS/GS prctl usage fixes and improvements (Andy
     Lutomirski)

   - Remove the cpu_has_*() APIs and replace them with equivalents
     (Borislav Petkov)

   - task switch micro-optimization (Brian Gerst)

   - 32-bit entry code simplification (Denys Vlasenko)

   - enhance PAT handling in enumated CPUs (Toshi Kani)

  ... and lots of other cleanups/fixlets"

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
  x86/arch_prctl/64: Restore accidentally removed put_cpu() in ARCH_SET_GS
  x86/entry/32: Remove asmlinkage_protect()
  x86/entry/32: Remove GET_THREAD_INFO() from entry code
  x86/entry, sched/x86: Don't save/restore EFLAGS on task switch
  x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs
  selftests/x86/ldt_gdt: Test set_thread_area() deletion of an active segment
  x86/tls: Synchronize segment registers in set_thread_area()
  x86/asm/64: Rename thread_struct's fs and gs to fsbase and gsbase
  x86/arch_prctl/64: Remove FSBASE/GSBASE < 4G optimization
  x86/segments/64: When load_gs_index fails, clear the base
  x86/segments/64: When loadsegment(fs, ...) fails, clear the base
  x86/asm: Make asm/alternative.h safe from assembly
  x86/asm: Stop depending on ptrace.h in alternative.h
  x86/entry: Rename is_{ia32,x32}_task() to in_{ia32,x32}_syscall()
  x86/asm: Make sure verify_cpu() has a good stack
  x86/extable: Add a comment about early exception handlers
  x86/msr: Set the return value to zero when native_rdmsr_safe() fails
  x86/paravirt: Make "unsafe" MSR accesses unsafe even if PARAVIRT=y
  x86/paravirt: Add paravirt_{read,write}_msr()
  x86/msr: Carry on after a non-"safe" MSR access fails
  ...
2016-05-16 15:15:17 -07:00
Thomas Gleixner 56402d63ee x86/topology: Handle CPUID bogosity gracefully
Joseph reported that a XEN guest dies with a division by 0 in the package
topology setup code. This happens if cpu_info.x86_max_cores is zero.

Handle that case and emit a warning. This does not fix the underlying XEN bug,
but makes the code more robust.

Reported-and-tested-by: Joseph Salisbury <joseph.salisbury@canonical.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1605062046270.3540@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-07 10:06:55 +02:00
Borislav Petkov 93984fbd4e x86/cpufeature: Replace cpu_has_apic with boot_cpu_has() usage
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: iommu@lists.linux-foundation.org
Cc: linux-pm@vger.kernel.org
Cc: oprofile-list@lists.sf.net
Link: http://lkml.kernel.org/r/1459801503-15600-8-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-13 11:37:41 +02:00
Borislav Petkov 8196dab4fc x86/cpu: Get rid of compute_unit_id
It is cpu_core_id anyway.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1458917557-8757-3-git-send-email-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-29 10:45:04 +02:00
Thomas Gleixner 3e8db2246b x86/topology: Use total_cpus not nr_cpu_ids for logical packages
nr_cpu_ids can be limited on the command line via nr_cpus=. That can break the
logical package management because it results in a smaller number of packages,
but the cpus to online are occupying the full package space as the hyper
threads are enumerated after the physical cores typically.

total_cpus is the real possible cpu space not limited by nr_cpus command line
and gives us the proper number of packages.

Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiong Zhou <jencce.kernel@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andreas Herrmann <aherrmann@suse.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603181254330.3978@nanos
2016-03-19 10:26:40 +01:00
Peter Zijlstra 63d1e995be x86/topology: Fix Intel HT disable
As per the comment in the code; due to BIOS it is sometimes impossible to know
if there actually are smp siblings until the machine is fully enumerated. So
we rather overestimate the number of possible packages.

Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: aherrmann@suse.com
Cc: jencce.kernel@gmail.com
Cc: bp@alien8.de
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20160318150538.611014173@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-19 10:26:40 +01:00
Peter Zijlstra b5d5f27d93 x86/topology: Fix logical package mapping
That first branch testing pkg against __max_logical_packages is wrong,
because if the first pkg id is larger, then the find_first_zero will
find us logical package id 0. However, if the second pkg id is indeed
0, we'll again claim it without testing if it was already taken.

Also, it fails to print the mapping.

Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Reported-by: Xiong Zhou <jencce.kernel@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: aherrmann@suse.com
Cc: bp@alien8.de
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20160317095220.GO6344@twins.programming.kicks-ass.net
Link: http://lkml.kernel.org/r/20160318150538.482393396@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-19 10:26:40 +01:00
Linus Torvalds 710d60cbf1 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu hotplug updates from Thomas Gleixner:
 "This is the first part of the ongoing cpu hotplug rework:

   - Initial implementation of the state machine

   - Runs all online and prepare down callbacks on the plugged cpu and
     not on some random processor

   - Replaces busy loop waiting with completions

   - Adds tracepoints so the states can be followed"

More detailed commentary on this work from an earlier email:
 "What's wrong with the current cpu hotplug infrastructure?

   - Asymmetry

     The hotplug notifier mechanism is asymmetric versus the bringup and
     teardown.  This is mostly caused by the notifier mechanism.

   - Largely undocumented dependencies

     While some notifiers use explicitely defined notifier priorities,
     we have quite some notifiers which use numerical priorities to
     express dependencies without any documentation why.

   - Control processor driven

     Most of the bringup/teardown of a cpu is driven by a control
     processor.  While it is understandable, that preperatory steps,
     like idle thread creation, memory allocation for and initialization
     of essential facilities needs to be done before a cpu can boot,
     there is no reason why everything else must run on a control
     processor.  Before this patch series, bringup looks like this:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu

       bring the rest up

   - All or nothing approach

     There is no way to do partial bringups.  That's something which is
     really desired because we waste e.g.  at boot substantial amount of
     time just busy waiting that the cpu comes to life.  That's stupid
     as we could very well do preparatory steps and the initial IPI for
     other cpus and then go back and do the necessary low level
     synchronization with the freshly booted cpu.

   - Minimal debuggability

     Due to the notifier based design, it's impossible to switch between
     two stages of the bringup/teardown back and forth in order to test
     the correctness.  So in many hotplug notifiers the cancel
     mechanisms are either not existant or completely untested.

   - Notifier [un]registering is tedious

     To [un]register notifiers we need to protect against hotplug at
     every callsite.  There is no mechanism that bringup/teardown
     callbacks are issued on the online cpus, so every caller needs to
     do it itself.  That also includes error rollback.

  What's the new design?

     The base of the new design is a symmetric state machine, where both
     the control processor and the booting/dying cpu execute a well
     defined set of states.  Each state is symmetric in the end, except
     for some well defined exceptions, and the bringup/teardown can be
     stopped and reversed at almost all states.

     So the bringup of a cpu will look like this in the future:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu

                                       bring itself up

     The synchronization step does not require the control cpu to wait.
     That mechanism can be done asynchronously via a worker or some
     other mechanism.

     The teardown can be made very similar, so that the dying cpu cleans
     up and brings itself down.  Cleanups which need to be done after
     the cpu is gone, can be scheduled asynchronously as well.

  There is a long way to this, as we need to refactor the notion when a
  cpu is available.  Today we set the cpu online right after it comes
  out of the low level bringup, which is not really correct.

  The proper mechanism is to set it to available, i.e. cpu local
  threads, like softirqd, hotplug thread etc. can be scheduled on that
  cpu, and once it finished all booting steps, it's set to online, so
  general workloads can be scheduled on it.  The reverse happens on
  teardown.  First thing to do is to forbid scheduling of general
  workloads, then teardown all the per cpu resources and finally shut it
  off completely.

  This patch series implements the basic infrastructure for this at the
  core level.  This includes the following:

   - Basic state machine implementation with well defined states, so
     ordering and prioritization can be expressed.

   - Interfaces to [un]register state callbacks

     This invokes the bringup/teardown callback on all online cpus with
     the proper protection in place and [un]installs the callbacks in
     the state machine array.

     For callbacks which have no particular ordering requirement we have
     a dynamic state space, so that drivers don't have to register an
     explicit hotplug state.

     If a callback fails, the code automatically does a rollback to the
     previous state.

   - Sysfs interface to drive the state machine to a particular step.

     This is only partially functional today.  Full functionality and
     therefor testability will be achieved once we converted all
     existing hotplug notifiers over to the new scheme.

   - Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
     processor:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu
       wait for boot
                                       bring itself up

                                       Signal completion to control cpu

     In a previous step of this work we've done a full tree mechanical
     conversion of all hotplug notifiers to the new scheme.  The balance
     is a net removal of about 4000 lines of code.

     This is not included in this series, as we decided to take a
     different approach.  Instead of mechanically converting everything
     over, we will do a proper overhaul of the usage sites one by one so
     they nicely fit into the symmetric callback scheme.

     I decided to do that after I looked at the ugliness of some of the
     converted sites and figured out that their hotplug mechanism is
     completely buggered anyway.  So there is no point to do a
     mechanical conversion first as we need to go through the usage
     sites one by one again in order to achieve a full symmetric and
     testable behaviour"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  cpu/hotplug: Document states better
  cpu/hotplug: Fix smpboot thread ordering
  cpu/hotplug: Remove redundant state check
  cpu/hotplug: Plug death reporting race
  rcu: Make CPU_DYING_IDLE an explicit call
  cpu/hotplug: Make wait for dead cpu completion based
  cpu/hotplug: Let upcoming cpu bring itself fully up
  arch/hotplug: Call into idle with a proper state
  cpu/hotplug: Move online calls to hotplugged cpu
  cpu/hotplug: Create hotplug threads
  cpu/hotplug: Split out the state walk into functions
  cpu/hotplug: Unpark smpboot threads from the state machine
  cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
  cpu/hotplug: Implement setup/removal interface
  cpu/hotplug: Make target state writeable
  cpu/hotplug: Add sysfs state interface
  cpu/hotplug: Hand in target state to _cpu_up/down
  cpu/hotplug: Convert the hotplugged cpu work to a state machine
  cpu/hotplug: Convert to a state machine for the control processor
  cpu/hotplug: Add tracepoints
  ...
2016-03-15 13:50:29 -07:00
Thomas Gleixner fc6d73d674 arch/hotplug: Call into idle with a proper state
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:57 +01:00
Thomas Gleixner 1f12e32f4c x86/topology: Create logical package id
For per package oriented services we must be able to rely on the number of CPU
packages to be within bounds. Create a tracking facility, which

- calculates the number of possible packages depending on nr_cpu_ids after boot

- makes sure that the package id is within the number of possible packages. If
  the apic id is outside we map it to a logical package id if there is enough
  space available.

Provide interfaces for drivers to query the mapping and do translations from
physcial to logical ids.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:35:18 +01:00
Borislav Petkov 362f924b64 x86/cpufeature: Remove unused and seldomly used cpu_has_xx macros
Those are stupid and code should use static_cpu_has_safe() or
boot_cpu_has() instead. Kill the least used and unused ones.

The remaining ones need more careful inspection before a conversion can
happen. On the TODO.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de
Cc: David Sterba <dsterba@suse.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-19 11:49:55 +01:00
Thomas Gleixner 0fa85119cd Merge branch 'linus' into x86/cleanups
Pull in upstream changes so we can apply depending patches.
2015-12-19 11:49:13 +01:00
Len Brown 656279a1f3 x86 smpboot: Re-enable init_udelay=0 by default on modern CPUs
commit f1ccd24931 allowed the cmdline "cpu_init_udelay=" to work
with all values, including the default of 10000.

But in setting the default of 10000, it over-rode the code that sets
the delay 0 on modern processors.

Also, tidy up use of INT/UINT.

Fixes: f1ccd24931 "x86/smpboot: Fix cpu_init_udelay=10000 corner case boot parameter misbehavior"
Reported-by: Shane <shrybman@teksavvy.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: dparsons@brightdsl.net
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/9082eb809ef40dad02db714759c7aaf618c518d4.1448232494.git.len.brown@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-11-25 23:17:48 +01:00
Juergen Gross 4609586592 x86/paravirt: Remove unused pv_apic_ops structure
The only member of that structure is startup_ipi_hook which is always
set to paravirt_nop.

Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Cc: jeremy@goop.org
Cc: chrisw@sous-sol.org
Cc: akataria@vmware.com
Cc: rusty@rustcorp.com.au
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xen.org
Cc: konrad.wilk@oracle.com
Cc: boris.ostrovsky@oracle.com
Link: http://lkml.kernel.org/r/1447767872-16730-1-git-send-email-jgross@suse.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-11-19 11:03:58 +01:00
Len Brown fcafddec4e x86/smpboot: Fix CPU #1 boot timeout
The following commit:

  a9bcaa02a5 ("x86/smpboot: Remove SIPI delays from cpu_up()")

Caused some Intel Core2 processors to time-out when bringing up CPU #1,
resulting in the missing of that CPU after bootup.

That patch reduced the SIPI delays from udelay() 300, 200 to udelay() 0,
0 on modern processors.

Several Intel(R) Core(TM)2 systems failed to bring up CPU #1 10/10 times
after that change.

Increasing either of the SIPI delays to udelay(1) results in
success. So here we increase both to udelay(10).  While this may
be 20x slower than the absolute minimum, it is still 20x to 30x
faster than the original code.

Tested-by: Donald Parsons <dparsons@brightdsl.net>
Tested-by: Shane <shrybman@teksavvy.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dparsons@brightdsl.net
Cc: shrybman@teksavvy.com
Link: http://lkml.kernel.org/r/6dd554ee8945984d85aafb2ad35793174d068af0.1444968087.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-19 09:14:41 +02:00
Len Brown f1ccd24931 x86/smpboot: Fix cpu_init_udelay=10000 corner case boot parameter misbehavior
For legacy machines cpu_init_udelay defaults to 10,000.
For modern machines it is set to 0.

The user should be able to set cpu_init_udelay to
any value on the cmdline, including 10,000.

Before this patch, that was seen as "unchanged from default"
and thus on a modern machine, the user request was ignored
and the delay was set to 0.

Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dparsons@brightdsl.net
Cc: shrybman@teksavvy.com
Link: http://lkml.kernel.org/r/de363cdbbcfcca1d22569683f7eb9873e0177251.1444968087.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-19 09:14:41 +02:00
Linus Torvalds 0c0fee018d Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 init code fixlet from Ingo Molnar:
 "A single change: fix obsolete init code annotations"

* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86: Drop bogus __ref / __refdata annotations
2015-09-01 09:33:26 -07:00
Len Brown 656bba3068 x86/smpboot: Remove APIC.wait_for_init_deassert and atomic init_deasserted
Both the per-APIC flag ".wait_for_init_deassert",
and the global atomic_t "init_deasserted"
are dead code -- remove them.

For all APIC types, "wait_for_master()"
prevents an AP from proceeding until the BSP has set
cpu_callout_mask, making "init_deasserted" {unnecessary}:

	BSP: <de-assert INIT>
	...
	BSP: {set init_deasserted}
	AP: wait_for_master()
		set cpu_initialized_mask
		wait for cpu_callout_mask
	BSP: test cpu_initialized_mask
	BSP: set cpu_callout_mask
	AP: test cpu_callout_mask
	AP: {wait for init_deasserted}
	...
	AP: <touch APIC>

Deleting the {dead code} above is necessary to enable
some parallelism in a future patch.

Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/de4b3a9bab894735e285870b5296da25ee6a8a5a.1439739165.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-17 10:42:28 +02:00
Len Brown a9bcaa02a5 x86/smpboot: Remove SIPI delays from cpu_up()
MPS 1.4 example code shows the following required delays during processor
on-lining:

	INIT
	 udelay(10,000)
	SIPI
	 udelay(200)
	SIPI
	 udelay(200) /* Linux actually implements this as udelay(300) */

Linux skips the udelay(10,000) on modern processors.
This patch removes the udelay(200) after each SIPI
on those same processors.

All three legacy delays can be restored by the cmdline
"cpu_init_udelay=10000".

As measured by analyze_suspend.py, this patch speeds
processor resume time on my desktop from 2.4ms to 1.8ms, per AP.

Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/a5dfdbc8fbfdd813784da204aad5677fe459ac37.1439739165.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-17 10:42:27 +02:00
Len Brown 2d99af8e8f x86/smpboot: Remove udelay(100) when polling cpu_callin_map
After the BSP sends INIT/SIPI/SIP to the AP and sees the AP
in the cpu_initialized_map, it sets the AP loose via the
cpu_callout_map, and waits for it via the cpu_callin_map.

The BSP polls the cpu_callin_map with a udelay(100)
and a schedule() in each iteration.

The udelay(100) adds no value.

For example, on my 4-CPU dekstop, the AP finishes
cpu_callin() in under 70 usec and sets the cpu_callin_mask.
The BSP, however, doesn't see that setting until over 30 usec
later, because it was still running its udelay(100)
when the AP finished.

Deleting the udelay(100) in the cpu_callin_mask polling loop,
saves from 0 to 100 usec per Application Processor.

Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/0aade12eabeb89a688c929fe80856eaea0544bb7.1439739165.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-17 10:42:27 +02:00
Len Brown 6e38f1e79d x86/smpboot: Remove udelay(100) when polling cpu_initialized_map
After the BSP sends the APIC INIT/SIPI/SIPI to the AP,
it waits for the AP to come up and indicate that it is alive
by setting its own bit in the cpu_initialized_mask.

Linux polls for up to 10 seconds for this to happen.
Each polling loop has a udelay(100) and a call to schedule().

The udelay(100) adds no value.

For example, on my desktop, the BSP waits for the
other 3 CPUs to come on line at boot for 305, 404, 405 usec.
For resume from S3, it waits 317, 404, 405 usec.

But when the udelay(100) is removed, the BSP waits
305, 310, 306 for boot, and 305, 307, 306 for resume.

So for both boot and resume, removing the udelay(100)
speeds online by about 100us in 2 of 3 cases.

Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/33ef746c67d2489cad0a9b1958cf71167232ff2b.1439739165.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-17 10:42:27 +02:00
Mathias Krause 4daa832d99 x86: Drop bogus __ref / __refdata annotations
The __ref / __refdata annotations used to be needed because of
referencing functions / variables annotated __cpuinit /
__cpuinitdata.

But those annotations vanished during the development of v3.11.

Therefore most of the __ref / __refdata annotations are not needed
anymore. As they may hide legitimate sections mismatches, we
better get rid of them.

Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437409973-8927-1-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-20 18:57:20 +02:00
Thomas Gleixner ce0d3c0a6f genirq: Revert sparse irq locking around __cpu_up() and move it to x86 for now
Boris reported that the sparse_irq protection around __cpu_up() in the
generic code causes a regression on Xen. Xen allocates interrupts and
some more in the xen_cpu_up() function, so it deadlocks on the
sparse_irq_lock.

There is no simple fix for this and we really should have the
protection for all architectures, but for now the only solution is to
move it to x86 where actual wreckage due to the lack of protection has
been observed.

Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Fixes: a899418167 'hotplug: Prevent alloc/free of irq descriptors during cpu up/down'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Cc: xen-devel <xen-devel@lists.xenproject.org>
2015-07-15 10:39:17 +02:00
Thomas Gleixner 5a3f75e3f0 x86/irq: Plug irq vector hotplug race
Jin debugged a nasty cpu hotplug race which results in leaking a irq
vector on the newly hotplugged cpu.

cpu N				cpu M
native_cpu_up                   device_shutdown
  do_boot_cpu			  free_msi_irqs
  start_secondary                   arch_teardown_msi_irqs
    smp_callin                        default_teardown_msi_irqs
       setup_vector_irq                  arch_teardown_msi_irq
        __setup_vector_irq		   native_teardown_msi_irq
          lock(vector_lock)		     destroy_irq 
          install vectors
          unlock(vector_lock)
					       lock(vector_lock)
--->                                  	       __clear_irq_vector
                                    	       unlock(vector_lock)
    lock(vector_lock)
    set_cpu_online
    unlock(vector_lock)

This leaves the irq vector(s) which are torn down on CPU M stale in
the vector array of CPU N, because CPU M does not see CPU N online
yet. There is a similar issue with concurrent newly setup interrupts.

The alloc/free protection of irq descriptors does not prevent the
above race, because it merily prevents interrupt descriptors from
going away or changing concurrently.

Prevent this by moving the call to setup_vector_irq() into the
vector_lock held region which protects set_cpu_online():

cpu N				cpu M
native_cpu_up                   device_shutdown
  do_boot_cpu			  free_msi_irqs
  start_secondary                   arch_teardown_msi_irqs
    smp_callin                        default_teardown_msi_irqs
       lock(vector_lock)                arch_teardown_msi_irq
       setup_vector_irq()
        __setup_vector_irq		   native_teardown_msi_irq
          install vectors		     destroy_irq 
       set_cpu_online
       unlock(vector_lock)
					       lock(vector_lock)
                                  	       __clear_irq_vector
                                    	       unlock(vector_lock)

So cpu M either sees the cpu N online before clearing the vector or
cpu N installs the vectors after cpu M has cleared it.

Reported-by: xiao jin <jin.xiao@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Link: http://lkml.kernel.org/r/20150705171102.141898931@linutronix.de
2015-07-07 11:54:04 +02:00
Zhu Guihua 20d5e4a9cd x86/espfix: Init espfix on the boot CPU side
As we alloc pages with GFP_KERNEL in init_espfix_ap() which is
called before we enable local irqs, so the lockdep sub-system
would (correctly) trigger a warning about the potentially
blocking API.

So we allocate them on the boot CPU side when the secondary CPU is
brought up by the boot CPU, and hand them over to the secondary
CPU.

And we use alloc_pages_node() with the secondary CPU's node, to
make sure the espfix stack is NUMA-local to the CPU that is
going to use it.

Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c97add2670e9abebb90095369f0cfc172373ac94.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06 15:00:34 +02:00
Zhu Guihua 1db875631f x86/espfix: Add 'cpu' parameter to init_espfix_ap()
Add a CPU index parameter to init_espfix_ap(), so that the
parameter could be propagated to the function for espfix
page allocation.

Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cde3fcf1b3211f3f03feb1a995bce3fee850f0fc.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06 15:00:33 +02:00
Linus Torvalds d70b3ef54c Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
 "There were so many changes in the x86/asm, x86/apic and x86/mm topics
  in this cycle that the topical separation of -tip broke down somewhat -
  so the result is a more traditional architecture pull request,
  collected into the 'x86/core' topic.

  The topics were still maintained separately as far as possible, so
  bisectability and conceptual separation should still be pretty good -
  but there were a handful of merge points to avoid excessive
  dependencies (and conflicts) that would have been poorly tested in the
  end.

  The next cycle will hopefully be much more quiet (or at least will
  have fewer dependencies).

  The main changes in this cycle were:

   * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
     Gleixner)

     - This is the second and most intrusive part of changes to the x86
       interrupt handling - full conversion to hierarchical interrupt
       domains:

          [IOAPIC domain]   -----
                                 |
          [MSI domain]      --------[Remapping domain] ----- [ Vector domain ]
                                 |   (optional)          |
          [HPET MSI domain] -----                        |
                                                         |
          [DMAR domain]     -----------------------------
                                                         |
          [Legacy domain]   -----------------------------

       This now reflects the actual hardware and allowed us to distangle
       the domain specific code from the underlying parent domain, which
       can be optional in the case of interrupt remapping.  It's a clear
       separation of functionality and removes quite some duct tape
       constructs which plugged the remap code between ioapic/msi/hpet
       and the vector management.

     - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
       injection into guests (Feng Wu)

   * x86/asm changes:

     - Tons of cleanups and small speedups, micro-optimizations.  This
       is in preparation to move a good chunk of the low level entry
       code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
       Brian Gerst)

     - Moved all system entry related code to a new home under
       arch/x86/entry/ (Ingo Molnar)

     - Removal of the fragile and ugly CFI dwarf debuginfo annotations.
       Conversion to C will reintroduce many of them - but meanwhile
       they are only getting in the way, and the upstream kernel does
       not rely on them (Ingo Molnar)

     - NOP handling refinements. (Borislav Petkov)

   * x86/mm changes:

     - Big PAT and MTRR rework: making the code more robust and
       preparing to phase out exposing direct MTRR interfaces to drivers -
       in favor of using PAT driven interfaces (Toshi Kani, Luis R
       Rodriguez, Borislav Petkov)

     - New ioremap_wt()/set_memory_wt() interfaces to support
       Write-Through cached memory mappings.  This is especially
       important for good performance on NVDIMM hardware (Toshi Kani)

   * x86/ras changes:

     - Add support for deferred errors on AMD (Aravind Gopalakrishnan)

       This is an important RAS feature which adds hardware support for
       poisoned data.  That means roughly that the hardware marks data
       which it has detected as corrupted but wasn't able to correct, as
       poisoned data and raises an APIC interrupt to signal that in the
       form of a deferred error.  It is the OS's responsibility then to
       take proper recovery action and thus prolonge system lifetime as
       far as possible.

     - Add support for Intel "Local MCE"s: upcoming CPUs will support
       CPU-local MCE interrupts, as opposed to the traditional system-
       wide broadcasted MCE interrupts (Ashok Raj)

     - Misc cleanups (Borislav Petkov)

   * x86/platform changes:

     - Intel Atom SoC updates

  ... and lots of other cleanups, fixlets and other changes - see the
  shortlog and the Git log for details"

* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
  x86/hpet: Use proper hpet device number for MSI allocation
  x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
  x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
  x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
  x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
  genirq: Prevent crash in irq_move_irq()
  genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
  iommu, x86: Properly handle posted interrupts for IOMMU hotplug
  iommu, x86: Provide irq_remapping_cap() interface
  iommu, x86: Setup Posted-Interrupts capability for Intel iommu
  iommu, x86: Add cap_pi_support() to detect VT-d PI capability
  iommu, x86: Avoid migrating VT-d posted interrupts
  iommu, x86: Save the mode (posted or remapped) of an IRTE
  iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
  iommu: dmar: Provide helper to copy shared irte fields
  iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
  iommu: Add new member capability to struct irq_remap_ops
  x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
  x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
  x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
  ...
2015-06-22 17:59:09 -07:00
Linus Torvalds e75c73ad64 Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar:
 "This tree contains two main changes:

   - The big FPU code rewrite: wide reaching cleanups and reorganization
     that pulls all the FPU code together into a clean base in
     arch/x86/fpu/.

     The resulting code is leaner and faster, and much easier to
     understand.  This enables future work to further simplify the FPU
     code (such as removing lazy FPU restores).

     By its nature these changes have a substantial regression risk: FPU
     code related bugs are long lived, because races are often subtle
     and bugs mask as user-space failures that are difficult to track
     back to kernel side backs.  I'm aware of no unfixed (or even
     suspected) FPU related regression so far.

   - MPX support rework/fixes.  As this is still not a released CPU
     feature, there were some buglets in the code - should be much more
     robust now (Dave Hansen)"

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits)
  x86/fpu: Fix double-increment in setup_xstate_features()
  x86/mpx: Allow 32-bit binaries on 64-bit kernels again
  x86/mpx: Do not count MPX VMAs as neighbors when unmapping
  x86/mpx: Rewrite the unmap code
  x86/mpx: Support 32-bit binaries on 64-bit kernels
  x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps
  x86/mpx: Introduce new 'directory entry' to 'addr' helper function
  x86/mpx: Add temporary variable to reduce masking
  x86: Make is_64bit_mm() widely available
  x86/mpx: Trace allocation of new bounds tables
  x86/mpx: Trace the attempts to find bounds tables
  x86/mpx: Trace entry to bounds exception paths
  x86/mpx: Trace #BR exceptions
  x86/mpx: Introduce a boot-time disable flag
  x86/mpx: Restrict the mmap() size check to bounds tables
  x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
  x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
  x86/mpx: Use the new get_xsave_field_ptr()API
  x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
  x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
  ...
2015-06-22 17:16:11 -07:00
Bartosz Golaszewski 7d79a7bd75 x86: Replace cpu_**_mask() with topology_**_cpumask()
The former duplicate the functionalities of the latter but are
neither documented nor arch-independent.

Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benoit Cousson <bcousson@baylibre.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jean Delvare <jdelvare@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/1432645896-12588-9-git-send-email-bgolaszewski@baylibre.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-27 15:22:17 +02:00
Ingo Molnar 78f7f1e54b x86/fpu: Rename fpu-internal.h to fpu/internal.h
This unifies all the FPU related header files under a unified, hiearchical
naming scheme:

 - asm/fpu/types.h:      FPU related data types, needed for 'struct task_struct',
                         widely included in almost all kernel code, and hence kept
                         as small as possible.

 - asm/fpu/api.h:        FPU related 'public' methods exported to other subsystems.

 - asm/fpu/internal.h:   FPU subsystem internal methods

 - asm/fpu/xsave.h:      XSAVE support internal methods

(Also standardize the header guard in asm/fpu/internal.h.)

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:31 +02:00