The atomic helpers automatically send out fake VBLANK events if no
vblanking has been initialized. This would apply to xen, but xen has
its own vblank logic. To avoid interfering with the atomic helpers,
disable automatic vblank events explicitly.
v5:
* update comment
v4:
* separate commit from core vblank changes
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200129120531.6891-16-tzimmermann@suse.de
The current code is a pretty good wtf moment, since we drop the
reference before we use it. It's not a big deal, because a) we only
use the pointer, so doesn't blow up and the real reason b) fb->obj[0]
already holds a full reference for us.
Might as well take the real pointer ins't of complicated games that
baffle.
Reviewed-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Cc: xen-devel@lists.xenproject.org
Link: https://patchwork.freedesktop.org/patch/msgid/20191115092120.4445-7-daniel.vetter@ffwll.ch
Passing the wrong type feels icky, everywhere else we use the pipe as
the first parameter. Spotted while discussing patches with Thomas
Zimmermann.
v2: Make xen compile correctly
Acked-By: Thomas Zimmermann <tzimmermann@suse.de> (v1)
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: Noralf Trønnes <noralf@tronnes.org>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Eric Anholt <eric@anholt.net>
Cc: Emil Velikov <emil.velikov@collabora.com>
Cc: virtualization@lists.linux-foundation.org
Cc: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023101256.20509-1-daniel.vetter@ffwll.ch
Static structure fb_funcs, of type drm_framebuffer_funcs, is used only
when it is passed to drm_gem_fb_create_with_funcs() as its last
argument. drm_gem_fb_create_with_funcs does not modify its lst argument
(fb_funcs) and hence fb_funcs is never modified. Therefore make fb_funcs
constant to protect it from further modification.
Issue found with Coccinelle.
Signed-off-by: Nishka Dasgupta <nishkadg.linux@gmail.com>
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Reviewed-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190813062712.24993-1-nishkadg.linux@gmail.com
There is no need to have the 'struct drm_framebuffer *fb' variable
static since new value always be assigned before use it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Link: https://patchwork.freedesktop.org/patch/msgid/1548504338-114487-1-git-send-email-yuehaibing@huawei.com
Having the probe helper stuff (which pretty much everyone needs) in
the drm_crtc_helper.h file (which atomic drivers should never need) is
confusing. Split them out.
To make sure I actually achieved the goal here I went through all
drivers. And indeed, all atomic drivers are now free of
drm_crtc_helper.h includes.
v2: Make it compile. There was so much compile fail on arm drivers
that I figured I'll better not include any of the acks on v1.
v3: Massive rebase because i915 has lost a lot of drmP.h includes, but
not all: Through drm_crtc_helper.h > drm_modeset_helper.h -> drmP.h
there was still one, which this patch largely removes. Which means
rolling out lots more includes all over.
This will also conflict with ongoing drmP.h cleanup by others I
expect.
v3: Rebase on top of atomic bochs.
v4: Review from Laurent for bridge/rcar/omap/shmob/core bits:
- (re)move some of the added includes, use the better include files in
other places (all suggested from Laurent adopted unchanged).
- sort alphabetically
v5: Actually try to sort them, and while at it, sort all the ones I
touch.
v6: Rebase onto i915 changes.
v7: Rebase once more.
Acked-by: Harry Wentland <harry.wentland@amd.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Acked-by: CK Hu <ck.hu@mediatek.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Acked-by: Liviu Dudau <liviu.dudau@arm.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: virtualization@lists.linux-foundation.org
Cc: etnaviv@lists.freedesktop.org
Cc: linux-samsung-soc@vger.kernel.org
Cc: intel-gfx@lists.freedesktop.org
Cc: linux-mediatek@lists.infradead.org
Cc: linux-amlogic@lists.infradead.org
Cc: linux-arm-msm@vger.kernel.org
Cc: freedreno@lists.freedesktop.org
Cc: nouveau@lists.freedesktop.org
Cc: spice-devel@lists.freedesktop.org
Cc: amd-gfx@lists.freedesktop.org
Cc: linux-renesas-soc@vger.kernel.org
Cc: linux-rockchip@lists.infradead.org
Cc: linux-stm32@st-md-mailman.stormreply.com
Cc: linux-tegra@vger.kernel.org
Cc: xen-devel@lists.xen.org
Link: https://patchwork.freedesktop.org/patch/msgid/20190117210334.13234-1-daniel.vetter@ffwll.ch
Add support for Xen para-virtualized frontend display driver.
Accompanying backend [1] is implemented as a user-space application
and its helper library [2], capable of running as a Weston client
or DRM master.
Configuration of both backend and frontend is done via
Xen guest domain configuration options [3].
Driver limitations:
1. Only primary plane without additional properties is supported.
2. Only one video mode supported which resolution is configured
via XenStore.
3. All CRTCs operate at fixed frequency of 60Hz.
1. Implement Xen bus state machine for the frontend driver according to
the state diagram and recovery flow from display para-virtualized
protocol: xen/interface/io/displif.h.
2. Read configuration values from Xen store according
to xen/interface/io/displif.h protocol:
- read connector(s) configuration
- read buffer allocation mode (backend/frontend)
3. Handle Xen event channels:
- create for all configured connectors and publish
corresponding ring references and event channels in Xen store,
so backend can connect
- implement event channels interrupt handlers
- create and destroy event channels with respect to Xen bus state
4. Implement shared buffer handling according to the
para-virtualized display device protocol at xen/interface/io/displif.h:
- handle page directories according to displif protocol:
- allocate and share page directories
- grant references to the required set of pages for the
page directory
- allocate xen balllooned pages via Xen balloon driver
with alloc_xenballooned_pages/free_xenballooned_pages
- grant references to the required set of pages for the
shared buffer itself
- implement pages map/unmap for the buffers allocated by the
backend (gnttab_map_refs/gnttab_unmap_refs)
5. Implement kernel modesetiing/connector handling using
DRM simple KMS helper pipeline:
- implement KMS part of the driver with the help of DRM
simple pipepline helper which is possible due to the fact
that the para-virtualized driver only supports a single
(primary) plane:
- initialize connectors according to XenStore configuration
- handle frame done events from the backend
- create and destroy frame buffers and propagate those
to the backend
- propagate set/reset mode configuration to the backend on display
enable/disable callbacks
- send page flip request to the backend and implement logic for
reporting backend IO errors on prepare fb callback
- implement virtual connector handling:
- support only pixel formats suitable for single plane modes
- make sure the connector is always connected
- support a single video mode as per para-virtualized driver
configuration
6. Implement GEM handling depending on driver mode of operation:
depending on the requirements for the para-virtualized environment,
namely requirements dictated by the accompanying DRM/(v)GPU drivers
running in both host and guest environments, number of operating
modes of para-virtualized display driver are supported:
- display buffers can be allocated by either
frontend driver or backend
- display buffers can be allocated to be contiguous
in memory or not
Note! Frontend driver itself has no dependency on contiguous memory for
its operation.
6.1. Buffers allocated by the frontend driver.
The below modes of operation are configured at compile-time via
frontend driver's kernel configuration.
6.1.1. Front driver configured to use GEM CMA helpers
This use-case is useful when used with accompanying DRM/vGPU driver
in guest domain which was designed to only work with contiguous
buffers, e.g. DRM driver based on GEM CMA helpers: such drivers can
only import contiguous PRIME buffers, thus requiring frontend driver
to provide such. In order to implement this mode of operation
para-virtualized frontend driver can be configured to use
GEM CMA helpers.
6.1.2. Front driver doesn't use GEM CMA
If accompanying drivers can cope with non-contiguous memory then, to
lower pressure on CMA subsystem of the kernel, driver can allocate
buffers from system memory.
Note! If used with accompanying DRM/(v)GPU drivers this mode of operation
may require IOMMU support on the platform, so accompanying DRM/vGPU
hardware can still reach display buffer memory while importing PRIME
buffers from the frontend driver.
6.2. Buffers allocated by the backend
This mode of operation is run-time configured via guest domain
configuration through XenStore entries.
For systems which do not provide IOMMU support, but having specific
requirements for display buffers it is possible to allocate such buffers
at backend side and share those with the frontend.
For example, if host domain is 1:1 mapped and has DRM/GPU hardware
expecting physically contiguous memory, this allows implementing
zero-copying use-cases.
Note, while using this scenario the following should be considered:
a) If guest domain dies then pages/grants received from the backend
cannot be claimed back
b) Misbehaving guest may send too many requests to the
backend exhausting its grant references and memory
(consider this from security POV).
Note! Configuration options 1.1 (contiguous display buffers) and 2
(backend allocated buffers) are not supported at the same time.
7. Handle communication with the backend:
- send requests and wait for the responses according
to the displif protocol
- serialize access to the communication channel
- time-out used for backend communication is set to 3000 ms
- manage display buffers shared with the backend
[1] https://github.com/xen-troops/displ_be
[2] https://github.com/xen-troops/libxenbe
[3] https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=docs/man/xl.cfg.pod.5.in;h=a699367779e2ae1212ff8f638eff0206ec1a1cc9;hb=refs/heads/master#l1257
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20180403112317.28751-2-andr2000@gmail.com