Remove the quirk for the SBC FITPC. It seems ot have been
required when the default was kbd reboot, but no longer required
now that the default is acpi reboot. Furthermore, BIOS reboot no
longer works for this board as of 2.6.39 or any of the 3.x
kernels.
Signed-off-by: David Hooper <dave@beermex.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/r/20121002142635.17403.59959.stgit@localhost.localdomain
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The patch:
73201dbe x86, suspend: On wakeup always initialize cr4 and EFER
... was incorrectly committed in an intermediate (unfinished) form.
- We need to test CF, not ZF, for a bit test with btl.
- We don't actually need to compute the existence of EFLAGS.ID,
since we set a flag at suspend time if CR4 should be restored.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Link: http://lkml.kernel.org/r/1348529239-17943-1-git-send-email-hpa@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no fundamental reason why we should switch SMEP and SMAP on
during early cpu initialization just to switch them off again. Now
with %eflags and %cr4 forced to be initialized to a clean state, we
only need the one-way enable. Also, make the functions inline to make
them (somewhat) harder to abuse.
This does mean that SMEP and SMAP do not get initialized anywhere near
as early. Even using early_param() instead of __setup() doesn't give
us control early enough to do this during the early cpu initialization
phase. This seems reasonable to me, because SMEP and SMAP should not
matter until we have userspace to protect ourselves from, but it does
potentially make it possible for a bug involving a "leak of
permissions to userspace" to get uncaught.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We already have a flag word to indicate the existence of MISC_ENABLES,
so use the same flag word to indicate existence of cr4 and EFER, and
always restore them if they exist. That way if something passes a
nonzero value when the value *should* be zero, we will still
initialize it.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Link: http://lkml.kernel.org/r/1348529239-17943-1-git-send-email-hpa@linux.intel.com
%cr4 is supposed to reflect a set of features into which the operating
system is opting in. If the BIOS or bootloader leaks bits here, this
is not desirable. Consider a bootloader passing in %cr4.pae set to a
legacy paging kernel, for example -- it will not have any immediate
effect, but the kernel would crash when turning paging on.
A similar argument applies to %eflags, and since we have to look for
%eflags.id being settable we can use a sequence which clears %eflags
as a side effect.
Note that we already do this for x86-64.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348529239-17943-1-git-send-email-hpa@linux.intel.com
With SMAP, the [f][x]rstor_checking() functions are no longer usable
for user-space pointers by applying a simple __force cast. Instead,
create new [f][x]rstor_user() functions which do the proper SMAP
magic.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-3-git-send-email-suresh.b.siddha@intel.com
Reason for merge:
x86/fpu changed the structure of some of the code that x86/smap
changes; mostly fpu-internal.h but also minor changes to the
signal code.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Resolved Conflicts:
arch/x86/ia32/ia32_signal.c
arch/x86/include/asm/fpu-internal.h
arch/x86/kernel/signal.c
Preemption is disabled between kernel_fpu_begin/end() and as such
it is not a good idea to use these routines in kvm_load/put_guest_fpu()
which can be very far apart.
kvm_load/put_guest_fpu() routines are already called with
preemption disabled and KVM already uses the preempt notifier to save
the guest fpu state using kvm_put_guest_fpu().
So introduce __kernel_fpu_begin/end() routines which don't touch
preemption and use them instead of kernel_fpu_begin/end()
for KVM's use model of saving/restoring guest FPU state.
Also with this change (and with eagerFPU model), fix the host cr0.TS vm-exit
state in the case of VMX. For eagerFPU case, host cr0.TS is always clear.
So no need to worry about it. For the traditional lazyFPU restore case,
change the cr0.TS bit for the host state during vm-exit to be always clear
and cr0.TS bit is set in the __vmx_load_host_state() when the FPU
(guest FPU or the host task's FPU) state is not active. This ensures
that the host/guest FPU state is properly saved, restored
during context-switch and with interrupts (using irq_fpu_usable()) not
stomping on the active FPU state.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1348164109.26695.338.camel@sbsiddha-desk.sc.intel.com
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The changes to entry_32.S got missed in checkin:
63bcff2a x86, smap: Add STAC and CLAC instructions to control user space access
The resulting kernel was largely functional but SMAP protection could
have been bypassed.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-9-git-send-email-hpa@linux.intel.com
Signal handling contains a bunch of accesses to individual user space
items, which causes an excessive number of STAC and CLAC
instructions. Instead, let get/put_user_try ... get/put_user_catch()
contain the STAC and CLAC instructions.
This means that get/put_user_try no longer nests, and furthermore that
it is no longer legal to use user space access functions other than
__get/put_user_ex() inside those blocks. However, these macros are
x86-specific anyway and are only used in the signal-handling paths; a
simple reordering of moving the larger subroutine calls out of the
try...catch blocks resolves that problem.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-12-git-send-email-hpa@linux.intel.com
When Supervisor Mode Access Prevention (SMAP) is enabled, access to
userspace from the kernel is controlled by the AC flag. To make the
performance of manipulating that flag acceptable, there are two new
instructions, STAC and CLAC, to set and clear it.
This patch adds those instructions, via alternative(), when the SMAP
feature is enabled. It also adds X86_EFLAGS_AC unconditionally to the
SYSCALL entry mask; there is simply no reason to make that one
conditional.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-9-git-send-email-hpa@linux.intel.com
The STAC/CLAC instructions are only available with SMAP, but on the
other hand they aren't needed if SMAP is not available, or before we
start to run userspace, so construct them as alternatives which start
out as noops and are enabled by the alternatives mechanism.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-7-git-send-email-hpa@linux.intel.com
CPUs with FXSAVE but no XMM/MXCSR (Pentium II from Intel,
Crusoe/TM-3xxx/5xxx from Transmeta, and presumably some of the K6
generation from AMD) ever looked at the mxcsr field during
fxrstor/fxsave. So remove the cpu_has_xmm check in the fx_finit()
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-6-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Add the "eagerfpu=auto" (that selects the default scheme in
enabling eagerfpu) which can override compiled-in boot parameters
like "eagerfpu=on/off" (that force enable/disable eagerfpu).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-5-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
xsaveopt/xrstor support optimized state save/restore by tracking the
INIT state and MODIFIED state during context-switch.
Enable eagerfpu by default for processors supporting xsaveopt.
Can be disabled by passing "eagerfpu=off" boot parameter.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-3-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Decouple non-lazy/eager fpu restore policy from the existence of the xsave
feature. Introduce a synthetic CPUID flag to represent the eagerfpu
policy. "eagerfpu=on" boot paramter will enable the policy.
Requested-by: H. Peter Anvin <hpa@zytor.com>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-2-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fundamental model of the current Linux kernel is to lazily init and
restore FPU instead of restoring the task state during context switch.
This changes that fundamental lazy model to the non-lazy model for
the processors supporting xsave feature.
Reasons driving this model change are:
i. Newer processors support optimized state save/restore using xsaveopt and
xrstor by tracking the INIT state and MODIFIED state during context-switch.
This is faster than modifying the cr0.TS bit which has serializing semantics.
ii. Newer glibc versions use SSE for some of the optimized copy/clear routines.
With certain workloads (like boot, kernel-compilation etc), application
completes its work with in the first 5 task switches, thus taking upto 5 #DNA
traps with the kernel not getting a chance to apply the above mentioned
pre-load heuristic.
iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit
and thus will not work correctly in the presence of lazy restore. Non-lazy
state restore is needed for enabling such features.
Some data on a two socket SNB system:
* Saved 20K DNA exceptions during boot on a two socket SNB system.
* Saved 50K DNA exceptions during kernel-compilation workload.
* Improved throughput of the AVX based checksumming function inside the
kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts
pair.
Also now kernel_fpu_begin/end() relies on the patched
alternative instructions. So move check_fpu() which uses the
kernel_fpu_begin/end() after alternative_instructions().
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com
Merge 32-bit boot fix from,
Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of using unlazy_fpu() check if user_has_fpu() and set/clear
the host TS bits so that the lguest works fine with both the
lazy/non-lazy FPU host models with minimal changes.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-6-git-send-email-suresh.b.siddha@intel.com
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
use kernel_fpu_begin/end() instead of unconditionally accessing cr0 and
saving/restoring just the few used xmm/ymm registers.
This has some advantages like:
* If the task's FPU state is already active, then kernel_fpu_begin()
will just save the user-state and avoiding the read/write of cr0.
In general, cr0 accesses are much slower.
* Manual save/restore of xmm/ymm registers will affect the 'modified' and
the 'init' optimizations brought in the by xsaveopt/xrstor
infrastructure.
* Foward compatibility with future vector register extensions will be a
problem if the xmm/ymm registers are manually saved and restored
(corrupting the extended state of those vector registers).
With this patch, there was no significant difference in the xor throughput
using AVX, measured during boot.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-5-git-send-email-suresh.b.siddha@intel.com
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: NeilBrown <neilb@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
kvm's guest fpu save/restore should be wrapped around
kernel_fpu_begin/end(). This will avoid for example taking a DNA
in kvm_load_guest_fpu() when it tries to load the fpu immediately
after doing unlazy_fpu() on the host side.
More importantly this will prevent the host process fpu from being
corrupted.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-4-git-send-email-suresh.b.siddha@intel.com
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Few lines below we do drop_fpu() which is more safer. Remove the
unnecessary user_fpu_end() in save_xstate_sig(), which allows
the drop_fpu() to ignore any pending exceptions from the user-space
and drop the current fpu.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-3-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
No need to save the state with unlazy_fpu(), that is about to get overwritten
by the state from the signal frame. Instead use drop_fpu() and continue
to restore the new state.
Also fold the stop_fpu_preload() into drop_fpu().
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1345842782-24175-2-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
IOMMU_INIT_POST and IOMMU_INIT_POST_FINISH pass the plain value
0 instead of NULL to __IOMMU_INIT. Fix this and make sparse
happy by doing so.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/1346621506-30857-8-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't remove the __user annotation of the fpstate pointer, but
drop the superfluous void * cast instead.
This fixes the following sparse warnings:
xsave.c:135:15: warning: cast removes address space of expression
xsave.c:135:15: warning: incorrect type in argument 1 (different address spaces)
xsave.c:135:15: expected void const volatile [noderef] <asn:1>*<noident>
[...]
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1346621506-30857-6-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The address calculated by VDSO32_SYMBOL() is a pointer into
userland. Add the __user annotation to fix related sparse
warnings in its users.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Andy Lutomirski <luto@MIT.EDU>
Link: http://lkml.kernel.org/r/1346621506-30857-3-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix the following sparse warnings:
sys_ia32.c:293:38: warning: incorrect type in argument 2 (different address spaces)
sys_ia32.c:293:38: expected unsigned int [noderef] [usertype] <asn:1>*stat_addr
sys_ia32.c:293:38: got unsigned int *stat_addr
Ironically, sys_ia32.h was introduced to fix sparse warnings but
missed that one.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Link: http://lkml.kernel.org/r/1346621506-30857-2-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull CIFS fixes from Steve French.
* 'for-next' of git://git.samba.org/sfrench/cifs-2.6:
CIFS: Fix cifs_do_create error hadnling
cifs: print error code if smb signature verification fails
CIFS: Fix log messages in packet checking for SMB2
CIFS: Protect i_nlink from being negative
Pull networking fixes from David Miller:
1) NLA_PUT* --> nla_put_* conversion got one case wrong in
nfnetlink_log, fix from Patrick McHardy.
2) Missed error return check in ipw2100 driver, from Julia Lawall.
3) PMTU updates in ipv4 were setting the expiry time incorrectly, fix
from Eric Dumazet.
4) SFC driver erroneously reversed src and dst when reporting filters
via ethtool.
5) Memory leak in CAN protocol and wrong setting of IRQF_SHARED in
sja1000 can platform driver, from Alexey Khoroshilov and Sven
Schmitt.
6) Fix multicast traffic scaling regression in ipv4_dst_destroy, only
take the lock when we really need to. From Eric Dumazet.
7) Fix non-root process spoofing in netlink, from Pablo Neira Ayuso.
8) CWND reduction in TCP is done incorrectly during non-SACK recovery,
fix from Yuchung Cheng.
9) Revert netpoll change, and fix what was actually a driver specific
problem. From Amerigo Wang. This should cure bootup hangs with
netconsole some people reported.
10) Fix xen-netfront invoking __skb_fill_page_desc() with a NULL page
pointer. From Ian Campbell.
11) SIP NAT fix for expectiontation creation, from Pablo Neira Ayuso.
12) __ip_rt_update_pmtu() needs RCU locking, from Eric Dumazet.
13) Fix usbnet deadlock on resume, can't use GFP_KERNEL in this
situation. From Oliver Neukum.
14) The davinci ethernet driver triggers an OOPS on removal because it
frees an MDIO object before unregistering it. Fix from Bin Liu.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (41 commits)
net: qmi_wwan: add several new Gobi devices
fddi: 64 bit bug in smt_add_para()
net: ethernet: fix kernel OOPS when remove davinci_mdio module
net/xfrm/xfrm_state.c: fix error return code
net: ipv6: fix error return code
net: qmi_wwan: new device: Foxconn/Novatel E396
usbnet: fix deadlock in resume
cs89x0 : packet reception not working
netfilter: nf_conntrack: fix racy timer handling with reliable events
bnx2x: Correct the ndo_poll_controller call
bnx2x: Move netif_napi_add to the open call
ipv4: must use rcu protection while calling fib_lookup
bnx2x: fix 57840_MF pci id
net: ipv4: ipmr_expire_timer causes crash when removing net namespace
e1000e: DoS while TSO enabled caused by link partner with small MSS
l2tp: avoid to use synchronize_rcu in tunnel free function
gianfar: fix default tx vlan offload feature flag
netfilter: nf_nat_sip: fix incorrect handling of EBUSY for RTCP expectation
xen-netfront: use __pskb_pull_tail to ensure linear area is big enough on RX
netfilter: nfnetlink_log: fix error return code in init path
...
Gobi devices are composite, needing both the qcserial and
qmi_wwan drivers to support all functions. Re-syncing the
list of supported devices with qcserial.
Cc: Aleksander Morgado <aleksander@lanedo.com>
Cc: Thomas Tuttle <ttuttle@chromium.org>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@tempietto.lan>
The intent was to set 4 bytes of data so that's why the sp_len is set
to 4 on the next line. The cast to u_long pointer clears 8 bytes
on 64 bit arches.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@tempietto.lan>
Andreas Bombe reported that the added ktime_t overflow checking added to
timespec_valid in commit 4e8b14526c ("time: Improve sanity checking of
timekeeping inputs") was causing problems with X.org because it caused
timeouts larger then KTIME_T to be invalid.
Previously, these large timeouts would be clamped to KTIME_MAX and would
never expire, which is valid.
This patch splits the ktime_t overflow checking into a new
timespec_valid_strict function, and converts the timekeeping codes
internal checking to use this more strict function.
Reported-and-tested-by: Andreas Bombe <aeb@debian.org>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a set of two bug fixes. One is the ATOMIC problem which is now
causing a compile failure in certain situations. The other is mishandling of
PER_LINUX32 which may also cause user visible effects.
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQEcBAABAgAGBQJQQN+IAAoJEDeqqVYsXL0Mza8H/RZHZSk6xRkMXXnmNXeoPpQT
HH8ILKJtfzLDhsurznNUFcHvUeU0QiwAey9NXTuJ6leXa/f9nsRtE1izejGWbxId
1JQPH0VFz0913y9PtmWMfLedKuQLt3muynKyXbfkUO6jZsfbJK4XcU2rVHHDpPh7
PgbtWQmsOqqpmsR3sN3TcU/NglACCw27V4ZhHqoFfru2loyS84BcjdYRIxoMr6W8
AldXulb0RSBseOQXvDrp5XJMV7i75WYx2EM5l8YfK4rFC/kT0TMaTGfzTLjZRjMd
bgY2e/PEZhCzTK23+d4WtrtghKD+fTtWOJoAx5a1DZP/w/A8S9Lp7xzNJ7X2MD8=
=7In9
-----END PGP SIGNATURE-----
Merge tag 'parisc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6
Pull PARISC fixes from James Bottomley:
"This is a set of two bug fixes. One is the ATOMIC problem which is
now causing a compile failure in certain situations. The other is
mishandling of PER_LINUX32 which may also cause user visible effects.
Signed-off-by: James Bottomley <JBottomley@Parallels.com>"
* tag 'parisc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6:
[PARISC] fix personality flag check in copy_thread()
[PARISC] Redefine ATOMIC_INIT and ATOMIC64_INIT to drop the casts
Pull s390 fixes from Martin Schwidefsky:
"A couple of s390 bug fixes for 3.5-rc4"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/32: Don't clobber personality flags on exec
s390/smp: add missing smp_store_status() for !SMP
s390/dasd: fix ioctl return value
s390: Always use "long" for ssize_t to match size_t
davinci mdio device is not unregistered from mdiobus when removing
the module, which causes BUG_ON() when free the device from mdiobus.
Calling mdiobus_unregister() before mdiobus_free() fixes the issue.
Signed-off-by: Bin Liu <b-liu@ti.com>
Signed-off-by: David S. Miller <davem@davemloft.net>