mirror of https://gitee.com/openkylin/linux.git
156 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Coly Li | fc2d5988b5 |
bcache: add identifier names to arguments of function definitions
There are many function definitions do not have identifier argument names, scripts/checkpatch.pl complains warnings like this, WARNING: function definition argument 'struct bcache_device *' should also have an identifier name #16735: FILE: writeback.h:120: +void bch_sectors_dirty_init(struct bcache_device *); This patch adds identifier argument names to all bcache function definitions to fix such warnings. Signed-off-by: Coly Li <colyli@suse.de> Reviewed: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 1fae7cf052 |
bcache: style fix to add a blank line after declarations
Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 6f10f7d1b0 |
bcache: style fix to replace 'unsigned' by 'unsigned int'
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned' with 'unsigned int'. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | ea8c5356d3 |
bcache: set max writeback rate when I/O request is idle
Commit |
|
Coly Li | e57fd74684 |
bcache: add a comment in super.c
This patch adds a line of code comment in super.c:register_bdev(), to make code to be more comprehensible. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 78ac210717 |
bcache: do not check return value of debugfs_create_dir()
Greg KH suggests that normal code should not care about debugfs. Therefore no matter successful or failed of debugfs_create_dir() execution, it is unncessary to check its return value. There are two functions called debugfs_create_dir() and check the return value, which are bch_debug_init() and closure_debug_init(). This patch changes these two functions from int to void type, and ignore return values of debugfs_create_dir(). This patch does not fix exact bug, just makes things work as they should. Signed-off-by: Coly Li <colyli@suse.de> Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Cc: Kai Krakow <kai@kaishome.de> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Arnd Bergmann | 75cbb3f1d8 |
bcache: stop using the deprecated get_seconds()
The get_seconds function is deprecated now since it returns a 32-bit value that will eventually overflow, and we are replacing it throughout the kernel with ktime_get_seconds() or ktime_get_real_seconds() that return a time64_t. bcache uses get_seconds() to read the current system time and store it in the superblock as well as in uuid_entry structures that are user visible. Unfortunately, the two structures in are still limited to 32 bits, so this won't fix any real problems but will still overflow in year 2106. Let's at least document that properly, in case we get an updated format in the future it can be fixed. We still have a long time before the overflow and checking the tools at https://github.com/koverstreet/bcache-tools reveals no access to any of them. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Florian Schmaus | 9b4e9f5abb |
bcache: do not assign in if condition in bcache_device_init()
Fixes an error condition reported by checkpatch.pl which is caused by assigning a variable in an if condition. Signed-off-by: Florian Schmaus <flo@geekplace.eu> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Florian Schmaus | 16c1fdf4cf |
bcache: do not assign in if condition in bcache_init()
Fixes an error condition reported by checkpatch.pl which is caused by assigning a variable in an if condition. Signed-off-by: Florian Schmaus <flo@geekplace.eu> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Florian Schmaus | a56489d4b3 |
bcache: do not assign in if condition register_bcache()
Fixes an error condition reported by checkpatch.pl which is caused by assigning a variable in an if condition. Signed-off-by: Florian Schmaus <flo@geekplace.eu> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | 99a27d59bd |
bcache: simplify the calculation of the total amount of flash dirty data
Currently we calculate the total amount of flash only devices dirty data by adding the dirty data of each flash only device under registering locker. It is very inefficient. In this patch, we add a member flash_dev_dirty_sectors in struct cache_set to record the total amount of flash only devices dirty data in real time, so we didn't need to calculate the total amount of dirty data any more. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Kees Cook | fad953ce0b |
treewide: Use array_size() in vzalloc()
The vzalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vzalloc(a * b) with: vzalloc(array_size(a, b)) as well as handling cases of: vzalloc(a * b * c) with: vzalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vzalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(char) * COUNT + COUNT , ...) | vzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vzalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vzalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vzalloc(C1 * C2 * C3, ...) | vzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vzalloc(C1 * C2, ...) | vzalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Kees Cook | 6396bb2215 |
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Kent Overstreet | d19936a266 |
bcache: convert to bioset_init()/mempool_init()
Convert bcache to embedded bio sets. Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Andy Shevchenko | 04cbc21137 |
bcache: Move couple of string arrays to sysfs.c
There is couple of string arrays that are used exclusively in sysfs.c. Move it to there and make them static. Besides above, it will allow further clean up. No functional change intended. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 0f0709e6bf |
bcache: stop bcache device when backing device is offline
Currently bcache does not handle backing device failure, if backing device is offline and disconnected from system, its bcache device can still be accessible. If the bcache device is in writeback mode, I/O requests even can success if the requests hit on cache device. That is to say, when and how bcache handles offline backing device is undefined. This patch tries to handle backing device offline in a rather simple way, - Add cached_dev->status_update_thread kernel thread to update backing device status in every 1 second. - Add cached_dev->offline_seconds to record how many seconds the backing device is observed to be offline. If the backing device is offline for BACKING_DEV_OFFLINE_TIMEOUT (30) seconds, set dc->io_disable to 1 and call bcache_device_stop() to stop the bache device which linked to the offline backing device. Now if a backing device is offline for BACKING_DEV_OFFLINE_TIMEOUT seconds, its bcache device will be removed, then user space application writing on it will get error immediately, and handler the device failure in time. This patch is quite simple, does not handle more complicated situations. Once the bcache device is stopped, users need to recovery the backing device, register and attach it manually. Changelog: v3: call wait_for_kthread_stop() before exits kernel thread. v2: remove "bcache: " prefix when calling pr_warn(). v1: initial version. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 09a44ca211 |
bcache: use pr_info() to inform duplicated CACHE_SET_IO_DISABLE set
It is possible that multiple I/O requests hits on failed cache device or
backing device, therefore it is quite common that CACHE_SET_IO_DISABLE is
set already when a task tries to set the bit from bch_cache_set_error().
Currently the message "CACHE_SET_IO_DISABLE already set" is printed by
pr_warn(), which might mislead users to think a serious fault happens in
source code.
This patch uses pr_info() to print the information in such situation,
avoid extra worries. This information is helpful to understand bcache
behavior in cache device failures, so I still keep them in source code.
Fixes:
|
|
Coly Li | 4fd8e13843 |
bcache: set dc->io_disable to true in conditional_stop_bcache_device()
Commit |
|
Coly Li | 6147305c73 |
bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()
Commit |
|
Coly Li | 6e916a7eb1 |
bcache: store disk name in struct cache and struct cached_dev
Current code uses bdevname() or bio_devname() to reference gendisk disk name when bcache needs to display the disk names in kernel message. It was safe before bcache device failure handling patch set merged in, because when devices are failed, there was deadlock to prevent bcache printing error messages with gendisk disk name. But after the failure handling patch set merged, the deadlock is fixed, so it is possible that the gendisk structure bdev->hd_disk is released when bdevname() is called to reference bdev->bd_disk->disk_name[]. This is why I receive bug report of NULL pointers deference panic. This patch stores gendisk disk name in a buffer inside struct cache and struct cached_dev, then print out the offline device name won't reference bdev->hd_disk anymore. And this patch also avoids extra function calls of bdevname() and bio_devnmae(). Changelog: v3, add Reviewed-by from Hannes. v2, call bdevname() earlier in register_bdev() v1, first version with segguestion from Junhui Tang. Fixes: |
|
Linus Torvalds | 3526dd0c78 |
for-4.17/block-20180402
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABCAAGBQJawr05AAoJEPfTWPspceCmT2UP/1uuaqwzyl4VjFNb/k7KS7UM +Cs/1HBlGomgMA8orDTGqtWqLRdR3z4RSh0+MvXTzQ78HpFVYz7CbDc9itHm+G9M X0ypD4kF/JGCFb5cxk+x6qv28uO2nv4DP3+0hHqJWLH4UVJBWDY6bs4BPShsf9QB I6XjioNMhoqylXgdOITLODJZz+TcChlJMDAqwhpJwh9TH1wjobleAZ6AdmCPfgi5 h0UCKMUKzcVJlNZwQUrzrs2cxcx9Uhunnbz7HK0ZV4n/FKFtDpGynFpQQ71pZxKe Be0ZOBPCQvC3ykOM/egCIvC/e5y7FgrjORD6jxyu1PTwAugI5E1VYSMxHkXvgPAx zOo9A7RT4GPO2tDQv+DbzNFpqeSAclTgSmr+/y1wmheBs8DiSt7MPVBiNM4zdCNv NLk9z7IEjFhdmluSB/LbTb1aokypMb/q7QTLouPHdwGn80k7yrhFyLHgdjpNTQ2K UHfHZvGxkOX6SmFhBNOtIFUkuSceenh64a0RkRle7filx+ImpbCVm2/GYi9zZNCu EtctgzLbLmz40zMiyDaZS2bxBgGzfn6yf4xd9LsaAJPMhvZnmXogT0D9ctWXB0WU mMaS7sOkLnNjnGkzF1fHkeiZ/oigrstJbe+CA7BtOdwxpWn6MZBgKEoFQ6iA2b3X 5J1axMgVH5LAsIEcEQVq =RVhK -----END PGP SIGNATURE----- Merge tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block Pull block layer updates from Jens Axboe: "It's a pretty quiet round this time, which is nice. This contains: - series from Bart, cleaning up the way we set/test/clear atomic queue flags. - series from Bart, fixing races between gendisk and queue registration and removal. - set of bcache fixes and improvements from various folks, by way of Michael Lyle. - set of lightnvm updates from Matias, most of it being the 1.2 to 2.0 transition. - removal of unused DIO flags from Nikolay. - blk-mq/sbitmap memory ordering fixes from Omar. - divide-by-zero fix for BFQ from Paolo. - minor documentation patches from Randy. - timeout fix from Tejun. - Alpha "can't write a char atomically" fix from Mikulas. - set of NVMe fixes by way of Keith. - bsg and bsg-lib improvements from Christoph. - a few sed-opal fixes from Jonas. - cdrom check-disk-change deadlock fix from Maurizio. - various little fixes, comment fixes, etc from various folks" * tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block: (139 commits) blk-mq: Directly schedule q->timeout_work when aborting a request blktrace: fix comment in blktrace_api.h lightnvm: remove function name in strings lightnvm: pblk: remove some unnecessary NULL checks lightnvm: pblk: don't recover unwritten lines lightnvm: pblk: implement 2.0 support lightnvm: pblk: implement get log report chunk lightnvm: pblk: rename ppaf* to addrf* lightnvm: pblk: check for supported version lightnvm: implement get log report chunk helpers lightnvm: make address conversions depend on generic device lightnvm: add support for 2.0 address format lightnvm: normalize geometry nomenclature lightnvm: complete geo structure with maxoc* lightnvm: add shorten OCSSD version in geo lightnvm: add minor version to generic geometry lightnvm: simplify geometry structure lightnvm: pblk: refactor init/exit sequences lightnvm: Avoid validation of default op value lightnvm: centralize permission check for lightnvm ioctl ... |
|
Bart Van Assche | 5f2b18ec8e |
bcache: Fix a compiler warning in bcache_device_init()
Avoid that building with W=1 triggers the following compiler warning: drivers/md/bcache/super.c:776:20: warning: comparison is always false due to limited range of data type [-Wtype-limits] d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) { ^ Reviewed-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | c7b7bd0740 |
bcache: add io_disable to struct cached_dev
If a bcache device is configured to writeback mode, current code does not handle write I/O errors on backing devices properly. In writeback mode, write request is written to cache device, and latter being flushed to backing device. If I/O failed when writing from cache device to the backing device, bcache code just ignores the error and upper layer code is NOT noticed that the backing device is broken. This patch tries to handle backing device failure like how the cache device failure is handled, - Add a error counter 'io_errors' and error limit 'error_limit' in struct cached_dev. Add another io_disable to struct cached_dev to disable I/Os on the problematic backing device. - When I/O error happens on backing device, increase io_errors counter. And if io_errors reaches error_limit, set cache_dev->io_disable to true, and stop the bcache device. The result is, if backing device is broken of disconnected, and I/O errors reach its error limit, backing device will be disabled and the associated bcache device will be removed from system. Changelog: v2: remove "bcache: " prefix in pr_error(), and use correct name string to print out bcache device gendisk name. v1: indeed this is new added in v2 patch set. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 27a40ab926 |
bcache: add backing_request_endio() for bi_end_io
In order to catch I/O error of backing device, a separate bi_end_io call back is required. Then a per backing device counter can record I/O errors number and retire the backing device if the counter reaches a per backing device I/O error limit. This patch adds backing_request_endio() to bcache backing device I/O code path, this is a preparation for further complicated backing device failure handling. So far there is no real code logic change, I make this change a separate patch to make sure it is stable and reliable for further work. Changelog: v2: Fix code comments typo, remove a redundant bch_writeback_add() line added in v4 patch set. v1: indeed this is new added in this patch set. [mlyle: truncated commit subject] Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Cc: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Chengguang Xu | df2b94313a |
bcache: move closure debug file into debug directory
In current code closure debug file is outside of debug directory and when unloading module there is lack of removing operation for closure debug file, so it will cause creating error when trying to reload module. This patch move closure debug file into "bcache" debug direcory so that the file can get deleted properly. Signed-off-by: Chengguang Xu <cgxu519@gmx.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 7e027ca4b5 |
bcache: add stop_when_cache_set_failed option to backing device
When there are too many I/O errors on cache device, current bcache code will retire the whole cache set, and detach all bcache devices. But the detached bcache devices are not stopped, which is problematic when bcache is in writeback mode. If the retired cache set has dirty data of backing devices, continue writing to bcache device will write to backing device directly. If the LBA of write request has a dirty version cached on cache device, next time when the cache device is re-registered and backing device re-attached to it again, the stale dirty data on cache device will be written to backing device, and overwrite latest directly written data. This situation causes a quite data corruption. But we cannot simply stop all attached bcache devices when the cache set is broken or disconnected. For example, use bcache to accelerate performance of an email service. In such workload, if cache device is broken but no dirty data lost, keep the bcache device alive and permit email service continue to access user data might be a better solution for the cache device failure. Nix <nix@esperi.org.uk> points out the issue and provides the above example to explain why it might be necessary to not stop bcache device for broken cache device. Pavel Goran <via-bcache@pvgoran.name> provides a brilliant suggestion to provide "always" and "auto" options to per-cached device sysfs file stop_when_cache_set_failed. If cache set is retiring and the backing device has no dirty data on cache, it should be safe to keep the bcache device alive. In this case, if stop_when_cache_set_failed is set to "auto", the device failure handling code will not stop this bcache device and permit application to access the backing device with a unattached bcache device. Changelog: [mlyle: edited to not break string constants across lines] v3: fix typos pointed out by Nix. v2: change option values of stop_when_cache_set_failed from 1/0 to "auto"/"always". v1: initial version, stop_when_cache_set_failed can be 0 (not stop) or 1 (always stop). Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Cc: Nix <nix@esperi.org.uk> Cc: Pavel Goran <via-bcache@pvgoran.name> Cc: Junhui Tang <tang.junhui@zte.com.cn> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 771f393e8f |
bcache: add CACHE_SET_IO_DISABLE to struct cache_set flags
When too many I/Os failed on cache device, bch_cache_set_error() is called in the error handling code path to retire whole problematic cache set. If new I/O requests continue to come and take refcount dc->count, the cache set won't be retired immediately, this is a problem. Further more, there are several kernel thread and self-armed kernel work may still running after bch_cache_set_error() is called. It needs to wait quite a while for them to stop, or they won't stop at all. They also prevent the cache set from being retired. The solution in this patch is, to add per cache set flag to disable I/O request on this cache and all attached backing devices. Then new coming I/O requests can be rejected in *_make_request() before taking refcount, kernel threads and self-armed kernel worker can stop very fast when flags bit CACHE_SET_IO_DISABLE is set. Because bcache also do internal I/Os for writeback, garbage collection, bucket allocation, journaling, this kind of I/O should be disabled after bch_cache_set_error() is called. So closure_bio_submit() is modified to check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set, closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and return, generic_make_request() won't be called. A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit from cache_set->flags, to disable or enable cache set I/O for debugging. It is helpful to trigger more corner case issues for failed cache device. Changelog v4, add wait_for_kthread_stop(), and call it before exits writeback and gc kernel threads. v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index. remove "bcache: " prefix when printing out kernel message. v2, more changes by previous review, - Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui. - Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this is reported and inspired from origal patch of Pavel Vazharov. v1, initial version. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Cc: Michael Lyle <mlyle@lyle.org> Cc: Pavel Vazharov <freakpv@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 3fd47bfe55 |
bcache: stop dc->writeback_rate_update properly
struct delayed_work writeback_rate_update in struct cache_dev is a delayed worker to call function update_writeback_rate() in period (the interval is defined by dc->writeback_rate_update_seconds). When a metadate I/O error happens on cache device, bcache error handling routine bch_cache_set_error() will call bch_cache_set_unregister() to retire whole cache set. On the unregister code path, this delayed work is stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update). dc->writeback_rate_update is a special delayed work from others in bcache. In its routine update_writeback_rate(), this delayed work is re-armed itself. That means when cancel_delayed_work_sync() returns, this delayed work can still be executed after several seconds defined by dc->writeback_rate_update_seconds. The problem is, after cancel_delayed_work_sync() returns, the cache set unregister code path will continue and release memory of struct cache set. Then the delayed work is scheduled to run, __update_writeback_rate() will reference the already released cache_set memory, and trigger a NULL pointer deference fault. This patch introduces two more bcache device flags, - BCACHE_DEV_WB_RUNNING bit set: bcache device is in writeback mode and running, it is OK for dc->writeback_rate_update to re-arm itself. bit clear:bcache device is trying to stop dc->writeback_rate_update, this delayed work should not re-arm itself and quit. - BCACHE_DEV_RATE_DW_RUNNING bit set: routine update_writeback_rate() is executing. bit clear: routine update_writeback_rate() quits. This patch also adds a function cancel_writeback_rate_update_dwork() to wait for dc->writeback_rate_update quits before cancel it by calling cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected quit dc->writeback_rate_update, after time_out seconds this function will give up and continue to call cancel_delayed_work_sync(). And here I explain how this patch stops self re-armed delayed work properly with the above stuffs. update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING. Before calling cancel_delayed_work_sync() wait utill flag BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling cancel_delayed_work_sync(), dc->writeback_rate_update must be already re- armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases delayed work routine update_writeback_rate() won't be executed after cancel_delayed_work_sync() returns. Inside update_writeback_rate() before calling schedule_delayed_work(), flag BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means someone is about to stop the delayed work. Because flag BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync() has to wait for this flag to be cleared, we don't need to worry about race condition here. If update_writeback_rate() is scheduled to run after checking BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync() in cancel_writeback_rate_update_dwork(), it is also safe. Because at this moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear and quit immediately. Because there are more dependences inside update_writeback_rate() to struct cache_set memory, dc->writeback_rate_update is not a simple self re-arm delayed work. After trying many different methods (e.g. hold dc->count, or use locks), this is the only way I can find which works to properly stop dc->writeback_rate_update delayed work. Changelog: v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING to bit index, for test_bit(). v2: Try to fix the race issue which is pointed out by Junhui. v1: The initial version for review Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 804f3c6981 |
bcache: fix cached_dev->count usage for bch_cache_set_error()
When bcache metadata I/O fails, bcache will call bch_cache_set_error() to retire the whole cache set. The expected behavior to retire a cache set is to unregister the cache set, and unregister all backing device attached to this cache set, then remove sysfs entries of the cache set and all attached backing devices, finally release memory of structs cache_set, cache, cached_dev and bcache_device. In my testing when journal I/O failure triggered by disconnected cache device, sometimes the cache set cannot be retired, and its sysfs entry /sys/fs/bcache/<uuid> still exits and the backing device also references it. This is not expected behavior. When metadata I/O failes, the call senquence to retire whole cache set is, bch_cache_set_error() bch_cache_set_unregister() bch_cache_set_stop() __cache_set_unregister() <- called as callback by calling clousre_queue(&c->caching) cache_set_flush() <- called as a callback when refcount of cache_set->caching is 0 cache_set_free() <- called as a callback when refcount of catch_set->cl is 0 bch_cache_set_release() <- called as a callback when refcount of catch_set->kobj is 0 I find if kernel thread bch_writeback_thread() quits while-loop when kthread_should_stop() is true and searched_full_index is false, clousre callback cache_set_flush() set by continue_at() will never be called. The result is, bcache fails to retire whole cache set. cache_set_flush() will be called when refcount of closure c->caching is 0, and in function bcache_device_detach() refcount of closure c->caching is released to 0 by clousre_put(). In metadata error code path, function bcache_device_detach() is called by cached_dev_detach_finish(). This is a callback routine being called when cached_dev->count is 0. This refcount is decreased by cached_dev_put(). The above dependence indicates, cache_set_flush() will be called when refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0 when refcount of cache_dev->count is 0. The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount of cache_dev is not decreased properly. In bch_writeback_thread(), cached_dev_put() is called only when searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a there is no dirty data on cache. In most of run time it is correct, but when bch_writeback_thread() quits the while-loop while cache is still dirty, current code forget to call cached_dev_put() before this kernel thread exits. This is why sometimes cache_set_flush() is not executed and cache set fails to be retired. The reason to call cached_dev_put() in bch_writeback_rate() is, when the cache device changes from clean to dirty, cached_dev_get() is called, to make sure during writeback operatiions both backing and cache devices won't be released. Adding following code in bch_writeback_thread() does not work, static int bch_writeback_thread(void *arg) } + if (atomic_read(&dc->has_dirty)) + cached_dev_put() + return 0; } because writeback kernel thread can be waken up and start via sysfs entry: echo 1 > /sys/block/bcache<N>/bcache/writeback_running It is difficult to check whether backing device is dirty without race and extra lock. So the above modification will introduce potential refcount underflow in some conditions. The correct fix is, to take cached dev refcount when creating the kernel thread, and put it before the kernel thread exits. Then bcache does not need to take a cached dev refcount when cache turns from clean to dirty, or to put a cached dev refcount when cache turns from ditry to clean. The writeback kernel thread is alwasy safe to reference data structure from cache set, cache and cached device (because a refcount of cache device is taken for it already), and no matter the kernel thread is stopped by I/O errors or system reboot, cached_dev->count can always be used correctly. The patch is simple, but understanding how it works is quite complicated. Changelog: v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes. v1: initial version for review. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Bart Van Assche | 44e1ebe2a3 |
bcache: Use the blk_queue_flag_{set,clear}() functions
Use the blk_queue_flag_{set,clear}() functions instead of open-coding these. Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Ming Lei <ming.lei@redhat.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Michael Lyle | 86755b7a96 |
bcache: don't attach backing with duplicate UUID
This can happen e.g. during disk cloning. This is an incomplete fix: it does not catch duplicate UUIDs earlier when things are still unattached. It does not unregister the device. Further changes to cope better with this are planned but conflict with Coly's ongoing improvements to handling device errors. In the meantime, one can manually stop the device after this has happened. Attempts to attach a duplicate device result in: [ 136.372404] loop: module loaded [ 136.424461] bcache: register_bdev() registered backing device loop0 [ 136.424464] bcache: bch_cached_dev_attach() Tried to attach loop0 but duplicate UUID already attached My test procedure is: dd if=/dev/sdb1 of=imgfile bs=1024 count=262144 losetup -f imgfile Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Cc: <stable@vger.kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | cc40daf91b |
bcache: fix crashes in duplicate cache device register
Kernel crashed when register a duplicate cache device, the call trace is bellow: [ 417.643790] CPU: 1 PID: 16886 Comm: bcache-register Tainted: G W OE 4.15.5-amd64-preempt-sysrq-20171018 #2 [ 417.643861] Hardware name: LENOVO 20ERCTO1WW/20ERCTO1WW, BIOS N1DET41W (1.15 ) 12/31/2015 [ 417.643870] RIP: 0010:bdevname+0x13/0x1e [ 417.643876] RSP: 0018:ffffa3aa9138fd38 EFLAGS: 00010282 [ 417.643884] RAX: 0000000000000000 RBX: ffff8c8f2f2f8000 RCX: ffffd6701f8 c7edf [ 417.643890] RDX: ffffa3aa9138fd88 RSI: ffffa3aa9138fd88 RDI: 00000000000 00000 [ 417.643895] RBP: ffffa3aa9138fde0 R08: ffffa3aa9138fae8 R09: 00000000000 1850e [ 417.643901] R10: ffff8c8eed34b271 R11: ffff8c8eed34b250 R12: 00000000000 00000 [ 417.643906] R13: ffffd6701f78f940 R14: ffff8c8f38f80000 R15: ffff8c8ea7d 90000 [ 417.643913] FS: 00007fde7e66f500(0000) GS:ffff8c8f61440000(0000) knlGS: 0000000000000000 [ 417.643919] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 417.643925] CR2: 0000000000000314 CR3: 00000007e6fa0001 CR4: 00000000003 606e0 [ 417.643931] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 00000000000 00000 [ 417.643938] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 00000000000 00400 [ 417.643946] Call Trace: [ 417.643978] register_bcache+0x1117/0x1270 [bcache] [ 417.643994] ? slab_pre_alloc_hook+0x15/0x3c [ 417.644001] ? slab_post_alloc_hook.isra.44+0xa/0x1a [ 417.644013] ? kernfs_fop_write+0xf6/0x138 [ 417.644020] kernfs_fop_write+0xf6/0x138 [ 417.644031] __vfs_write+0x31/0xcc [ 417.644043] ? current_kernel_time64+0x10/0x36 [ 417.644115] ? __audit_syscall_entry+0xbf/0xe3 [ 417.644124] vfs_write+0xa5/0xe2 [ 417.644133] SyS_write+0x5c/0x9f [ 417.644144] do_syscall_64+0x72/0x81 [ 417.644161] entry_SYSCALL_64_after_hwframe+0x3d/0xa2 [ 417.644169] RIP: 0033:0x7fde7e1c1974 [ 417.644175] RSP: 002b:00007fff13009a38 EFLAGS: 00000246 ORIG_RAX: 0000000 000000001 [ 417.644183] RAX: ffffffffffffffda RBX: 0000000001658280 RCX: 00007fde7e1c 1974 [ 417.644188] RDX: 000000000000000a RSI: 0000000001658280 RDI: 000000000000 0001 [ 417.644193] RBP: 000000000000000a R08: 0000000000000003 R09: 000000000000 0077 [ 417.644198] R10: 000000000000089e R11: 0000000000000246 R12: 000000000000 0001 [ 417.644203] R13: 000000000000000a R14: 7fffffffffffffff R15: 000000000000 0000 [ 417.644213] Code: c7 c2 83 6f ee 98 be 20 00 00 00 48 89 df e8 6c 27 3b 0 0 48 89 d8 5b c3 0f 1f 44 00 00 48 8b 47 70 48 89 f2 48 8b bf 80 00 00 00 <8 b> b0 14 03 00 00 e9 73 ff ff ff 0f 1f 44 00 00 48 8b 47 40 39 [ 417.644302] RIP: bdevname+0x13/0x1e RSP: ffffa3aa9138fd38 [ 417.644306] CR2: 0000000000000314 When registering duplicate cache device in register_cache(), after failure on calling register_cache_set(), bch_cache_release() will be called, then bdev will be freed, so bdevname(bdev, name) caused kernel crash. Since bch_cache_release() will free bdev, so in this patch we make sure bdev being freed if register_cache() fail, and do not free bdev again in register_bcache() when register_cache() fail. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reported-by: Marc MERLIN <marc@merlins.org> Tested-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: <stable@vger.kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 02aa8a8b2b |
bcache: correct flash only vols (check all uuids)
Commit |
|
Tang Junhui | 73ac105be3 |
bcache: fix for data collapse after re-attaching an attached device
back-end device sdm has already attached a cache_set with ID f67ebe1f-f8bc-4d73-bfe5-9dc88607f119, then try to attach with another cache set, and it returns with an error: [root]# cd /sys/block/sdm/bcache [root]# echo 5ccd0a63-148e-48b8-afa2-aca9cbd6279f > attach -bash: echo: write error: Invalid argument After that, execute a command to modify the label of bcache device: [root]# echo data_disk1 > label Then we reboot the system, when the system power on, the back-end device can not attach to cache_set, a messages show in the log: Feb 5 12:05:52 ceph152 kernel: [922385.508498] bcache: bch_cached_dev_attach() couldn't find uuid for sdm in set In sysfs_attach(), dc->sb.set_uuid was assigned to the value which input through sysfs, no matter whether it is success or not in bch_cached_dev_attach(). For example, If the back-end device has already attached to an cache set, bch_cached_dev_attach() would fail, but dc->sb.set_uuid was changed. Then modify the label of bcache device, it will call bch_write_bdev_super(), which would write the dc->sb.set_uuid to the super block, so we record a wrong cache set ID in the super block, after the system reboot, the cache set couldn't find the uuid of the back-end device, so the bcache device couldn't exist and use any more. In this patch, we don't assigned cache set ID to dc->sb.set_uuid in sysfs_attach() directly, but input it into bch_cached_dev_attach(), and assigned dc->sb.set_uuid to the cache set ID after the back-end device attached to the cache set successful. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | 682811b3ce |
bcache: fix for allocator and register thread race
After long time running of random small IO writing, I reboot the machine, and after the machine power on, I found bcache got stuck, the stack is: [root@ceph153 ~]# cat /proc/2510/task/*/stack [<ffffffffa06b2455>] closure_sync+0x25/0x90 [bcache] [<ffffffffa06b6be8>] bch_journal+0x118/0x2b0 [bcache] [<ffffffffa06b6dc7>] bch_journal_meta+0x47/0x70 [bcache] [<ffffffffa06be8f7>] bch_prio_write+0x237/0x340 [bcache] [<ffffffffa06a8018>] bch_allocator_thread+0x3c8/0x3d0 [bcache] [<ffffffff810a631f>] kthread+0xcf/0xe0 [<ffffffff8164c318>] ret_from_fork+0x58/0x90 [<ffffffffffffffff>] 0xffffffffffffffff [root@ceph153 ~]# cat /proc/2038/task/*/stack [<ffffffffa06b1abd>] __bch_btree_map_nodes+0x12d/0x150 [bcache] [<ffffffffa06b1bd1>] bch_btree_insert+0xf1/0x170 [bcache] [<ffffffffa06b637f>] bch_journal_replay+0x13f/0x230 [bcache] [<ffffffffa06c75fe>] run_cache_set+0x79a/0x7c2 [bcache] [<ffffffffa06c0cf8>] register_bcache+0xd48/0x1310 [bcache] [<ffffffff812f702f>] kobj_attr_store+0xf/0x20 [<ffffffff8125b216>] sysfs_write_file+0xc6/0x140 [<ffffffff811dfbfd>] vfs_write+0xbd/0x1e0 [<ffffffff811e069f>] SyS_write+0x7f/0xe0 [<ffffffff8164c3c9>] system_call_fastpath+0x16/0x1 The stack shows the register thread and allocator thread were getting stuck when registering cache device. I reboot the machine several times, the issue always exsit in this machine. I debug the code, and found the call trace as bellow: register_bcache() ==>run_cache_set() ==>bch_journal_replay() ==>bch_btree_insert() ==>__bch_btree_map_nodes() ==>btree_insert_fn() ==>btree_split() //node need split ==>btree_check_reserve() In btree_check_reserve(), It will check if there is enough buckets of RESERVE_BTREE type, since allocator thread did not work yet, so no buckets of RESERVE_BTREE type allocated, so the register thread waits on c->btree_cache_wait, and goes to sleep. Then the allocator thread initialized, the call trace is bellow: bch_allocator_thread() ==>bch_prio_write() ==>bch_journal_meta() ==>bch_journal() ==>journal_wait_for_write() In journal_wait_for_write(), It will check if journal is full by journal_full(), but the long time random small IO writing causes the exhaustion of journal buckets(journal.blocks_free=0), In order to release the journal buckets, the allocator calls btree_flush_write() to flush keys to btree nodes, and waits on c->journal.wait until btree nodes writing over or there has already some journal buckets space, then the allocator thread goes to sleep. but in btree_flush_write(), since bch_journal_replay() is not finished, so no btree nodes have journal (condition "if (btree_current_write(b)->journal)" never satisfied), so we got no btree node to flush, no journal bucket released, and allocator sleep all the times. Through the above analysis, we can see that: 1) Register thread wait for allocator thread to allocate buckets of RESERVE_BTREE type; 2) Alloctor thread wait for register thread to replay journal, so it can flush btree nodes and get journal bucket. then they are all got stuck by waiting for each other. Hua Rui provided a patch for me, by allocating some buckets of RESERVE_BTREE type in advance, so the register thread can get bucket when btree node splitting and no need to waiting for the allocator thread. I tested it, it has effect, and register thread run a step forward, but finally are still got stuck, the reason is only 8 bucket of RESERVE_BTREE type were allocated, and in bch_journal_replay(), after 2 btree nodes splitting, only 4 bucket of RESERVE_BTREE type left, then btree_check_reserve() is not satisfied anymore, so it goes to sleep again, and in the same time, alloctor thread did not flush enough btree nodes to release a journal bucket, so they all got stuck again. So we need to allocate more buckets of RESERVE_BTREE type in advance, but how much is enough? By experience and test, I think it should be as much as journal buckets. Then I modify the code as this patch, and test in the machine, and it works. This patch modified base on Hua Rui’s patch, and allocate more buckets of RESERVE_BTREE type in advance to avoid register thread and allocate thread going to wait for each other. [patch v2] ca->sb.njournal_buckets would be 0 in the first time after cache creation, and no journal exists, so just 8 btree buckets is OK. Signed-off-by: Hua Rui <huarui.dev@gmail.com> Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 7ba0d830dc |
bcache: set error_limit correctly
Struct cache uses io_errors for two purposes, - Error decay: when cache set error_decay is set, io_errors is used to generate a small piece of delay when I/O error happens. - I/O errors counter: in order to generate big enough value for error decay, I/O errors counter value is stored by left shifting 20 bits (a.k.a IO_ERROR_SHIFT). In function bch_count_io_errors(), if I/O errors counter reaches cache set error limit, bch_cache_set_error() will be called to retire the whold cache set. But current code is problematic when checking the error limit, see the following code piece from bch_count_io_errors(), 90 if (error) { 91 char buf[BDEVNAME_SIZE]; 92 unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT, 93 &ca->io_errors); 94 errors >>= IO_ERROR_SHIFT; 95 96 if (errors < ca->set->error_limit) 97 pr_err("%s: IO error on %s, recovering", 98 bdevname(ca->bdev, buf), m); 99 else 100 bch_cache_set_error(ca->set, 101 "%s: too many IO errors %s", 102 bdevname(ca->bdev, buf), m); 103 } At line 94, errors is right shifting IO_ERROR_SHIFT bits, now it is real errors counter to compare at line 96. But ca->set->error_limit is initia- lized with an amplified value in bch_cache_set_alloc(), 1545 c->error_limit = 8 << IO_ERROR_SHIFT; It means by default, in bch_count_io_errors(), before 8<<20 errors happened bch_cache_set_error() won't be called to retire the problematic cache device. If the average request size is 64KB, it means bcache won't handle failed device until 512GB data is requested. This is too large to be an I/O threashold. So I believe the correct error limit should be much less. This patch sets default cache set error limit to 8, then in bch_count_io_errors() when errors counter reaches 8 (if it is default value), function bch_cache_set_error() will be called to retire the whole cache set. This patch also removes bits shifting when store or show io_error_limit value via sysfs interface. Nowadays most of SSDs handle internal flash failure automatically by LBA address re-indirect mapping. If an I/O error can be observed by upper layer code, it will be a notable error because that SSD can not re-indirect map the problematic LBA address to an available flash block. This situation indicates the whole SSD will be failed very soon. Therefore setting 8 as the default io error limit value makes sense, it is enough for most of cache devices. Changelog: v2: add reviewed-by from Hannes. v1: initial version for review. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 5138ac6748 |
bcache: fix misleading error message in bch_count_io_errors()
Bcache only does recoverable I/O for read operations by calling cached_dev_read_error(). For write opertions there is no I/O recovery for failed requests. But in bch_count_io_errors() no matter read or write I/Os, before errors counter reaches io error limit, pr_err() always prints "IO error on %, recoverying". For write requests this information is misleading, because there is no I/O recovery at all. This patch adds a parameter 'is_read' to bch_count_io_errors(), and only prints "recovering" by pr_err() when the bio direction is READ. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 2831231d4c |
bcache: reduce cache_set devices iteration by devices_max_used
Member devices of struct cache_set is used to reference all attached bcache devices to this cache set. If it is treated as array of pointers, size of devices[] is indicated by member nr_uuids of struct cache_set. nr_uuids is calculated in drivers/md/super.c:bch_cache_set_alloc(), bucket_bytes(c) / sizeof(struct uuid_entry) Bucket size is determined by user space tool "make-bcache", by default it is 1024 sectors (defined in bcache-tools/make-bcache.c:main()). So default nr_uuids value is 4096 from the above calculation. Every time when bcache code iterates bcache devices of a cache set, all the 4096 pointers are checked even only 1 bcache device is attached to the cache set, that's a wast of time and unncessary. This patch adds a member devices_max_used to struct cache_set. Its value is 1 + the maximum used index of devices[] in a cache set. When iterating all valid bcache devices of a cache set, use c->devices_max_used in for-loop may reduce a lot of useless checking. Personally, my motivation of this patch is not for performance, I use it in bcache debugging, which helps me to narrow down the scape to check valid bcached devices of a cache set. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | 8d29c4426b |
bcache: stop writeback thread after detaching
Currently, when a cached device detaching from cache, writeback thread is not stopped, and writeback_rate_update work is not canceled. For example, after the following command: echo 1 >/sys/block/sdb/bcache/detach you can still see the writeback thread. Then you attach the device to the cache again, bcache will create another writeback thread, for example, after below command: echo ba0fb5cd-658a-4533-9806-6ce166d883b9 > /sys/block/sdb/bcache/attach then you will see 2 writeback threads. This patch stops writeback thread and cancels writeback_rate_update work when cached device detaching from cache. Compare with patch v1, this v2 patch moves code down into the register lock for safety in case of any future changes as Coly and Mike suggested. [edit by mlyle: commit log spelling/formatting] Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Ming Lei | 263663cd3c |
block: convert to bio_first_bvec_all & bio_first_page_all
This patch converts to bio_first_bvec_all() & bio_first_page_all() for retrieving the 1st bvec/page, and prepares for supporting multipage bvec. Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Liang Chen | 330a4db89d |
bcache: explicitly destroy mutex while exiting
mutex_destroy does nothing most of time, but it's better to call it to make the code future proof and it also has some meaning for like mutex debug. As Coly pointed out in a previous review, bcache_exit() may not be able to handle all the references properly if userspace registers cache and backing devices right before bch_debug_init runs and bch_debug_init failes later. So not exposing userspace interface until everything is ready to avoid that issue. Signed-off-by: Liang Chen <liangchen.linux@gmail.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Coly Li <colyli@suse.de> Reviewed-by: Eric Wheeler <bcache@linux.ewheeler.net> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Elena Reshetova | 3b304d24a7 |
bcache: convert cached_dev.count from atomic_t to refcount_t
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable cached_dev.count is used as pure reference counter. Convert it to refcount_t and fix up the operations. Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Yijing Wang | e89d67596e |
bcache: Remove redundant set_capacity
set_capacity() has been called in bcache_device_init(), remove the redundant one. Signed-off-by: Yijing Wang <wangyijing@huawei.com> Reviewed-by: Eric Wheeler <bcache@linux.ewheeler.net> Acked-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Coly Li | 1dbe32ad0a |
bcache: rewrite multiple partitions support
Current partition support of bcache is confusing and buggy. It tries to trace non-continuous device minor numbers by an ida bit string, and mistakenly mixed bcache device index with minor numbers. This design generates several negative results, - Index of bcache device name is not consecutive under /dev/. If there are 3 bcache devices, they name will be, /dev/bcache0, /dev/bcache16, /dev/bcache32 Only bcache code indexes bcache device name is such an interesting way. - First minor number of each bcache device is traced by ida bit string. One bcache device will occupy 16 bits, this is not a good idea. Indeed only one bit is enough. - Because minor number and bcache device index are mixed, a device index is allocated by ida_simple_get(), but an first minor number is sent into ida_simple_remove() to release the device. It confused original author too. Root cause of the above errors is, bcache code should not handle device minor numbers at all! A standard process to support multiple partitions in Linux kernel is, - Device driver provides major device number, and indexes multiple device instances. - Device driver does not allocat nor trace device minor number, only provides a first minor number of a given device instance, and sets how many minor numbers (paritions) the device instance may have. All rested stuffs are handled by block layer code, most of the details can be found from block/{genhd, partition-generic}.c files. This patch re-writes multiple partitions support for bcache. It makes whole things to be more clear, and uses ida bit string in a more efficeint way. - Ida bit string only traces bcache device index, not minor number. For a bcache device with 128 partitions, only one bit in ida bit string is enough. - Device minor number and device index are separated in concept. Device index is used for /dev node naming, and ida bit string trace. Minor number is calculated from device index and only used to initialize first_minor of a bcache device. - It does not follow any standard for 16 partitions on a bcache device. This patch sets 128 partitions on single bcache device at max, this is the limitation from GPT (GUID Partition Table) and supported by fdisk. Considering a typical device minor number is 20 bits width, each bcache device may have 128 partitions (7 bits), there can be 8192 bcache devices existing on system. For most common deployment for a single server in now days, it should be enough. [minor spelling fixes in commit message by Michael Lyle] Signed-off-by: Coly Li <colyli@suse.de> Cc: Eric Wheeler <bcache@lists.ewheeler.net> Cc: Junhui Tang <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | 175206cf9a |
bcache: initialize dirty stripes in flash_dev_run()
bcache uses a Proportion-Differentiation Controller algorithm to control writeback rate to cached devices. In the PD controller algorithm, dirty stripes of thin flash device should not be counted in, because flash only volumes never write back dirty data. Currently dirty stripe counter for thin flash device is not initialized when the thin flash device starts. Which means the following calculation in PD controller will reference an undefined dirty stripes number, and all cached devices attached to the same cache set where the thin flash device lies on may have an inaccurate writeback rate. This patch calles bch_sectors_dirty_init() in flash_dev_run(), to correctly initialize dirty stripe counter when the thin flash device starts to run. This patch also does following parameter data type change, -void bch_sectors_dirty_init(struct cached_dev *dc); +void bch_sectors_dirty_init(struct bcache_device *); to call this function conveniently in flash_dev_run(). (Commit log is composed by Coly Li) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Dan Carpenter | da22f0eea5 |
bcache: silence static checker warning
In olden times, closure_return() used to have a hidden return built in. We removed the hidden return but forgot to add a new return here. If "c" were NULL we would oops on the next line, but fortunately "c" is never NULL. Let's just remove the if statement. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Tang Junhui | 9baf30972b |
bcache: fix for gc and write-back race
gc and write-back get raced (see the email "bcache get stucked" I sended before): gc thread write-back thread | |bch_writeback_thread() |bch_gc_thread() | | |==>read_dirty() |==>bch_btree_gc() | |==>btree_root() //get btree root | | //node write locker | |==>bch_btree_gc_root() | | |==>read_dirty_submit() | |==>write_dirty() | |==>continue_at(cl, | | write_dirty_finish, | | system_wq); | |==>write_dirty_finish()//excute | | //in system_wq | |==>bch_btree_insert() | |==>bch_btree_map_leaf_nodes() | |==>__bch_btree_map_nodes() | |==>btree_root //try to get btree | | //root node read | | //lock | |-----stuck here |==>bch_btree_set_root() |==>bch_journal_meta() |==>bch_journal() |==>journal_try_write() |==>journal_write_unlocked() //journal_full(&c->journal) | //condition satisfied |==>continue_at(cl, journal_write, system_wq); //try to excute | //journal_write in system_wq | //but work queue is excuting | //write_dirty_finish() |==>closure_sync(); //wait journal_write execute | //over and wake up gc, |-------------stuck here |==>release root node write locker This patch alloc a separate work-queue for write-back thread to avoid such race. (Commit log re-organized by Coly Li to pass checkpatch.pl checking) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Acked-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Jan Kara | 4b758df21e |
bcache: Fix leak of bdev reference
If blkdev_get_by_path() in register_bcache() fails, we try to lookup the block device using lookup_bdev() to detect which situation we are in to properly report error. However we never drop the reference returned to us from lookup_bdev(). Fix that. Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Christoph Hellwig | 74d46992e0 |
block: replace bi_bdev with a gendisk pointer and partitions index
This way we don't need a block_device structure to submit I/O. The block_device has different life time rules from the gendisk and request_queue and is usually only available when the block device node is open. Other callers need to explicitly create one (e.g. the lightnvm passthrough code, or the new nvme multipathing code). For the actual I/O path all that we need is the gendisk, which exists once per block device. But given that the block layer also does partition remapping we additionally need a partition index, which is used for said remapping in generic_make_request. Note that all the block drivers generally want request_queue or sometimes the gendisk, so this removes a layer of indirection all over the stack. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
NeilBrown | 47e0fb461f |
blk: make the bioset rescue_workqueue optional.
This patch converts bioset_create() to not create a workqueue by default, so alloctions will never trigger punt_bios_to_rescuer(). It also introduces a new flag BIOSET_NEED_RESCUER which tells bioset_create() to preserve the old behavior. All callers of bioset_create() that are inside block device drivers, are given the BIOSET_NEED_RESCUER flag. biosets used by filesystems or other top-level users do not need rescuing as the bio can never be queued behind other bios. This includes fs_bio_set, blkdev_dio_pool, btrfs_bioset, xfs_ioend_bioset, and one allocated by target_core_iblock.c. biosets used by md/raid do not need rescuing as their usage was recently audited and revised to never risk deadlock. It is hoped that most, if not all, of the remaining biosets can end up being the non-rescued version. Reviewed-by: Christoph Hellwig <hch@lst.de> Credit-to: Ming Lei <ming.lei@redhat.com> (minor fixes) Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |