Add 'enable_cpu_hotplug' flag and when cleared, the hotplug control file
("online") will not be added under /sys/devices/system/cpu/cpuX/
Next patch doing PCI quirks will use this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: "Li, Shaohua" <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Mechanism of selecting physical mode in genapic when cpu hotplug is enabled on
x86_64, broke the quirk(quirk_intel_irqbalance()) introduced for working
around the transposing interrupt message errata in E7520/E7320/E7525 (revision
ID 0x9 and below. errata #23 in
http://download.intel.com/design/chipsets/specupdt/30304203.pdf).
This errata requires the mode to be in logical flat, so that interrupts can be
directed to more than one cpu(and thus use hardware IRQ balancing enabled by
BIOS on these platforms).
Following four patches fixes this by moving the quirk to early quirk and
forcing the x86_64 genapic selection to logical flat on these platforms.
Thanks to Shaohua for pointing out the breakage.
This patch:
Add write_pci_config_byte() to direct PCI access routines
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: "Li, Shaohua" <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
o Convert more absolute symbols to section relative to keep the theme in
vmlinux.lds.S file and to avoid problem if kernel is relocated.
o Also put a message so that in future people can be aware of it and
avoid introducing absolute symbols.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Make the needlessly global alloc_gdt() static.
(against) pda-percpu-init
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Until not so long ago, there were system log messages pointing to
inconsistent MTRR setup of the video frame buffer caused by the way vesafb
and X worked. While vesafb was fixed meanwhile, I believe fixing it there
only hides a shortcoming in the MTRR code itself, in that that code is not
symmetric with respect to the ordering of attempts to set up two (or more)
regions where one contains the other. In the current shape, it permits
only setting up sub-regions of pre-exisiting ones. The patch below makes
this symmetric.
While working on that I noticed a few more inconsistencies in that code,
namely
- use of 'unsigned int' for sizes in many, but not all places (the patch
is converting this to use 'unsigned long' everywhere, which specifically
might be necessary for x86-64 once a processor supporting more than 44
physical address bits would become available)
- the code to correct inconsistent settings during secondary processor
startup tried (if necessary) to correct, among other things, the value
in IA32_MTRR_DEF_TYPE, however the newly computed value would never get
used (i.e. stored in the respective MSR)
- the generic range validation code checked that the end of the
to-be-added range would be above 1MB; the value checked should have been
the start of the range
- when contained regions are detected, previously this was allowed only
when the old region was uncacheable; this can be symmetric (i.e. the new
region can also be uncacheable) and even further as per Intel's
documentation write-trough and write-back for either region is also
compatible with the respective opposite in the other
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Just like on x86-64, don't touch foreign CPUs' memory if the watchdog
isn't enabled at all.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
While not strictly required with the current code (as the upper half of
page table entries generated by __set_fixmap() cannot be non-zero due
to the second parameter of this function being 'unsigned long'), the
use of set_pte() in __set_fixmap() in the context of clear_fixmap() is
still improper with CONFIG_X86_PAE (see the respective comment in
include/asm-i386/pgtable-3level.h) and would turn into a bug if that
second parameter ever gets changed to a 64-bit type.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
gcc doesn't support -mtune=core2 yet, but will be soon. Use -mtune=generic or -mtune=i686
as fallback
TBD need benchmarking for INTEL_USERCOPY etc. So far I used the same defaults as MPENTIUMM
Signed-off-by: Andi Kleen <ak@suse.de>
Add a way to disable the timer IRQ routing check via a boot option. The
VMI timer code uses this to avoid triggering the pester Mingo code, which
probes for some very unusual and broken motherboard routings. It fires
100% of the time when using a paravirtual delay mechanism instead of using
a realtime delay, since there is no elapsed real time, and the 4 timer IRQs
have not yet been delivered.
In addition, it is entirely possible, though improbable, that this bug
could surface on real hardware which picks a particularly bad time to enter
SMM mode, causing a long latency during one of the timer IRQs.
While here, make check_timer be __init.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andi Kleen <ak@suse.de>
[chrisw: use no_timer_check to bring inline with x86_64 as per Andi's request]
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
BIOS ROM areas may not be mapped into the guest address space, so be careful
when touching those addresses to make sure they appear to be mapped.
[akpm@osdl.org: fix unused var warning]
AK: Changed __get_user to probe_kernel_address
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Add the three bare TLB accessor functions to paravirt-ops. Most amusingly,
flush_tlb is redefined on SMP, so I can't call the paravirt op flush_tlb.
Instead, I chose to indicate the actual flush type, kernel (global) vs. user
(non-global). Global in this sense means using the global bit in the page
table entry, which makes TLB entries persistent across CR3 reloads, not
global as in the SMP sense of invoking remote shootdowns, so the term is
confusingly overloaded.
AK: folded in fix from Zach for PAE compilation
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Add APIC accessors to paravirt-ops. Unfortunately, we need two write
functions, as some older broken hardware requires workarounds for
Pentium APIC errata - this is the purpose of apic_write_atomic.
AK: replaced __inline with inline
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Two legacy power management modes are much easier to just explicitly disable
when running in paravirtualized mode - neither APM nor PnP is still relevant.
The status of ACPI is still debatable, and noacpi is still a common enough
boot parameter that it is not necessary to explicitly disable ACPI.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Allow selected bug checks to be skipped by paravirt kernels. The two most
important are the F00F workaround (which is either done by the hypervisor,
or not required), and the 'hlt' instruction check, which can break under
some hypervisors.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
1) Each hypervisor writes a probe function to detect whether we are
running under that hypervisor. paravirt_probe() registers this
function.
2) If vmlinux is booted with ring != 0, we call all the probe
functions (with registers except %esp intact) in link order: the
winner will not return.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Both lhype and Xen want to call the core of the x86 cpu detect code before
calling start_kernel.
(extracted from larger patch)
AK: folded in start_kernel header patch
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
It turns out that the most called ops, by several orders of magnitude,
are the interrupt manipulation ops. These are obvious candidates for
patching, so mark them up and create infrastructure for it.
The method used is that the ops structure has a patch function, which
is called for each place which needs to be patched: this returns a
number of instructions (the rest are NOP-padded).
Usually we can spare a register (%eax) for the binary patched code to
use, but in a couple of critical places in entry.S we can't: we make
the clobbers explicit at the call site, and manually clobber the
allowed registers in debug mode as an extra check.
And:
Don't abuse CONFIG_DEBUG_KERNEL, add CONFIG_DEBUG_PARAVIRT.
And:
AK: Fix warnings in x86-64 alternative.c build
And:
AK: Fix compilation with defconfig
And:
^From: Andrew Morton <akpm@osdl.org>
Some binutlises still like to emit references to __stop_parainstructions and
__start_parainstructions.
And:
AK: Fix warnings about unused variables when PARAVIRT is disabled.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Create a paravirt.h header for all the critical operations which need to be
replaced with hypervisor calls, and include that instead of defining native
operations, when CONFIG_PARAVIRT.
This patch does the dumbest possible replacement of paravirtualized
instructions: calls through a "paravirt_ops" structure. Currently these are
function implementations of native hardware: hypervisors will override the ops
structure with their own variants.
All the pv-ops functions are declared "fastcall" so that a specific
register-based ABI is used, to make inlining assember easier.
And:
+From: Andy Whitcroft <apw@shadowen.org>
The paravirt ops introduce a 'weak' attribute onto memory_setup().
Code ordering leads to the following warnings on x86:
arch/i386/kernel/setup.c:651: warning: weak declaration of
`memory_setup' after first use results in unspecified behavior
Move memory_setup() to avoid this.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
IOPL is implicitly saved and restored on task switch,
so explicit check is no longer needed.
Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Makes the intention of the code cleaner to read and avoids
a potential deadlock on mmap_sem. Also change the types of
the arguments to not include __user because they're really
not user addresses.
Signed-off-by: Andi Kleen <ak@suse.de>
The entry.S code at work_notifysig is surely wrong. It drops into unrelated
code if the branch to work_notifysig_v86 is taken, and CONFIG_VM86=n.
[PATCH] Make vm86 support optional
tree 9b5daef528
pushed to git Jan 8, 2006, and first appears in 2.6.16
The 'fix' here is to also compile out the vm86 test & branch when
CONFIG_VM86=n.
Signed-off-by: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Extend bzImage protocol to enable bootloaders to load a completely relocatable
bzImage. Now protected mode component of kernel is also relocatable and a
boot-loader can load the protected mode component at a differnt physical
address than 1MB. (If kernel was built with CONFIG_RELOCATABLE)
Kexec can make use of it to load this kernel at a different physical address
to capture kernel crash dumps.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
o Now CONFIG_PHYSICAL_START is being replaced with CONFIG_PHYSICAL_ALIGN.
Hardcoding the kernel physical start value creates a problem in relocatable
kernel context due to boot loader limitations. For ex, if somebody
compiles a relocatable kernel to be run from address 4MB, but this kernel
will run from location 1MB as grub loads the kernel at physical address
1MB. Kernel thinks that I am a relocatable kernel and I should run from
the address I have been loaded at. So somebody wanting to run kernel
from 4MB alignment location (for improved performance regions) can't do
that.
o Hence, Eric proposed that probably CONFIG_PHYSICAL_ALIGN will make
more sense in relocatable kernel context. At run time kernel will move
itself to a physical addr location which meets user specified alignment
restrictions.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
o Relocations generated w.r.t absolute symbols are not processed as by
definition, absolute symbols are not to be relocated. Explicitly warn
user about absolutions relocations present at compile time.
o These relocations get introduced either due to linker optimizations or
some programming oversights.
o Also create a list of symbols which have been audited to be safe and
don't emit warnings for these.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
This patch modifies the i386 kernel so that if CONFIG_RELOCATABLE is
selected it will be able to be loaded at any 4K aligned address below
1G. The technique used is to compile the decompressor with -fPIC and
modify it so the decompressor is fully relocatable. For the main
kernel relocations are generated. Resulting in a kernel that is relocatable
with no runtime overhead and no need to modify the source code.
A reserved 32bit word in the parameters has been assigned
to serve as a stack so we figure out where are running.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Defining __PHYSICAL_START and __KERNEL_START in asm-i386/page.h works but
it triggers a full kernel rebuild for the silliest of reasons. This
modifies the users to directly use CONFIG_PHYSICAL_START and linux/config.h
which prevents the full rebuild problem, which makes the code much
more maintainer and hopefully user friendly.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Currently when we are reserving the memory the kernel text
resides in we start at __PHYSICAL_START which happens to be
correct but not very obvious. In addition when we start relocating
the kernel __PHYSICAL_START is the wrong value, as it is an
absolute symbol that does not get relocated.
By starting the reservation at __pa_symbol(_text)
the code is clearer and will be correct when relocated.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Ld knows about 2 kinds of symbols, absolute and section
relative. Section relative symbols symbols change value
when a section is moved and absolute symbols do not.
Currently in the linker script we have several labels
marking the beginning and ending of sections that
are outside of sections, making them absolute symbols.
Having a mixture of absolute and section relative
symbols refereing to the same data is currently harmless
but it is confusing.
This must be done carefully as newer revs of ld do not place
symbols that appear in sections without data and instead
ld makes those symbols global :(
My ultimate goal is to build a relocatable kernel. The
safest and least intrusive technique is to generate
relocation entries so the kernel can be relocated at load
time. The only penalty would be an increase in the size
of the kernel binary. The problem is that if absolute and
relocatable symbols are not properly specified absolute symbols
will be relocated or section relative symbols won't be, which
is fatal.
The practical motivation is that when generating kernels that
will run from a reserved area for analyzing what caused
a kernel panic, it is simpler if you don't need to hard code
the physical memory location they will run at, especially
for the distributions.
[AK: and merged:]
o Also put a message so that in future people can be aware of it and
avoid introducing absolute symbols.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
On modern systems RAM errors don't cause NMIs, but it's usually
caused by PCI SERR. Mention PCI instead of RAM in the printk.
Reported by r_hayashi@ctc-g.co.jp (Ryutaro Hayashi)
Cc: r_hayashi@ctc-g.co.jp
Signed-off-by: Andi Kleen <ak@suse.de>
Resending as I believe the discussion about them established they were
correct.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Currently the idle loop has two nested loops -- one high level
in cpu_idle and in some low level idle functions another one.
Looping in the low level idle functions breaks the idle notifiers
because interrupts waking up sleep states need to execute
exit_idle() which is only in cpu_idle().
So don't do that, only loop in cpu_idle(). This only removes
code.
In some cases e.g. poll_idle the idle loop is a little longer
now because cpu_idle checks more things. I hope that isn't a problem
ACPI idle doesn't change behaviour because it never looped anyways.
Cc: len.brown@intel.com
Cc: eranian@hpl.hp.com
Signed-off-by: Andi Kleen <ak@suse.de>
Use the pcurrent field in the PDA to implement the "current" macro. This ends
up compiling down to a single instruction to get the current task.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Use the cpu_number in the PDA to implement raw_smp_processor_id. This is a
little simpler than using thread_info, though the cpu field in thread_info
cannot be removed since it is used for things other than getting the current
CPU in common code.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
sys_vm86 uses a struct kernel_vm86_regs, which is identical to pt_regs, but
adds an extra space for all the segment registers. Previously this structure
was completely independent, so changes in pt_regs had to be reflected in
kernel_vm86_regs. This changes just embeds pt_regs in kernel_vm86_regs, and
makes the appropriate changes to vm86.c to deal with the new naming.
Also, since %gs is dealt with differently in the kernel, this change adjusts
vm86.c to reflect this.
While making these changes, I also cleaned up some frankly bizarre code which
was added when auditing was added to sys_vm86.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
There are a few places where the change in struct pt_regs and the use of %gs
affect the userspace ABI. These are primarily debugging interfaces where
thread state can be inspected or extracted.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This patch is the meat of the PDA change. This patch makes several related
changes:
1: Most significantly, %gs is now used in the kernel. This means that on
entry, the old value of %gs is saved away, and it is reloaded with
__KERNEL_PDA.
2: entry.S constructs the stack in the shape of struct pt_regs, and this
is passed around the kernel so that the process's saved register
state can be accessed.
Unfortunately struct pt_regs doesn't currently have space for %gs
(or %fs). This patch extends pt_regs to add space for gs (no space
is allocated for %fs, since it won't be used, and it would just
complicate the code in entry.S to work around the space).
3: Because %gs is now saved on the stack like %ds, %es and the integer
registers, there are a number of places where it no longer needs to
be handled specially; namely context switch, and saving/restoring the
register state in a signal context.
4: And since kernel threads run in kernel space and call normal kernel
code, they need to be created with their %gs == __KERNEL_PDA.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>