The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.
If NSEC_PER_TICK is not an integer multiple of HZ this computation is less
accurate than TICK_NSEC which has proper rounding in place.
Aside of the inaccuracy there is no reason for having this variable at
all. It's just a pointless indirection and all usage sites can just use the
TICK_NSEC constant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.766643526@linutronix.de
seqlock consists of a sequence counter and a spinlock_t which is used to
serialize the writers. spinlock_t is substituted by a "sleeping" spinlock
on PREEMPT_RT enabled kernels which breaks the usage in the timekeeping
code as the writers are executed in hard interrupt and therefore
non-preemptible context even on PREEMPT_RT.
The spinlock in seqlock cannot be unconditionally replaced by a
raw_spinlock_t as many seqlock users have nesting spinlock sections or
other code which is not suitable to run in truly atomic context on RT.
Instead of providing a raw_seqlock API for a single use case, open code the
seqlock for the jiffies use case and implement it with a raw_spinlock_t and
a sequence counter.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.120587764@linutronix.de
Suspend to IDLE invokes tick_unfreeze() on resume. tick_unfreeze() on the
first resuming CPU resumes timekeeping, which also has the side effect of
resetting the softlockup watchdog on this CPU.
But on the secondary CPUs the watchdog is not reset in the resume /
unfreeze() path, which can result in false softlockup warnings on those
CPUs depending on the time spent in suspend.
Prevent this by clearing the softlock watchdog in the unfreeze path also
on the secondary resuming CPUs.
[ tglx: Massaged changelog ]
Signed-off-by: Chunyan Zhang <chunyan.zhang@unisoc.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200110083902.27276-1-chunyan.zhang@unisoc.com
Pull timer updates from Ingo Molnar:
"This cycle had the following changes:
- Timer tracing improvements (Anna-Maria Gleixner)
- Continued tasklet reduction work: remove the hrtimer_tasklet
(Thomas Gleixner)
- Fix CPU hotplug remove race in the tick-broadcast mask handling
code (Thomas Gleixner)
- Force upper bound for setting CLOCK_REALTIME, to fix ABI
inconsistencies with handling values that are close to the maximum
supported and the vagueness of when uptime related wraparound might
occur. Make the consistent maximum the year 2232 across all
relevant ABIs and APIs. (Thomas Gleixner)
- various cleanups and smaller fixes"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick: Fix typos in comments
tick/broadcast: Fix warning about undefined tick_broadcast_oneshot_offline()
timekeeping: Force upper bound for setting CLOCK_REALTIME
timer/trace: Improve timer tracing
timer/trace: Replace deprecated vsprintf pointer extension %pf by %ps
timer: Move trace point to get proper index
tick/sched: Update tick_sched struct documentation
tick: Remove outgoing CPU from broadcast masks
timekeeping: Consistently use unsigned int for seqcount snapshot
softirq: Remove tasklet_hrtimer
xfrm: Replace hrtimer tasklet with softirq hrtimer
mac80211_hwsim: Replace hrtimer tasklet with softirq hrtimer
Allow the boot CPU/CPU0 to be nohz_full. Have the boot CPU take the
do_timer duty during boot until a housekeeping CPU can take over.
This is supported when CONFIG_PM_SLEEP_SMP is not configured, or when
it is configured and the arch allows suspend on non-zero CPUs.
nohz_full has been trialed at a large supercomputer site and found to
significantly reduce jitter. In order to deploy it in production, they
need CPU0 to be nohz_full because their job control system requires
the application CPUs to start from 0, and the housekeeping CPUs are
placed higher. An equivalent job scheduling that uses CPU0 for
housekeeping could be achieved by modifying their system, but it is
preferable if nohz_full can support their environment without
modification.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-6-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tick_freeze() introduced by suspend-to-idle in commit 124cf9117c ("PM /
sleep: Make it possible to quiesce timers during suspend-to-idle") uses
timekeeping_suspend() instead of syscore_suspend() during
suspend-to-idle. As a consequence generic sched_clock will keep going
because sched_clock_suspend() and sched_clock_resume() are not invoked
during suspend-to-idle which can result in a generic sched_clock wrap.
On a ARM system with suspend-to-idle enabled, sched_clock is registered
as "56 bits at 13MHz, resolution 76ns, wraps every 4398046511101ns", which
means the real wrapping duration is 8796093022202ns.
[ 134.551779] suspend-to-idle suspend (timekeeping_suspend())
[ 1204.912239] suspend-to-idle resume (timekeeping_resume())
......
[ 1206.912239] suspend-to-idle suspend (timekeeping_suspend())
[ 5880.502807] suspend-to-idle resume (timekeeping_resume())
......
[ 6000.403724] suspend-to-idle suspend (timekeeping_suspend())
[ 8035.753167] suspend-to-idle resume (timekeeping_resume())
......
[ 8795.786684] (2)[321:charger_thread]......
[ 8795.788387] (2)[321:charger_thread]......
[ 0.057226] (0)[0:swapper/0]......
[ 0.061447] (2)[0:swapper/2]......
sched_clock was not stopped during suspend-to-idle, and sched_clock_poll
hrtimer was not expired because timekeeping_suspend() was invoked during
suspend-to-idle. It makes sched_clock wrap at kernel time 8796s.
To prevent this, invoke sched_clock_suspend() and sched_clock_resume() in
tick_freeze() together with timekeeping_suspend() and timekeeping_resume().
Fixes: 124cf9117c (PM / sleep: Make it possible to quiesce timers during suspend-to-idle)
Signed-off-by: Chang-An Chen <chang-an.chen@mediatek.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Corey Minyard <cminyard@mvista.com>
Cc: <linux-mediatek@lists.infradead.org>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Stanley Chu <stanley.chu@mediatek.com>
Cc: <kuohong.wang@mediatek.com>
Cc: <freddy.hsin@mediatek.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1553828349-8914-1-git-send-email-chang-an.chen@mediatek.com
The timekeeping code uses a random mix of "unsigned long" and "unsigned
int" for the seqcount snapshots (ratio 14:12). Since the seqlock.h API is
entirely based on unsigned int, use that throughout.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Link: https://lkml.kernel.org/r/20190318195557.20773-1-linux@rasmusvillemoes.dk
"For licencing details see kernel-base/COPYING" and similar license
references have no value over the SPDX identifier. Remove them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Link: https://lkml.kernel.org/r/20181031182252.963632760@linutronix.de
Update the time(r) core files files with the correct SPDX license
identifier based on the license text in the file itself. The SPDX
identifier is a legally binding shorthand, which can be used instead of the
full boiler plate text.
This work is based on a script and data from Philippe Ombredanne, Kate
Stewart and myself. The data has been created with two independent license
scanners and manual inspection.
The following files do not contain any direct license information and have
been omitted from the big initial SPDX changes:
timeconst.bc: The .bc files were not touched
time.c, timer.c, timekeeping.c: Licence was deduced from EXPORT_SYMBOL_GPL
As those files do not contain direct license references they fall under the
project license, i.e. GPL V2 only.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20181031182252.879109557@linutronix.de
Remove the pointless filenames in the top level comments. They have no
value at all and just occupy space. While at it tidy up some of the
comments and remove a stale one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Link: https://lkml.kernel.org/r/20181031182252.794898238@linutronix.de
This reverts commit 1332a90558.
The original issue was not because of incorrect checking of cpumask for
both new and old tick device. It was incorrectly analysed was due to the
misunderstanding of the comment and misinterpretation of the return value
from tick_check_preferred. The main issue is with the clockevent driver
that sets the cpumask to cpu_all_mask instead of cpu_possible_mask.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kevin Hilman <khilman@baylibre.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/1531151136-18297-1-git-send-email-sudeep.holla@arm.com
These include a significant update of the generic power domains (genpd)
and Operating Performance Points (OPP) frameworks, mostly related to
the introduction of power domain performance levels, cpufreq updates
(new driver for Qualcomm Kryo processors, updates of the existing
drivers, some core fixes, schedutil governor improvements), PCI power
management fixes, ACPI workaround for EC-based wakeup events handling
on resume from suspend-to-idle, and major updates of the turbostat
and pm-graph utilities.
Specifics:
- Introduce power domain performance levels into the the generic
power domains (genpd) and Operating Performance Points (OPP)
frameworks (Viresh Kumar, Rajendra Nayak, Dan Carpenter).
- Fix two issues in the runtime PM framework related to the
initialization and removal of devices using device links (Ulf
Hansson).
- Clean up the initialization of drivers for devices in PM domains
(Ulf Hansson, Geert Uytterhoeven).
- Fix a cpufreq core issue related to the policy sysfs interface
causing CPU online to fail for CPUs sharing one cpufreq policy in
some situations (Tao Wang).
- Make it possible to use platform-specific suspend/resume hooks
in the cpufreq-dt driver and make the Armada 37xx DVFS use that
feature (Viresh Kumar, Miquel Raynal).
- Optimize policy transition notifications in cpufreq (Viresh Kumar).
- Improve the iowait boost mechanism in the schedutil cpufreq
governor (Patrick Bellasi).
- Improve the handling of deferred frequency updates in the
schedutil cpufreq governor (Joel Fernandes, Dietmar Eggemann,
Rafael Wysocki, Viresh Kumar).
- Add a new cpufreq driver for Qualcomm Kryo (Ilia Lin).
- Fix and clean up some cpufreq drivers (Colin Ian King, Dmitry
Osipenko, Doug Smythies, Luc Van Oostenryck, Simon Horman,
Viresh Kumar).
- Fix the handling of PCI devices with the DPM_SMART_SUSPEND flag
set and update stale comments in the PCI core PM code (Rafael
Wysocki).
- Work around an issue related to the handling of EC-based wakeup
events in the ACPI PM core during resume from suspend-to-idle if
the EC has been put into the low-power mode (Rafael Wysocki).
- Improve the handling of wakeup source objects in the PM core (Doug
Berger, Mahendran Ganesh, Rafael Wysocki).
- Update the driver core to prevent deferred probe from breaking
suspend/resume ordering (Feng Kan).
- Clean up the PM core somewhat (Bjorn Helgaas, Ulf Hansson, Rafael
Wysocki).
- Make the core suspend/resume code and cpufreq support the RT patch
(Sebastian Andrzej Siewior, Thomas Gleixner).
- Consolidate the PM QoS handling in cpuidle governors (Rafael
Wysocki).
- Fix a possible crash in the hibernation core (Tetsuo Handa).
- Update the rockchip-io Adaptive Voltage Scaling (AVS) driver
(David Wu).
- Update the turbostat utility (fixes, cleanups, new CPU IDs, new
command line options, built-in "Low Power Idle" counters support,
new POLL and POLL% columns) and add an entry for it to MAINTAINERS
(Len Brown, Artem Bityutskiy, Chen Yu, Laura Abbott, Matt Turner,
Prarit Bhargava, Srinivas Pandruvada).
- Update the pm-graph to version 5.1 (Todd Brandt).
- Update the intel_pstate_tracer utility (Doug Smythies).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJbFRzjAAoJEILEb/54YlRxREQQAKD7IjnLA86ZDkmwiwzFa9Cz
OJ0qlKAcMZGjeWH6LYq7lqWtaJ5PcFkBwNB4sRyKFdGPQOX3Ph8ZzILm2j8hhma4
Azn9632P6CoYHABa8Vof+A1BZ/j0aWtvtJEfqXhtF6rAYyWQlF0UmOIRsMs+54a+
Z/w4WuLaX8qYq3JlR60TogNtTIbdUjkjfvxMGrE9OSQ8n4oEhqoF/v0WoTHYLpWw
fu81M378axOu0Sgq1ZQ8GPUdblUqIO97iWwF7k2YUl7D9n5dm4wOhXDz3CLI8Cdb
RkoFFdp8bJIthbc5desKY2XFU1ClY8lxEVMXewFzTGwWMw0OyWgQP0/ZiG+Mujq3
CSbstg8GGpbwQoWU+VrluYa0FtqofV2UaGk1gOuPaojMqaIchRU4Nmbd2U6naNwp
XN7A1DzrOVGEt0ny8ztKH2Oqmj+NOCcRsChlYzdhLQ1wlqG54iCGwAML2ZJF9/Nw
0Sx8hm6eyWLzjSa0L384Msb+v5oqCoac66gPHCl2x7W+3F+jmqx1KbmkI2SRNUAL
7CS9lcImpvC4uZB54Aqya104vfqHiDse7WP0GrKqOmNVucD7hYCPiq/pycLwez+b
V3zLyvly8PsuBIa4AOQGGiK45HGpaKuB4TkRqRyFO0Fb5uL1M+Ld6kJiWlacl4az
STEUjY/90SRQvX3ocGyB
=wqBV
-----END PGP SIGNATURE-----
Merge tag 'pm-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a significant update of the generic power domains
(genpd) and Operating Performance Points (OPP) frameworks, mostly
related to the introduction of power domain performance levels,
cpufreq updates (new driver for Qualcomm Kryo processors, updates of
the existing drivers, some core fixes, schedutil governor
improvements), PCI power management fixes, ACPI workaround for
EC-based wakeup events handling on resume from suspend-to-idle, and
major updates of the turbostat and pm-graph utilities.
Specifics:
- Introduce power domain performance levels into the the generic
power domains (genpd) and Operating Performance Points (OPP)
frameworks (Viresh Kumar, Rajendra Nayak, Dan Carpenter).
- Fix two issues in the runtime PM framework related to the
initialization and removal of devices using device links (Ulf
Hansson).
- Clean up the initialization of drivers for devices in PM domains
(Ulf Hansson, Geert Uytterhoeven).
- Fix a cpufreq core issue related to the policy sysfs interface
causing CPU online to fail for CPUs sharing one cpufreq policy in
some situations (Tao Wang).
- Make it possible to use platform-specific suspend/resume hooks in
the cpufreq-dt driver and make the Armada 37xx DVFS use that
feature (Viresh Kumar, Miquel Raynal).
- Optimize policy transition notifications in cpufreq (Viresh Kumar).
- Improve the iowait boost mechanism in the schedutil cpufreq
governor (Patrick Bellasi).
- Improve the handling of deferred frequency updates in the schedutil
cpufreq governor (Joel Fernandes, Dietmar Eggemann, Rafael Wysocki,
Viresh Kumar).
- Add a new cpufreq driver for Qualcomm Kryo (Ilia Lin).
- Fix and clean up some cpufreq drivers (Colin Ian King, Dmitry
Osipenko, Doug Smythies, Luc Van Oostenryck, Simon Horman, Viresh
Kumar).
- Fix the handling of PCI devices with the DPM_SMART_SUSPEND flag set
and update stale comments in the PCI core PM code (Rafael Wysocki).
- Work around an issue related to the handling of EC-based wakeup
events in the ACPI PM core during resume from suspend-to-idle if
the EC has been put into the low-power mode (Rafael Wysocki).
- Improve the handling of wakeup source objects in the PM core (Doug
Berger, Mahendran Ganesh, Rafael Wysocki).
- Update the driver core to prevent deferred probe from breaking
suspend/resume ordering (Feng Kan).
- Clean up the PM core somewhat (Bjorn Helgaas, Ulf Hansson, Rafael
Wysocki).
- Make the core suspend/resume code and cpufreq support the RT patch
(Sebastian Andrzej Siewior, Thomas Gleixner).
- Consolidate the PM QoS handling in cpuidle governors (Rafael
Wysocki).
- Fix a possible crash in the hibernation core (Tetsuo Handa).
- Update the rockchip-io Adaptive Voltage Scaling (AVS) driver (David
Wu).
- Update the turbostat utility (fixes, cleanups, new CPU IDs, new
command line options, built-in "Low Power Idle" counters support,
new POLL and POLL% columns) and add an entry for it to MAINTAINERS
(Len Brown, Artem Bityutskiy, Chen Yu, Laura Abbott, Matt Turner,
Prarit Bhargava, Srinivas Pandruvada).
- Update the pm-graph to version 5.1 (Todd Brandt).
- Update the intel_pstate_tracer utility (Doug Smythies)"
* tag 'pm-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (128 commits)
tools/power turbostat: update version number
tools/power turbostat: Add Node in output
tools/power turbostat: add node information into turbostat calculations
tools/power turbostat: remove num_ from cpu_topology struct
tools/power turbostat: rename num_cores_per_pkg to num_cores_per_node
tools/power turbostat: track thread ID in cpu_topology
tools/power turbostat: Calculate additional node information for a package
tools/power turbostat: Fix node and siblings lookup data
tools/power turbostat: set max_num_cpus equal to the cpumask length
tools/power turbostat: if --num_iterations, print for specific number of iterations
tools/power turbostat: Add Cannon Lake support
tools/power turbostat: delete duplicate #defines
x86: msr-index.h: Correct SNB_C1/C3_AUTO_UNDEMOTE defines
tools/power turbostat: Correct SNB_C1/C3_AUTO_UNDEMOTE defines
tools/power turbostat: add POLL and POLL% column
tools/power turbostat: Fix --hide Pk%pc10
tools/power turbostat: Build-in "Low Power Idle" counters support
tools/power turbostat: Don't make man pages executable
tools/power turbostat: remove blank lines
tools/power turbostat: a small C-states dump readability immprovement
...
timekeeping suspend/resume calls read_persistent_clock() which takes
rtc_lock. That results in might sleep warnings because at that point
we run with interrupts disabled.
We cannot convert rtc_lock to a raw spinlock as that would trigger
other might sleep warnings.
As a workaround we disable the might sleep warnings by setting
system_state to SYSTEM_SUSPEND before calling sysdev_suspend() and
restoring it to SYSTEM_RUNNING afer sysdev_resume(). There is no lock
contention because hibernate / suspend to RAM is single-CPU at this
point.
In s2idle's case the system_state is set to SYSTEM_SUSPEND before
timekeeping_suspend() which is invoked by the last CPU. In the resume
case it set back to SYSTEM_RUNNING after timekeeping_resume() which is
invoked by the first CPU in the resume case. The other CPUs will block
on tick_freeze_lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bigeasy: cover s2idle in tick_freeze() / tick_unfreeze()]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Checking the equality of cpumask for both new and old tick device doesn't
ensure that it's CPU local device. This will cause issue if a low rating
clockevent tick device is registered first followed by the registration
of higher rating clockevent tick device.
In such case, clockevents_released list will never get emptied as both
the devices get selected as preferred one and we will loop forever in
clockevents_notify_released.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: https://lkml.kernel.org/r/1525881728-4858-1-git-send-email-sudeep.holla@arm.com
Revert commits
92af4dcb4e ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f43 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
7250a4047a ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
d6c7270e91 ("timekeeping: Remove boot time specific code")
f2d6fdbfd2 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
d6ed449afd ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
72199320d4 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")
As stated in the pull request for the unification of CLOCK_MONOTONIC and
CLOCK_BOOTTIME, it was clear that we might have to revert the change.
As reported by several folks systemd and other applications rely on the
documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
changes. After resume daemons time out and other timeout related issues are
observed. Rafael compiled this list:
* systemd kills daemons on resume, after >WatchdogSec seconds
of suspending (Genki Sky). [Verified that that's because systemd uses
CLOCK_MONOTONIC and expects it to not include the suspend time.]
* systemd-journald misbehaves after resume:
systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
corrupted or uncleanly shut down, renaming and replacing.
(Mike Galbraith).
* NetworkManager reports "networking disabled" and networking is broken
after resume 50% of the time (Pavel). [May be because of systemd.]
* MATE desktop dims the display and starts the screensaver right after
system resume (Pavel).
* Full system hang during resume (me). [May be due to systemd or NM or both.]
That happens on debian and open suse systems.
It's sad, that these problems were neither catched in -next nor by those
folks who expressed interest in this change.
Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reported-by: Genki Sky <sky@genki.is>,
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The reason why the
MONOTONIC clock is not forwarded is historical: the original Linux
implementation was using jiffies as a base for the MONOTONIC clock and
jiffies have never been advanced after resume.
At some point when timekeeping was unified in the core code, the
MONONOTIC clock was advanced after resume which also advanced jiffies causing
interesting side effects. As a consequence the the MONOTONIC clock forwarding
was disabled again and the BOOTTIME clock was introduced, which allows to read
time since boot.
Back then it was not possible to completely distangle the MONOTONIC clock and
jiffies because there were still interfaces which exposed the MONOTONIC clock
behaviour based on the timer wheel and therefore jiffies.
As of today none of the MONOTONIC clock facilities depends on jiffies
anymore so the forwarding can be done seperately. This is achieved by
forwarding the variables which are used for the jiffies update after resume
before the tick is restarted,
In timekeeping resume, the change is rather simple. Instead of updating the
offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
spent in suspend.
The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
the REALTIME and the MONOTONIC clocks is the same as before suspend.
There might be side effects in applications, which rely on the
(unfortunately) well documented behaviour of the MONOTONIC clock, but the
downsides of the existing behaviour are probably worse.
There is one obvious issue. Up to now it was possible to retrieve the time
spent in suspend by observing the delta between the MONOTONIC clock and the
BOOTTIME clock. This is not longer available, but the previously introduced
mechanism to read the active non-suspended monotonic time can mitigate that
in a detectable fashion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ktime_set(S,N) was required for the timespec storage type and is still
useful for situations where a Seconds and Nanoseconds part of a time value
needs to be converted. For anything where the Seconds argument is 0, this
is pointless and can be replaced with a simple assignment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
tick_broadcast_oneshot_control got moved from tick-broadcast to
tick-common, but the export stayed in the old place. Fix it up.
Fixes: f32dd11705 'tick/broadcast: Make idle check independent from mode and config'
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently the broadcast busy check, which prevents the idle code from
going into deep idle, works only in one shot mode.
If NOHZ and HIGHRES are off (config or command line) there is no
sanity check at all, so under certain conditions cpus are allowed to
go into deep idle, where the local timer stops, and are not woken up
again because there is no broadcast timer installed or a hrtimer based
broadcast device is not evaluated.
Move tick_broadcast_oneshot_control() into the common code and provide
proper subfunctions for the various config combinations.
The common check in tick_broadcast_oneshot_control() is for the C3STOP
misfeature flag of the local clock event device. If its not set, idle
can proceed. If set, further checks are necessary.
Provide checks for the trivial cases:
- If broadcast is disabled in the config, then return busy
- If oneshot mode (NOHZ/HIGHES) is disabled in the config, return
busy if the broadcast device is hrtimer based.
- If oneshot mode is enabled in the config call the original
tick_broadcast_oneshot_control() function. That function needs
extra checks which will be implemented in seperate patches.
[ Split out from a larger combo patch ]
Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
- ACPICA update to upstream revision 20150515 including basic
support for ACPI 6 features: new ACPI tables introduced by
ACPI 6 (STAO, XENV, WPBT, NFIT, IORT), changes related to the
other tables (DTRM, FADT, LPIT, MADT), new predefined names
(_BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN),
fixes and cleanups (Bob Moore, Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation
in Windows (Rafael J Wysocki).
- Rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling
of DMI quirks that may be involved in that and to make the
code generally more straightforward (Hans de Goede).
- Fixes for the ACPI Embedded Controller (EC) driver related to
the handling of EC transactions (Lv Zheng).
- Fix for a regression related to the ACPI resources management
and resulting from a recent change of ACPI initialization code
ordering (Rafael J Wysocki).
- Fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the
code that switches the platform over to the ACPI mode too
early in the initialization sequence (Rafael J Wysocki).
- Support for the ACPI _CCA device configuration object related
to DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- Cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- Assorted cleanups related to ACPI (Dominik Brodowski. Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- Fix for a long-standing issue causing General Protection Faults
to be generated occasionally on return to user space after resume
from ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- Fix to make the suspend core code return -EBUSY consistently in
all cases when system suspend is aborted due to wakeup detection
(Ruchi Kandoi).
- Support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- New tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- Wakeup sources framework enhancements (Jin Qian).
- New macro for noirq system PM callbacks (Grygorii Strashko).
- Assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should
reduce the overhead of these operations quite a bit, unless the
CPU in question is physically going away (Viresh Kumar, Saravana
Kannan).
- Serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- Assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- New Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- Updates for the common clock operations support code in the PM
core (Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- Fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- Runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJViJdWAAoJEILEb/54YlRx/9gP/3gHoFevNRycvn0VpKqdufCI
Mxy2LBBLlfyW2uD3+NvqvA2WWSo0Cs/LgXa04eAVxPdU7k48s8w+54U23wSouzjW
gfwAmuHxzDR8v0h8X3h6BxNzmkIQHtmDcQlA/cZdHejY/UUw01yxRGNUUZDNbxlm
WXn2nmlBLmGqXTYq0fpBV+3jicUghJqHHsBCqa3VR2yQioHMJG01F4UZMqYTZunN
OIvDUghxByKz6alzdCqlLl1Y0exV6vwWUAzBsl1qHqmHu/bWFSZn3ujNNVrjqHhw
Kl7/8dC2pQkv3Zo3gEVvfQ0onotwWZxGHzPQRdvmxvRnBunQVCi/wynx90yABX/r
PPb/iBNV0mZskbF0zb0GZT3ZZWGA8Z0p3o5JQv2jV4m62qTzx8w50Y5kbn9N1WT+
5bre7AVbVAlGonWszcS9iE+6TOboRz9OD1CCwPFXHItFutlBkau+1hHfFoLM0o9n
LhpGuyszT/EUa1BHkLzuCckFqO2DpbF3N2CKmuTekw0CdgdsvRL2pRByuerk3j7R
WQhlcvBq5YH6j43AuoEZKp8r1iN8oG/iqlrMYQaYWrW9hJaoQOoU8dGJxp/e7gKN
r/qeYjETI+tIsjCbtH5WQzzxDI3gPISAYAtfqs7G34EEo+Lwp6kyRUAF4kDot2V3
ZIyuKMmTu4cdwDETr/O+
=7jTj
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"The rework of backlight interface selection API from Hans de Goede
stands out from the number of commits and the number of affected
places perspective. The cpufreq core fixes from Viresh Kumar are
quite significant too as far as the number of commits goes and because
they should reduce CPU online/offline overhead quite a bit in the
majority of cases.
From the new featues point of view, the ACPICA update (to upstream
revision 20150515) adding support for new ACPI 6 material to ACPICA is
the one that matters the most as some new significant features will be
based on it going forward. Also included is an update of the ACPI
device power management core to follow ACPI 6 (which in turn reflects
the Windows' device PM implementation), a PM core extension to support
wakeup interrupts in a more generic way and support for the ACPI _CCA
device configuration object.
The rest is mostly fixes and cleanups all over and some documentation
updates, including new DT bindings for Operating Performance Points.
There is one fix for a regression introduced in the 4.1 cycle, but it
adds quite a number of lines of code, it wasn't really ready before
Thursday and you were on vacation, so I refrained from pushing it on
the last minute for 4.1.
Specifics:
- ACPICA update to upstream revision 20150515 including basic support
for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO,
XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM,
FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI,
_MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore,
Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation in
Windows (Rafael J Wysocki).
- rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling of
DMI quirks that may be involved in that and to make the code
generally more straightforward (Hans de Goede).
- fixes for the ACPI Embedded Controller (EC) driver related to the
handling of EC transactions (Lv Zheng).
- fix for a regression related to the ACPI resources management and
resulting from a recent change of ACPI initialization code ordering
(Rafael J Wysocki).
- fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the code
that switches the platform over to the ACPI mode too early in the
initialization sequence (Rafael J Wysocki).
- support for the ACPI _CCA device configuration object related to
DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- assorted cleanups related to ACPI (Dominik Brodowski, Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- fix for a long-standing issue causing General Protection Faults to
be generated occasionally on return to user space after resume from
ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- fix to make the suspend core code return -EBUSY consistently in all
cases when system suspend is aborted due to wakeup detection (Ruchi
Kandoi).
- support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- new tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- wakeup sources framework enhancements (Jin Qian).
- new macro for noirq system PM callbacks (Grygorii Strashko).
- assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should reduce
the overhead of these operations quite a bit, unless the CPU in
question is physically going away (Viresh Kumar, Saravana Kannan).
- serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- new Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- updates for the common clock operations support code in the PM core
(Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski)"
* tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits)
cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state
x86: Load __USER_DS into DS/ES after resume
PM / OPP: Add binding for 'opp-suspend'
PM / OPP: Allow multiple OPP tables to be passed via DT
PM / OPP: Add new bindings to address shortcomings of existing bindings
ACPI: Constify ACPI device IDs in documentation
ACPI / enumeration: Document the rules regarding the PRP0001 device ID
ACPI / video: Make acpi_video_unregister_backlight() private
acpi-video-detect: Remove old API
toshiba-acpi: Port to new backlight interface selection API
thinkpad-acpi: Port to new backlight interface selection API
sony-laptop: Port to new backlight interface selection API
samsung-laptop: Port to new backlight interface selection API
msi-wmi: Port to new backlight interface selection API
msi-laptop: Port to new backlight interface selection API
intel-oaktrail: Port to new backlight interface selection API
ideapad-laptop: Port to new backlight interface selection API
fujitsu-laptop: Port to new backlight interface selection API
eeepc-laptop: Port to new backlight interface selection API
dell-wmi: Port to new backlight interface selection API
...
We want to rename dev->state, so provide proper get and set
functions. Rename clockevents_set_state() to
clockevents_switch_state() to avoid confusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Since idle_should_freeze() is defined to always return 'false'
for CONFIG_SUSPEND unset, all of the code depending on it in
cpuidle_idle_call() is not necessary in that case.
Make that code depend on CONFIG_SUSPEND too to avoid building it
when it is not going to be used.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Add suspend/resume tracepoints to tick_freeze() and tick_unfreeze()
to catch when timekeeping is suspended and resumed during suspend-to-idle
so as to be able to check whether or not we enter the "frozen" state
and to measure the time spent in it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer softirq is a leftover from the initial implementation and
serves only the purpose to handle the enqueueing of already expired
timers in the high resolution timer mode. We discussed whether we
change the return value and force all start sites to handle that the
timer is already expired, but that would be a Herculean task and I'm
not sure whether its a good idea to enforce that handling on
everyone.
A simpler solution is to enforce a timer interrupt instead of raising
and scheduling a softirq. Just use the existing infrastructure to do
so and remove all the softirq leftovers.
The HRTIMER softirq enum is now unused, but kept around because trace
parsers rely on the existing numbering.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.840834708@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the cleanup function for a dead cpu and invoke it
directly from the cpu down code. Make it conditional on
CPU_HOTPLUG as well.
Temporary change, will be refined in the future.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased, added clockevents_notify() removal ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1735025.raBZdQHM3m@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the tick_handover call and invoke it explicitely from
the hotplug code. Temporary solution will be cleaned up in later
patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1658173.RkEEILFiQZ@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the new tick_suspend/resume_local() and get rid of the
homebrewn implementation of these in the ARM bL switcher. The
check for the cpumask is completely pointless. There is no harm
to suspend a per cpu tick device unconditionally. If that's a
real issue then we fix it proper at the core level and not with
some completely undocumented hacks in some random core code.
Move the tick internals to the core code, now that this nuisance
is gone.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ rjw: Rebase, changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Link: http://lkml.kernel.org/r/1655112.Ws17YsMfN7@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xen calls on every cpu into tick_resume() which is just wrong.
tick_resume() is for the syscore global suspend/resume
invocation. What XEN really wants is a per cpu local resume
function.
Provide a tick_resume_local() function and use it in XEN.
Also provide a complementary tick_suspend_local() and modify
tick_unfreeze() and tick_freeze(), respectively, to use the
new local tick resume/suspend functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Combined two patches, rebased, modified subject/changelog. ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1698741.eezk9tnXtG@vostro.rjw.lan
[ Merged to latest timers/core. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call.
We are way better off to have explicit calls instead of this
monstrosity. Split out the suspend/resume() calls and invoke
them directly from the call sites.
No locking required at this point because these calls happen
with interrupts disabled and a single cpu online.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased on top of 4.0-rc5. ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/713674030.jVm1qaHuPf@vostro.rjw.lan
[ Rebased on top of latest timers/core. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'enum clock_event_mode' is used for two purposes today:
- to pass mode to the driver of clockevent device::set_mode().
- for managing state of the device for clockevents core.
For supporting new modes/states we have moved away from the
legacy set_mode() callback to new per-mode/state callbacks. New
modes/states shouldn't be exposed to the legacy (now OBSOLOTE)
callbacks and so we shouldn't add new states to 'enum
clock_event_mode'.
Lets have separate enums for the two use cases mentioned above.
Keep using the earlier enum for legacy set_mode() callback and
mark it OBSOLETE. And add another enum to clearly specify the
possible states of a clockevent device.
This also renames the newly added per-mode callbacks to reflect
state changes.
We haven't got rid of 'mode' member of 'struct
clock_event_device' as it is used by some of the clockevent
drivers and it would automatically die down once we migrate
those drivers to the new interface. It ('mode') is only updated
now for the drivers using the legacy interface.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: linaro-kernel@lists.linaro.org
Cc: linaro-networking@linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/b6b0143a8a57bd58352ad35e08c25424c879c0cb.1425037853.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Upcoming patch will redefine possible states of a clockevent
device. The RESUME mode is a special case only for tick's
clockevent devices. In future it can be replaced by ->resume()
callback already available for clockevent devices.
Lets handle it separately so that clockevents_set_mode() only
handles states valid across all devices. This also renames
set_mode_resume() to tick_resume() to make it more explicit.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: linaro-kernel@lists.linaro.org
Cc: linaro-networking@linaro.org
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/c1b0112410870f49e7bf06958e1483eac6c15e20.1425037853.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The efficiency of suspend-to-idle depends on being able to keep CPUs
in the deepest available idle states for as much time as possible.
Ideally, they should only be brought out of idle by system wakeup
interrupts.
However, timer interrupts occurring periodically prevent that from
happening and it is not practical to chase all of the "misbehaving"
timers in a whack-a-mole fashion. A much more effective approach is
to suspend the local ticks for all CPUs and the entire timekeeping
along the lines of what is done during full suspend, which also
helps to keep suspend-to-idle and full suspend reasonably similar.
The idea is to suspend the local tick on each CPU executing
cpuidle_enter_freeze() and to make the last of them suspend the
entire timekeeping. That should prevent timer interrupts from
triggering until an IO interrupt wakes up one of the CPUs. It
needs to be done with interrupts disabled on all of the CPUs,
though, because otherwise the suspended clocksource might be
accessed by an interrupt handler which might lead to fatal
consequences.
Unfortunately, the existing ->enter callbacks provided by cpuidle
drivers generally cannot be used for implementing that, because some
of them re-enable interrupts temporarily and some idle entry methods
cause interrupts to be re-enabled automatically on exit. Also some
of these callbacks manipulate local clock event devices of the CPUs
which really shouldn't be done after suspending their ticks.
To overcome that difficulty, introduce a new cpuidle state callback,
->enter_freeze, that will be guaranteed (1) to keep interrupts
disabled all the time (and return with interrupts disabled) and (2)
not to touch the CPU timer devices. Modify cpuidle_enter_freeze() to
look for the deepest available idle state with ->enter_freeze present
and to make the CPU execute that callback with suspended tick (and the
last of the online CPUs to execute it with suspended timekeeping).
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
This way we unbloat a bit main.c and more importantly we initialize
nohz full after init_IRQ(). This dependency will be needed in further
patches because nohz full needs irq work to raise its own IRQ.
Information about the support for this ability on ARM64 is obtained on
init_IRQ() which initialize the pointer to __smp_call_function.
Since tick_init() is called right after init_IRQ(), this is a good place
to call tick_nohz_init() and prepare for that dependency.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Since the xtime lock was split into the timekeeping lock and
the jiffies lock, we no longer need to call update_wall_time()
while holding the jiffies lock.
Thus, this patch splits update_wall_time() out from do_timer().
This allows us to get away from calling clock_was_set_delayed()
in update_wall_time() and instead use the standard clock_was_set()
call that previously would deadlock, as it causes the jiffies lock
to be acquired.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The recent implementation of a generic dummy timer resulted in a
different registration order of per cpu local timers which made the
broadcast control logic go belly up.
If the dummy timer is the first clock event device which is registered
for a CPU, then it is installed, the broadcast timer is initialized
and the CPU is marked as broadcast target.
If a real clock event device is installed after that, we can fail to
take the CPU out of the broadcast mask. In the worst case we end up
with two periodic timer events firing for the same CPU. One from the
per cpu hardware device and one from the broadcast.
Now the problem is that we have no way to distinguish whether the
system is in a state which makes broadcasting necessary or the
broadcast bit was set due to the nonfunctional dummy timer
installment.
To solve this we need to keep track of the system state seperately and
provide a more detailed decision logic whether we keep the CPU in
broadcast mode or not.
The old decision logic only clears the broadcast mode, if the newly
installed clock event device is not affected by power states.
The new logic clears the broadcast mode if one of the following is
true:
- The new device is not affected by power states.
- The system is not in a power state affected mode
- The system has switched to oneshot mode. The oneshot broadcast is
controlled from the deep idle state. The CPU is not in idle at
this point, so it's safe to remove it from the mask.
If we clear the broadcast bit for the CPU when a new device is
installed, we also shutdown the broadcast device when this was the
last CPU in the broadcast mask.
If the broadcast bit is kept, then we leave the new device in shutdown
state and rely on the broadcast to deliver the timer interrupts via
the broadcast ipis.
Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Mark Rutland <mark.rutland@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On an SMP system with only one global clockevent and a dummy
clockevent per CPU we run into problems. We want the dummy
clockevents to be registered as the per CPU tick devices, but
we can only achieve that if we register the dummy clockevents
before the global clockevent or if we artificially inflate the
rating of the dummy clockevents to be higher than the rating
of the global clockevent. Failure to do so leads to boot
hangs when the dummy timers are registered on all other CPUs
besides the CPU that accepted the global clockevent as its tick
device and there is no broadcast timer to poke the dummy
devices.
If we're registering multiple clockevents and one clockevent is
global and the other is local to a particular CPU we should
choose to use the local clockevent regardless of the rating of
the device. This way, if the clockevent is a dummy it will take
the tick device duty as long as there isn't a higher rated tick
device and any global clockevent will be bumped out into
broadcast mode, fixing the problem described above.
Reported-and-tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: soren.brinkmann@xilinx.com
Cc: John Stultz <john.stultz@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20130613183950.GA32061@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>