These uses sometimes do and sometimes don't have '\n' terminations. Make
the uses consistently use '\n' terminations and remove the newline from
the functions.
Miscellanea:
o Coalesce formats
o Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1: After we call ocfs2_journal_access_di() in ocfs2_write_begin(),
jbd2_journal_restart() may also be called, in this function transaction
A's t_updates-- and obtains a new transaction B. If
jbd2_journal_commit_transaction() is happened to commit transaction A,
when t_updates==0, it will continue to complete commit and unfile
buffer.
So when jbd2_journal_dirty_metadata(), the handle is pointed a new
transaction B, and the buffer head's journal head is already freed,
jh->b_transaction == NULL, jh->b_next_transaction == NULL, it returns
EINVAL, So it triggers the BUG_ON(status).
thread 1 jbd2
ocfs2_write_begin jbd2_journal_commit_transaction
ocfs2_write_begin_nolock
ocfs2_start_trans
jbd2__journal_start(t_updates+1,
transaction A)
ocfs2_journal_access_di
ocfs2_write_cluster_by_desc
ocfs2_mark_extent_written
ocfs2_change_extent_flag
ocfs2_split_extent
ocfs2_extend_rotate_transaction
jbd2_journal_restart
(t_updates-1,transaction B) t_updates==0
__jbd2_journal_refile_buffer
(jh->b_transaction = NULL)
ocfs2_write_end
ocfs2_write_end_nolock
ocfs2_journal_dirty
jbd2_journal_dirty_metadata(bug)
ocfs2_commit_trans
2. In ext4, I found that: jbd2_journal_get_write_access() called by
ext4_write_end.
ext4_write_begin
ext4_journal_start
__ext4_journal_start_sb
ext4_journal_check_start
jbd2__journal_start
ext4_write_end
ext4_mark_inode_dirty
ext4_reserve_inode_write
ext4_journal_get_write_access
jbd2_journal_get_write_access
ext4_mark_iloc_dirty
ext4_do_update_inode
ext4_handle_dirty_metadata
jbd2_journal_dirty_metadata
3. So I think we should put ocfs2_journal_access_di before
ocfs2_journal_dirty in the ocfs2_write_end. and it works well after my
modification.
Signed-off-by: vicky <vicky.yangwenfang@huawei.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Zhangguanghui <zhang.guanghui@h3c.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2, ip_alloc_sem is used to protect allocation changes on the
node. In direct IO, we add ip_alloc_sem to protect date consistent
between direct-io and ocfs2_truncate_file race (buffer io use
ip_alloc_sem already). Although inode->i_mutex lock is used to avoid
concurrency of above situation, i think ip_alloc_sem is still needed
because protect allocation changes is significant.
Other filesystem like ext4 also uses rw_semaphore to protect data
consistent between get_block-vs-truncate race by other means, So
ip_alloc_sem in ocfs2 direct io is needed.
Signed-off-by: Weiwei Wang <wangww631@huawei.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1) Take rw EX lock in case of append dio.
2) Explicitly treat the error code -EIOCBQUEUED as normal.
3) Set di_bh to NULL after brelse if it may be used again later.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During direct io the inode will be added to orphan first and then
deleted from orphan. There is a race window that the orphan entry will
be deleted twice and thus trigger the BUG when validating
OCFS2_DIO_ORPHANED_FL in ocfs2_del_inode_from_orphan.
ocfs2_direct_IO_write
...
ocfs2_add_inode_to_orphan
>>>>>>>> race window.
1) another node may rm the file and then down, this node
take care of orphan recovery and clear flag
OCFS2_DIO_ORPHANED_FL.
2) since rw lock is unlocked, it may race with another
orphan recovery and append dio.
ocfs2_del_inode_from_orphan
So take inode mutex lock when recovering orphans and make rw unlock at the
end of aio write in case of append dio.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reported-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using a large volume, for example 9T volume with 2T already used,
frequent creation of small files with O_DIRECT when the IO is not
cluster aligned may clear sectors in the wrong place. This will cause
filesystem corruption.
This is because p_cpos is a u32. When calculating the corresponding
sector it should be converted to u64 first, otherwise it may overflow.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
contig_blocks gotten from ocfs2_extent_map_get_blocks cannot be compared
with clusters_to_alloc. So convert it to clusters first.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2 direct read/write, OCFS2_IOCB_SEM lock type is used to protect
inode->i_alloc_sem rw semaphore lock in the earlier kernel version.
However, in the latest kernel, inode->i_alloc_sem rw semaphore lock is not
used at all, so OCFS2_IOCB_SEM lock type needs to be removed.
Signed-off-by: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once dio crashed it will leave an entry in orphan dir. And orphan scan
will take care of the clean up. There is a tiny race case that the same
entry will be truncated twice and then trigger the BUG in
ocfs2_del_inode_from_orphan.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull third hunk of vfs changes from Al Viro:
"This contains the ->direct_IO() changes from Omar + saner
generic_write_checks() + dealing with fcntl()/{read,write}() races
(mirroring O_APPEND/O_DIRECT into iocb->ki_flags and instead of
repeatedly looking at ->f_flags, which can be changed by fcntl(2),
check ->ki_flags - which cannot) + infrastructure bits for dhowells'
d_inode annotations + Christophs switch of /dev/loop to
vfs_iter_write()"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (30 commits)
block: loop: switch to VFS ITER_BVEC
configfs: Fix inconsistent use of file_inode() vs file->f_path.dentry->d_inode
VFS: Make pathwalk use d_is_reg() rather than S_ISREG()
VFS: Fix up debugfs to use d_is_dir() in place of S_ISDIR()
VFS: Combine inode checks with d_is_negative() and d_is_positive() in pathwalk
NFS: Don't use d_inode as a variable name
VFS: Impose ordering on accesses of d_inode and d_flags
VFS: Add owner-filesystem positive/negative dentry checks
nfs: generic_write_checks() shouldn't be done on swapout...
ocfs2: use __generic_file_write_iter()
mirror O_APPEND and O_DIRECT into iocb->ki_flags
switch generic_write_checks() to iocb and iter
ocfs2: move generic_write_checks() before the alignment checks
ocfs2_file_write_iter: stop messing with ppos
udf_file_write_iter: reorder and simplify
fuse: ->direct_IO() doesn't need generic_write_checks()
ext4_file_write_iter: move generic_write_checks() up
xfs_file_aio_write_checks: switch to iocb/iov_iter
generic_write_checks(): drop isblk argument
blkdev_write_iter: expand generic_file_checks() call in there
...
Merge first patchbomb from Andrew Morton:
- arch/sh updates
- ocfs2 updates
- kernel/watchdog feature
- about half of mm/
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (122 commits)
Documentation: update arch list in the 'memtest' entry
Kconfig: memtest: update number of test patterns up to 17
arm: add support for memtest
arm64: add support for memtest
memtest: use phys_addr_t for physical addresses
mm: move memtest under mm
mm, hugetlb: abort __get_user_pages if current has been oom killed
mm, mempool: do not allow atomic resizing
memcg: print cgroup information when system panics due to panic_on_oom
mm: numa: remove migrate_ratelimited
mm: fold arch_randomize_brk into ARCH_HAS_ELF_RANDOMIZE
mm: split ET_DYN ASLR from mmap ASLR
s390: redefine randomize_et_dyn for ELF_ET_DYN_BASE
mm: expose arch_mmap_rnd when available
s390: standardize mmap_rnd() usage
powerpc: standardize mmap_rnd() usage
mips: extract logic for mmap_rnd()
arm64: standardize mmap_rnd() usage
x86: standardize mmap_rnd() usage
arm: factor out mmap ASLR into mmap_rnd
...
In ocfs2_direct_IO_write, we use ocfs2_zero_extend to zero allocated
clusters in case of cluster not aligned. But ocfs2_zero_extend uses page
cache, this may happen that it clears the data which blockdev_direct_IO
has already written.
We should use blkdev_issue_zeroout instead of ocfs2_zero_extend during
direct IO.
So fix this issue by introducing ocfs2_direct_IO_zero_extend and
ocfs2_direct_IO_extend_no_holes.
Reported-by: Yiwen Jiang <jiangyiwen@huawei.com>
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Tested-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need take inode lock when calling ocfs2_get_clusters.
And use GFP_NOFS instead of GFP_KERNEL.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since di_bh won't be used when zeroing extend, set it to NULL.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only when direct IO succeeds we need consider zeroing out in case of
cluster not aligned.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rw parameter to direct_IO is redundant with iov_iter->type, and
treated slightly differently just about everywhere it's used: some users
do rw & WRITE, and others do rw == WRITE where they should be doing a
bitwise check. Simplify this with the new iov_iter_rw() helper, which
always returns either READ or WRITE.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most filesystems call through to these at some point, so we'll start
here.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Allow blocks allocation in ocfs2_direct_IO_get_blocks.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Xuejiufei <xuejiufei@huawei.com>
Cc: alex chen <alex.chen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement ocfs2_direct_IO_write. Add the inode to orphan dir first, and
then delete it once append O_DIRECT finished.
This is to make sure block allocation and inode size are consistent.
[akpm@linux-foundation.org: fix it for "block: Add discard flag to blkdev_issue_zeroout() function"]
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Xuejiufei <xuejiufei@huawei.com>
Cc: alex chen <alex.chen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For buffer write, page lock will be got in write_begin and released in
write_end, in ocfs2_write_end_nolock(), before it unlock the page in
ocfs2_free_write_ctxt(), it calls ocfs2_run_deallocs(), this will ask
for the read lock of journal->j_trans_barrier. Holding page lock and
ask for journal->j_trans_barrier breaks the locking order.
This will cause a deadlock with journal commit threads, ocfs2cmt will
get write lock of journal->j_trans_barrier first, then it wakes up
kjournald2 to do the commit work, at last it waits until done. To
commit journal, kjournald2 needs flushing data first, it needs get the
cache page lock.
Since some ocfs2 cluster locks are holding by write process, this
deadlock may hung the whole cluster.
unlock pages before ocfs2_run_deallocs() can fix the locking order, also
put unlock before ocfs2_commit_trans() to make page lock is unlocked
before j_trans_barrier to preserve unlocking order.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not set the filesystem readonly if the storage link is down. In this
case, metadata is not corrupted and only -EIO is returned. And if it is
indeed corrupted metadata, it has already called ocfs2_error() in
ocfs2_validate_inode_block().
Signed-off-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For commit ocfs2 journal, ocfs2 journal thread will acquire the mutex
osb->journal->j_trans_barrier and wake up jbd2 commit thread, then it
will wait until jbd2 commit thread done. In order journal mode, jbd2
needs flushing dirty data pages first, and this needs get page lock.
So osb->journal->j_trans_barrier should be got before page lock.
But ocfs2_write_zero_page() and ocfs2_write_begin_inline() obey this
locking order, and this will cause deadlock and hung the whole cluster.
One deadlock catched is the following:
PID: 13449 TASK: ffff8802e2f08180 CPU: 31 COMMAND: "oracle"
#0 [ffff8802ee3f79b0] __schedule at ffffffff8150a524
#1 [ffff8802ee3f7a58] schedule at ffffffff8150acbf
#2 [ffff8802ee3f7a68] rwsem_down_failed_common at ffffffff8150cb85
#3 [ffff8802ee3f7ad8] rwsem_down_read_failed at ffffffff8150cc55
#4 [ffff8802ee3f7ae8] call_rwsem_down_read_failed at ffffffff812617a4
#5 [ffff8802ee3f7b50] ocfs2_start_trans at ffffffffa0498919 [ocfs2]
#6 [ffff8802ee3f7ba0] ocfs2_zero_start_ordered_transaction at ffffffffa048b2b8 [ocfs2]
#7 [ffff8802ee3f7bf0] ocfs2_write_zero_page at ffffffffa048e9bd [ocfs2]
#8 [ffff8802ee3f7c80] ocfs2_zero_extend_range at ffffffffa048ec83 [ocfs2]
#9 [ffff8802ee3f7ce0] ocfs2_zero_extend at ffffffffa048edfd [ocfs2]
#10 [ffff8802ee3f7d50] ocfs2_extend_file at ffffffffa049079e [ocfs2]
#11 [ffff8802ee3f7da0] ocfs2_setattr at ffffffffa04910ed [ocfs2]
#12 [ffff8802ee3f7e70] notify_change at ffffffff81187d29
#13 [ffff8802ee3f7ee0] do_truncate at ffffffff8116bbc1
#14 [ffff8802ee3f7f50] sys_ftruncate at ffffffff8116bcbd
#15 [ffff8802ee3f7f80] system_call_fastpath at ffffffff81515142
RIP: 00007f8de750c6f7 RSP: 00007fffe786e478 RFLAGS: 00000206
RAX: 000000000000004d RBX: ffffffff81515142 RCX: 0000000000000000
RDX: 0000000000000200 RSI: 0000000000028400 RDI: 000000000000000d
RBP: 00007fffe786e040 R8: 0000000000000000 R9: 000000000000000d
R10: 0000000000000000 R11: 0000000000000206 R12: 000000000000000d
R13: 00007fffe786e710 R14: 00007f8de70f8340 R15: 0000000000028400
ORIG_RAX: 000000000000004d CS: 0033 SS: 002b
crash64> bt
PID: 7610 TASK: ffff88100fd56140 CPU: 1 COMMAND: "ocfs2cmt"
#0 [ffff88100f4d1c50] __schedule at ffffffff8150a524
#1 [ffff88100f4d1cf8] schedule at ffffffff8150acbf
#2 [ffff88100f4d1d08] jbd2_log_wait_commit at ffffffffa01274fd [jbd2]
#3 [ffff88100f4d1d98] jbd2_journal_flush at ffffffffa01280b4 [jbd2]
#4 [ffff88100f4d1dd8] ocfs2_commit_cache at ffffffffa0499b14 [ocfs2]
#5 [ffff88100f4d1e38] ocfs2_commit_thread at ffffffffa0499d38 [ocfs2]
#6 [ffff88100f4d1ee8] kthread at ffffffff81090db6
#7 [ffff88100f4d1f48] kernel_thread_helper at ffffffff81516284
crash64> bt
PID: 7609 TASK: ffff88100f2d4480 CPU: 0 COMMAND: "jbd2/dm-20-86"
#0 [ffff88100def3920] __schedule at ffffffff8150a524
#1 [ffff88100def39c8] schedule at ffffffff8150acbf
#2 [ffff88100def39d8] io_schedule at ffffffff8150ad6c
#3 [ffff88100def39f8] sleep_on_page at ffffffff8111069e
#4 [ffff88100def3a08] __wait_on_bit_lock at ffffffff8150b30a
#5 [ffff88100def3a58] __lock_page at ffffffff81110687
#6 [ffff88100def3ab8] write_cache_pages at ffffffff8111b752
#7 [ffff88100def3be8] generic_writepages at ffffffff8111b901
#8 [ffff88100def3c48] journal_submit_data_buffers at ffffffffa0120f67 [jbd2]
#9 [ffff88100def3cf8] jbd2_journal_commit_transaction at ffffffffa0121372[jbd2]
#10 [ffff88100def3e68] kjournald2 at ffffffffa0127a86 [jbd2]
#11 [ffff88100def3ee8] kthread at ffffffff81090db6
#12 [ffff88100def3f48] kernel_thread_helper at ffffffff81516284
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Alex Chen <alex.chen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, ocfs2_sync_file grabs i_mutex and forces the current journal
transaction to complete. This isn't terribly efficient, since sync_file
really only needs to wait for the last transaction involving that inode
to complete, and this doesn't require i_mutex.
Therefore, implement the necessary bits to track the newest tid
associated with an inode, and teach sync_file to wait for that instead
of waiting for everything in the journal to commit. Furthermore, only
issue the flush request to the drive if jbd2 hasn't already done so.
This also eliminates the deadlock between ocfs2_file_aio_write() and
ocfs2_sync_file(). aio_write takes i_mutex then calls
ocfs2_aiodio_wait() to wait for unaligned dio writes to finish.
However, if that dio completion involves calling fsync, then we can get
into trouble when some ocfs2_sync_file tries to take i_mutex.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a problem that waitqueue_active() may check stale data thus miss
a wakeup of threads waiting on ip_unaligned_aio.
The valid value of ip_unaligned_aio is only 0 and 1 so we can change it to
be of type mutex thus the above prolem is avoid. Another benifit is that
mutex which works as FIFO is fairer than wake_up_all().
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ocfs2 doesn't do data journalling. Thus its ->invalidatepage and
->releasepage functions never get called on buffers that have journal
heads attached. So just use standard variants of functions from
buffer.c.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When ocfs2_write_cluster_by_desc() failed in ocfs2_write_begin_nolock()
because of ENOSPC, it goes to out_quota, freeing data_ac(meta_ac). Then
it calls ocfs2_try_to_free_truncate_log() to free space. If enough
space freed, it will try to write again. Unfortunately, some error
happenes before ocfs2_lock_allocators(), it goes to out and free
data_ac(meta_ac) again.
Signed-off-by: joyce <xuejiufei@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only reason for sb_getblk() failing is if it can't allocate the
buffer_head. So return ENOMEM instead when it fails.
[joseph.qi@huawei.com: ocfs2_symlink_get_block() and ocfs2_read_blocks_sync() and ocfs2_read_blocks() need the same change]
Signed-off-by: Rui Xiang <rui.xiang@huawei.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code cleanup to remove unnecessary variable passed but never used
to ocfs2_calc_extend_credits.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Though ocfs2 uses inode->i_mutex to protect i_size, there are both
i_size_read/write() and direct accesses. Clean up all direct access to
eliminate confusion.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Jie Liu <jeff.liu@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support to the core direct-io code to defer AIO completions to user
context using a workqueue. This replaces opencoded and less efficient
code in XFS and ext4 (we save a memory allocation for each direct IO)
and will be needed to properly support O_(D)SYNC for AIO.
The communication between the filesystem and the direct I/O code requires
a new buffer head flag, which is a bit ugly but not avoidable until the
direct I/O code stops abusing the buffer_head structure for communicating
with the filesystems.
Currently this creates a per-superblock unbound workqueue for these
completions, which is taken from an earlier patch by Jan Kara. I'm
not really convinced about this use and would prefer a "normal" global
workqueue with a high concurrency limit, but this needs further discussion.
JK: Fixed ext4 part, dynamic allocation of the workqueue.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Since ocfs2_cow_file_pos will invoke ocfs2_refcount_icow with a NULL as
the struct file pointer, it finally result in a null pointer dereference
in ocfs2_duplicate_clusters_by_page.
This patch replace file pointer with inode pointer in
cow_duplicate_clusters to fix this issue.
[jeff.liu@oracle.com: rebased patch against linux-next tree]
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Acked-by: Tao Ma <tm@tao.ma>
Tested-by: David Weber <wb@munzinger.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in ocfs2_invalidatepage().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Joel Becker <jlbec@evilplan.org>
invalidatepage now accepts range to invalidate and there are two file
system using jbd2 also implementing punch hole feature which can benefit
from this. We need to implement the same thing for jbd2 layer in order to
allow those file system take benefit of this functionality.
This commit adds length argument to the jbd2_journal_invalidatepage()
and updates all instances in ext4 and ocfs2.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Currently there is no way to truncate partial page where the end
truncate point is not at the end of the page. This is because it was not
needed and the functionality was enough for file system truncate
operation to work properly. However more file systems now support punch
hole feature and it can benefit from mm supporting truncating page just
up to the certain point.
Specifically, with this functionality truncate_inode_pages_range() can
be changed so it supports truncating partial page at the end of the
range (currently it will BUG_ON() if 'end' is not at the end of the
page).
This commit changes the invalidatepage() address space operation
prototype to accept range to be invalidated and update all the instances
for it.
We also change the block_invalidatepage() in the same way and actually
make a use of the new length argument implementing range invalidation.
Actual file system implementations will follow except the file systems
where the changes are really simple and should not change the behaviour
in any way .Implementation for truncate_page_range() which will be able
to accept page unaligned ranges will follow as well.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
Running AIO is pinning inode in memory using file reference. Once AIO
is completed using aio_complete(), file reference is put and inode can
be freed from memory. So we have to be sure that calling aio_complete()
is the last thing we do with the inode.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When stable pages are required, we have to wait if the page is just
going to disk and we want to modify it. Add proper callback to
ocfs2_grab_pages_for_write().
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When someone writes to an inode, readers accessing the same inode via
ocfs2_readpage() just busyloop trying to get ip_alloc_sem because
do_generic_file_read() looks up the page again and retries ->readpage()
when previous attempt failed with AOP_TRUNCATED_PAGE. When there are enough
readers, they can occupy all CPUs and in non-preempt kernel the system is
deadlocked because writer holding ip_alloc_sem is never run to release the
semaphore. Fix the problem by making reader block on ip_alloc_sem to break
the busy loop.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
Fix a corruption that can happen when we have (two or more) outstanding
aio's to an overlapping unaligned region. Ext4
(e9e3bcecf4) and xfs recently had to fix
similar issues.
In our case what happens is that we can have an outstanding aio on a region
and if a write comes in with some bytes overlapping the original aio we may
decide to read that region into a page before continuing (typically because
of buffered-io fallback). Since we have no ordering guarantees with the
aio, we can read stale or bad data into the page and then write it back out.
If the i/o is page and block aligned, then we avoid this issue as there
won't be any need to read data from disk.
I took the same approach as Eric in the ext4 patch and introduced some
serialization of unaligned async direct i/o. I don't expect this to have an
effect on the most common cases of AIO. Unaligned aio will be slower
though, but that's far more acceptable than data corruption.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
This patch address two shortcomings in ocfs2_page_mkwrite():
1. Makes the function return better VM_FAULT_* errors.
2. It handles a error that is triggered when a page is dropped from the mapping
due to memory pressure. This patch locks the page to prevent that.
[Patch was cleaned up by Sunil Mushran.]
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
For filesystems that delay their end_io processing we should keep our
i_dio_count until the the processing is done. Enable this by moving
the inode_dio_done call to the end_io handler if one exist. Note that
the actual move to the workqueue for ext4 and XFS is not done in
this patch yet, but left to the filesystem maintainers. At least
for XFS it's not needed yet either as XFS has an internal equivalent
to i_dio_count.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Maintain i_dio_count for all filesystems, not just those using DIO_LOCKING.
This these filesystems to also protect truncate against direct I/O requests
by using common code. Right now the only non-DIO_LOCKING filesystem that
appears to do so is XFS, which uses an opencoded variant of the i_dio_count
scheme.
Behaviour doesn't change for filesystems never calling inode_dio_wait.
For ext4 behaviour changes when using the dioread_nonlock option, which
previously was missing any protection between truncate and direct I/O reads.
For ocfs2 that handcrafted i_dio_count manipulations are replaced with
the common code now enable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
i_alloc_sem is a rather special rw_semaphore. It's the last one that may
be released by a non-owner, and it's write side is always mirrored by
real exclusion. It's intended use it to wait for all pending direct I/O
requests to finish before starting a truncate.
Replace it with a hand-grown construct:
- exclusion for truncates is already guaranteed by i_mutex, so it can
simply fall way
- the reader side is replaced by an i_dio_count member in struct inode
that counts the number of pending direct I/O requests. Truncate can't
proceed as long as it's non-zero
- when i_dio_count reaches non-zero we wake up a pending truncate using
wake_up_bit on a new bit in i_flags
- new references to i_dio_count can't appear while we are waiting for
it to read zero because the direct I/O count always needs i_mutex
(or an equivalent like XFS's i_iolock) for starting a new operation.
This scheme is much simpler, and saves the space of a spinlock_t and a
struct list_head in struct inode (typically 160 bits on a non-debug 64-bit
system).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>