/* * Xilinx SystemACE device driver * * Copyright 2007 Secret Lab Technologies Ltd. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ /* * The SystemACE chip is designed to configure FPGAs by loading an FPGA * bitstream from a file on a CF card and squirting it into FPGAs connected * to the SystemACE JTAG chain. It also has the advantage of providing an * MPU interface which can be used to control the FPGA configuration process * and to use the attached CF card for general purpose storage. * * This driver is a block device driver for the SystemACE. * * Initialization: * The driver registers itself as a platform_device driver at module * load time. The platform bus will take care of calling the * ace_probe() method for all SystemACE instances in the system. Any * number of SystemACE instances are supported. ace_probe() calls * ace_setup() which initialized all data structures, reads the CF * id structure and registers the device. * * Processing: * Just about all of the heavy lifting in this driver is performed by * a Finite State Machine (FSM). The driver needs to wait on a number * of events; some raised by interrupts, some which need to be polled * for. Describing all of the behaviour in a FSM seems to be the * easiest way to keep the complexity low and make it easy to * understand what the driver is doing. If the block ops or the * request function need to interact with the hardware, then they * simply need to flag the request and kick of FSM processing. * * The FSM itself is atomic-safe code which can be run from any * context. The general process flow is: * 1. obtain the ace->lock spinlock. * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is * cleared. * 3. release the lock. * * Individual states do not sleep in any way. If a condition needs to * be waited for then the state much clear the fsm_continue flag and * either schedule the FSM to be run again at a later time, or expect * an interrupt to call the FSM when the desired condition is met. * * In normal operation, the FSM is processed at interrupt context * either when the driver's tasklet is scheduled, or when an irq is * raised by the hardware. The tasklet can be scheduled at any time. * The request method in particular schedules the tasklet when a new * request has been indicated by the block layer. Once started, the * FSM proceeds as far as it can processing the request until it * needs on a hardware event. At this point, it must yield execution. * * A state has two options when yielding execution: * 1. ace_fsm_yield() * - Call if need to poll for event. * - clears the fsm_continue flag to exit the processing loop * - reschedules the tasklet to run again as soon as possible * 2. ace_fsm_yieldirq() * - Call if an irq is expected from the HW * - clears the fsm_continue flag to exit the processing loop * - does not reschedule the tasklet so the FSM will not be processed * again until an irq is received. * After calling a yield function, the state must return control back * to the FSM main loop. * * Additionally, the driver maintains a kernel timer which can process * the FSM. If the FSM gets stalled, typically due to a missed * interrupt, then the kernel timer will expire and the driver can * continue where it left off. * * To Do: * - Add FPGA configuration control interface. * - Request major number from lanana */ #undef DEBUG #include <linux/module.h> #include <linux/ctype.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include <linux/ata.h> #include <linux/hdreg.h> #include <linux/platform_device.h> #if defined(CONFIG_OF) #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #endif MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>"); MODULE_DESCRIPTION("Xilinx SystemACE device driver"); MODULE_LICENSE("GPL"); /* SystemACE register definitions */ #define ACE_BUSMODE (0x00) #define ACE_STATUS (0x04) #define ACE_STATUS_CFGLOCK (0x00000001) #define ACE_STATUS_MPULOCK (0x00000002) #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */ #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */ #define ACE_STATUS_CFDETECT (0x00000010) #define ACE_STATUS_DATABUFRDY (0x00000020) #define ACE_STATUS_DATABUFMODE (0x00000040) #define ACE_STATUS_CFGDONE (0x00000080) #define ACE_STATUS_RDYFORCFCMD (0x00000100) #define ACE_STATUS_CFGMODEPIN (0x00000200) #define ACE_STATUS_CFGADDR_MASK (0x0000e000) #define ACE_STATUS_CFBSY (0x00020000) #define ACE_STATUS_CFRDY (0x00040000) #define ACE_STATUS_CFDWF (0x00080000) #define ACE_STATUS_CFDSC (0x00100000) #define ACE_STATUS_CFDRQ (0x00200000) #define ACE_STATUS_CFCORR (0x00400000) #define ACE_STATUS_CFERR (0x00800000) #define ACE_ERROR (0x08) #define ACE_CFGLBA (0x0c) #define ACE_MPULBA (0x10) #define ACE_SECCNTCMD (0x14) #define ACE_SECCNTCMD_RESET (0x0100) #define ACE_SECCNTCMD_IDENTIFY (0x0200) #define ACE_SECCNTCMD_READ_DATA (0x0300) #define ACE_SECCNTCMD_WRITE_DATA (0x0400) #define ACE_SECCNTCMD_ABORT (0x0600) #define ACE_VERSION (0x16) #define ACE_VERSION_REVISION_MASK (0x00FF) #define ACE_VERSION_MINOR_MASK (0x0F00) #define ACE_VERSION_MAJOR_MASK (0xF000) #define ACE_CTRL (0x18) #define ACE_CTRL_FORCELOCKREQ (0x0001) #define ACE_CTRL_LOCKREQ (0x0002) #define ACE_CTRL_FORCECFGADDR (0x0004) #define ACE_CTRL_FORCECFGMODE (0x0008) #define ACE_CTRL_CFGMODE (0x0010) #define ACE_CTRL_CFGSTART (0x0020) #define ACE_CTRL_CFGSEL (0x0040) #define ACE_CTRL_CFGRESET (0x0080) #define ACE_CTRL_DATABUFRDYIRQ (0x0100) #define ACE_CTRL_ERRORIRQ (0x0200) #define ACE_CTRL_CFGDONEIRQ (0x0400) #define ACE_CTRL_RESETIRQ (0x0800) #define ACE_CTRL_CFGPROG (0x1000) #define ACE_CTRL_CFGADDR_MASK (0xe000) #define ACE_FATSTAT (0x1c) #define ACE_NUM_MINORS 16 #define ACE_SECTOR_SIZE (512) #define ACE_FIFO_SIZE (32) #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE) #define ACE_BUS_WIDTH_8 0 #define ACE_BUS_WIDTH_16 1 struct ace_reg_ops; struct ace_device { /* driver state data */ int id; int media_change; int users; struct list_head list; /* finite state machine data */ struct tasklet_struct fsm_tasklet; uint fsm_task; /* Current activity (ACE_TASK_*) */ uint fsm_state; /* Current state (ACE_FSM_STATE_*) */ uint fsm_continue_flag; /* cleared to exit FSM mainloop */ uint fsm_iter_num; struct timer_list stall_timer; /* Transfer state/result, use for both id and block request */ struct request *req; /* request being processed */ void *data_ptr; /* pointer to I/O buffer */ int data_count; /* number of buffers remaining */ int data_result; /* Result of transfer; 0 := success */ int id_req_count; /* count of id requests */ int id_result; struct completion id_completion; /* used when id req finishes */ int in_irq; /* Details of hardware device */ resource_size_t physaddr; void __iomem *baseaddr; int irq; int bus_width; /* 0 := 8 bit; 1 := 16 bit */ struct ace_reg_ops *reg_ops; int lock_count; /* Block device data structures */ spinlock_t lock; struct device *dev; struct request_queue *queue; struct gendisk *gd; /* Inserted CF card parameters */ u16 cf_id[ATA_ID_WORDS]; }; static DEFINE_MUTEX(xsysace_mutex); static int ace_major; /* --------------------------------------------------------------------- * Low level register access */ struct ace_reg_ops { u16(*in) (struct ace_device * ace, int reg); void (*out) (struct ace_device * ace, int reg, u16 val); void (*datain) (struct ace_device * ace); void (*dataout) (struct ace_device * ace); }; /* 8 Bit bus width */ static u16 ace_in_8(struct ace_device *ace, int reg) { void __iomem *r = ace->baseaddr + reg; return in_8(r) | (in_8(r + 1) << 8); } static void ace_out_8(struct ace_device *ace, int reg, u16 val) { void __iomem *r = ace->baseaddr + reg; out_8(r, val); out_8(r + 1, val >> 8); } static void ace_datain_8(struct ace_device *ace) { void __iomem *r = ace->baseaddr + 0x40; u8 *dst = ace->data_ptr; int i = ACE_FIFO_SIZE; while (i--) *dst++ = in_8(r++); ace->data_ptr = dst; } static void ace_dataout_8(struct ace_device *ace) { void __iomem *r = ace->baseaddr + 0x40; u8 *src = ace->data_ptr; int i = ACE_FIFO_SIZE; while (i--) out_8(r++, *src++); ace->data_ptr = src; } static struct ace_reg_ops ace_reg_8_ops = { .in = ace_in_8, .out = ace_out_8, .datain = ace_datain_8, .dataout = ace_dataout_8, }; /* 16 bit big endian bus attachment */ static u16 ace_in_be16(struct ace_device *ace, int reg) { return in_be16(ace->baseaddr + reg); } static void ace_out_be16(struct ace_device *ace, int reg, u16 val) { out_be16(ace->baseaddr + reg, val); } static void ace_datain_be16(struct ace_device *ace) { int i = ACE_FIFO_SIZE / 2; u16 *dst = ace->data_ptr; while (i--) *dst++ = in_le16(ace->baseaddr + 0x40); ace->data_ptr = dst; } static void ace_dataout_be16(struct ace_device *ace) { int i = ACE_FIFO_SIZE / 2; u16 *src = ace->data_ptr; while (i--) out_le16(ace->baseaddr + 0x40, *src++); ace->data_ptr = src; } /* 16 bit little endian bus attachment */ static u16 ace_in_le16(struct ace_device *ace, int reg) { return in_le16(ace->baseaddr + reg); } static void ace_out_le16(struct ace_device *ace, int reg, u16 val) { out_le16(ace->baseaddr + reg, val); } static void ace_datain_le16(struct ace_device *ace) { int i = ACE_FIFO_SIZE / 2; u16 *dst = ace->data_ptr; while (i--) *dst++ = in_be16(ace->baseaddr + 0x40); ace->data_ptr = dst; } static void ace_dataout_le16(struct ace_device *ace) { int i = ACE_FIFO_SIZE / 2; u16 *src = ace->data_ptr; while (i--) out_be16(ace->baseaddr + 0x40, *src++); ace->data_ptr = src; } static struct ace_reg_ops ace_reg_be16_ops = { .in = ace_in_be16, .out = ace_out_be16, .datain = ace_datain_be16, .dataout = ace_dataout_be16, }; static struct ace_reg_ops ace_reg_le16_ops = { .in = ace_in_le16, .out = ace_out_le16, .datain = ace_datain_le16, .dataout = ace_dataout_le16, }; static inline u16 ace_in(struct ace_device *ace, int reg) { return ace->reg_ops->in(ace, reg); } static inline u32 ace_in32(struct ace_device *ace, int reg) { return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16); } static inline void ace_out(struct ace_device *ace, int reg, u16 val) { ace->reg_ops->out(ace, reg, val); } static inline void ace_out32(struct ace_device *ace, int reg, u32 val) { ace_out(ace, reg, val); ace_out(ace, reg + 2, val >> 16); } /* --------------------------------------------------------------------- * Debug support functions */ #if defined(DEBUG) static void ace_dump_mem(void *base, int len) { const char *ptr = base; int i, j; for (i = 0; i < len; i += 16) { printk(KERN_INFO "%.8x:", i); for (j = 0; j < 16; j++) { if (!(j % 4)) printk(" "); printk("%.2x", ptr[i + j]); } printk(" "); for (j = 0; j < 16; j++) printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.'); printk("\n"); } } #else static inline void ace_dump_mem(void *base, int len) { } #endif static void ace_dump_regs(struct ace_device *ace) { dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n" " status:%.8x mpu_lba:%.8x busmode:%4x\n" " error: %.8x cfg_lba:%.8x fatstat:%.4x\n", ace_in32(ace, ACE_CTRL), ace_in(ace, ACE_SECCNTCMD), ace_in(ace, ACE_VERSION), ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_MPULBA), ace_in(ace, ACE_BUSMODE), ace_in32(ace, ACE_ERROR), ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT)); } static void ace_fix_driveid(u16 *id) { #if defined(__BIG_ENDIAN) int i; /* All half words have wrong byte order; swap the bytes */ for (i = 0; i < ATA_ID_WORDS; i++, id++) *id = le16_to_cpu(*id); #endif } /* --------------------------------------------------------------------- * Finite State Machine (FSM) implementation */ /* FSM tasks; used to direct state transitions */ #define ACE_TASK_IDLE 0 #define ACE_TASK_IDENTIFY 1 #define ACE_TASK_READ 2 #define ACE_TASK_WRITE 3 #define ACE_FSM_NUM_TASKS 4 /* FSM state definitions */ #define ACE_FSM_STATE_IDLE 0 #define ACE_FSM_STATE_REQ_LOCK 1 #define ACE_FSM_STATE_WAIT_LOCK 2 #define ACE_FSM_STATE_WAIT_CFREADY 3 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6 #define ACE_FSM_STATE_REQ_PREPARE 7 #define ACE_FSM_STATE_REQ_TRANSFER 8 #define ACE_FSM_STATE_REQ_COMPLETE 9 #define ACE_FSM_STATE_ERROR 10 #define ACE_FSM_NUM_STATES 11 /* Set flag to exit FSM loop and reschedule tasklet */ static inline void ace_fsm_yield(struct ace_device *ace) { dev_dbg(ace->dev, "ace_fsm_yield()\n"); tasklet_schedule(&ace->fsm_tasklet); ace->fsm_continue_flag = 0; } /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */ static inline void ace_fsm_yieldirq(struct ace_device *ace) { dev_dbg(ace->dev, "ace_fsm_yieldirq()\n"); if (!ace->irq) /* No IRQ assigned, so need to poll */ tasklet_schedule(&ace->fsm_tasklet); ace->fsm_continue_flag = 0; } /* Get the next read/write request; ending requests that we don't handle */ static struct request *ace_get_next_request(struct request_queue *q) { struct request *req; while ((req = blk_peek_request(q)) != NULL) { if (!blk_rq_is_passthrough(req)) break; blk_start_request(req); __blk_end_request_all(req, BLK_STS_IOERR); } return req; } static void ace_fsm_dostate(struct ace_device *ace) { struct request *req; u32 status; u16 val; int count; #if defined(DEBUG) dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n", ace->fsm_state, ace->id_req_count); #endif /* Verify that there is actually a CF in the slot. If not, then * bail out back to the idle state and wake up all the waiters */ status = ace_in32(ace, ACE_STATUS); if ((status & ACE_STATUS_CFDETECT) == 0) { ace->fsm_state = ACE_FSM_STATE_IDLE; ace->media_change = 1; set_capacity(ace->gd, 0); dev_info(ace->dev, "No CF in slot\n"); /* Drop all in-flight and pending requests */ if (ace->req) { __blk_end_request_all(ace->req, BLK_STS_IOERR); ace->req = NULL; } while ((req = blk_fetch_request(ace->queue)) != NULL) __blk_end_request_all(req, BLK_STS_IOERR); /* Drop back to IDLE state and notify waiters */ ace->fsm_state = ACE_FSM_STATE_IDLE; ace->id_result = -EIO; while (ace->id_req_count) { complete(&ace->id_completion); ace->id_req_count--; } } switch (ace->fsm_state) { case ACE_FSM_STATE_IDLE: /* See if there is anything to do */ if (ace->id_req_count || ace_get_next_request(ace->queue)) { ace->fsm_iter_num++; ace->fsm_state = ACE_FSM_STATE_REQ_LOCK; mod_timer(&ace->stall_timer, jiffies + HZ); if (!timer_pending(&ace->stall_timer)) add_timer(&ace->stall_timer); break; } del_timer(&ace->stall_timer); ace->fsm_continue_flag = 0; break; case ACE_FSM_STATE_REQ_LOCK: if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) { /* Already have the lock, jump to next state */ ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY; break; } /* Request the lock */ val = ace_in(ace, ACE_CTRL); ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ); ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK; break; case ACE_FSM_STATE_WAIT_LOCK: if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) { /* got the lock; move to next state */ ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY; break; } /* wait a bit for the lock */ ace_fsm_yield(ace); break; case ACE_FSM_STATE_WAIT_CFREADY: status = ace_in32(ace, ACE_STATUS); if (!(status & ACE_STATUS_RDYFORCFCMD) || (status & ACE_STATUS_CFBSY)) { /* CF card isn't ready; it needs to be polled */ ace_fsm_yield(ace); break; } /* Device is ready for command; determine what to do next */ if (ace->id_req_count) ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE; else ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE; break; case ACE_FSM_STATE_IDENTIFY_PREPARE: /* Send identify command */ ace->fsm_task = ACE_TASK_IDENTIFY; ace->data_ptr = ace->cf_id; ace->data_count = ACE_BUF_PER_SECTOR; ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY); /* As per datasheet, put config controller in reset */ val = ace_in(ace, ACE_CTRL); ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET); /* irq handler takes over from this point; wait for the * transfer to complete */ ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER; ace_fsm_yieldirq(ace); break; case ACE_FSM_STATE_IDENTIFY_TRANSFER: /* Check that the sysace is ready to receive data */ status = ace_in32(ace, ACE_STATUS); if (status & ACE_STATUS_CFBSY) { dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n", ace->fsm_task, ace->fsm_iter_num, ace->data_count); ace_fsm_yield(ace); break; } if (!(status & ACE_STATUS_DATABUFRDY)) { ace_fsm_yield(ace); break; } /* Transfer the next buffer */ ace->reg_ops->datain(ace); ace->data_count--; /* If there are still buffers to be transfers; jump out here */ if (ace->data_count != 0) { ace_fsm_yieldirq(ace); break; } /* transfer finished; kick state machine */ dev_dbg(ace->dev, "identify finished\n"); ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE; break; case ACE_FSM_STATE_IDENTIFY_COMPLETE: ace_fix_driveid(ace->cf_id); ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */ if (ace->data_result) { /* Error occurred, disable the disk */ ace->media_change = 1; set_capacity(ace->gd, 0); dev_err(ace->dev, "error fetching CF id (%i)\n", ace->data_result); } else { ace->media_change = 0; /* Record disk parameters */ set_capacity(ace->gd, ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY)); dev_info(ace->dev, "capacity: %i sectors\n", ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY)); } /* We're done, drop to IDLE state and notify waiters */ ace->fsm_state = ACE_FSM_STATE_IDLE; ace->id_result = ace->data_result; while (ace->id_req_count) { complete(&ace->id_completion); ace->id_req_count--; } break; case ACE_FSM_STATE_REQ_PREPARE: req = ace_get_next_request(ace->queue); if (!req) { ace->fsm_state = ACE_FSM_STATE_IDLE; break; } blk_start_request(req); /* Okay, it's a data request, set it up for transfer */ dev_dbg(ace->dev, "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n", (unsigned long long)blk_rq_pos(req), blk_rq_sectors(req), blk_rq_cur_sectors(req), rq_data_dir(req)); ace->req = req; ace->data_ptr = bio_data(req->bio); ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR; ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF); count = blk_rq_sectors(req); if (rq_data_dir(req)) { /* Kick off write request */ dev_dbg(ace->dev, "write data\n"); ace->fsm_task = ACE_TASK_WRITE; ace_out(ace, ACE_SECCNTCMD, count | ACE_SECCNTCMD_WRITE_DATA); } else { /* Kick off read request */ dev_dbg(ace->dev, "read data\n"); ace->fsm_task = ACE_TASK_READ; ace_out(ace, ACE_SECCNTCMD, count | ACE_SECCNTCMD_READ_DATA); } /* As per datasheet, put config controller in reset */ val = ace_in(ace, ACE_CTRL); ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET); /* Move to the transfer state. The systemace will raise * an interrupt once there is something to do */ ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER; if (ace->fsm_task == ACE_TASK_READ) ace_fsm_yieldirq(ace); /* wait for data ready */ break; case ACE_FSM_STATE_REQ_TRANSFER: /* Check that the sysace is ready to receive data */ status = ace_in32(ace, ACE_STATUS); if (status & ACE_STATUS_CFBSY) { dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n", ace->fsm_task, ace->fsm_iter_num, blk_rq_cur_sectors(ace->req) * 16, ace->data_count, ace->in_irq); ace_fsm_yield(ace); /* need to poll CFBSY bit */ break; } if (!(status & ACE_STATUS_DATABUFRDY)) { dev_dbg(ace->dev, "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n", ace->fsm_task, ace->fsm_iter_num, blk_rq_cur_sectors(ace->req) * 16, ace->data_count, ace->in_irq); ace_fsm_yieldirq(ace); break; } /* Transfer the next buffer */ if (ace->fsm_task == ACE_TASK_WRITE) ace->reg_ops->dataout(ace); else ace->reg_ops->datain(ace); ace->data_count--; /* If there are still buffers to be transfers; jump out here */ if (ace->data_count != 0) { ace_fsm_yieldirq(ace); break; } /* bio finished; is there another one? */ if (__blk_end_request_cur(ace->req, BLK_STS_OK)) { /* dev_dbg(ace->dev, "next block; h=%u c=%u\n", * blk_rq_sectors(ace->req), * blk_rq_cur_sectors(ace->req)); */ ace->data_ptr = bio_data(ace->req->bio); ace->data_count = blk_rq_cur_sectors(ace->req) * 16; ace_fsm_yieldirq(ace); break; } ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE; break; case ACE_FSM_STATE_REQ_COMPLETE: ace->req = NULL; /* Finished request; go to idle state */ ace->fsm_state = ACE_FSM_STATE_IDLE; break; default: ace->fsm_state = ACE_FSM_STATE_IDLE; break; } } static void ace_fsm_tasklet(unsigned long data) { struct ace_device *ace = (void *)data; unsigned long flags; spin_lock_irqsave(&ace->lock, flags); /* Loop over state machine until told to stop */ ace->fsm_continue_flag = 1; while (ace->fsm_continue_flag) ace_fsm_dostate(ace); spin_unlock_irqrestore(&ace->lock, flags); } static void ace_stall_timer(unsigned long data) { struct ace_device *ace = (void *)data; unsigned long flags; dev_warn(ace->dev, "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n", ace->fsm_state, ace->fsm_task, ace->fsm_iter_num, ace->data_count); spin_lock_irqsave(&ace->lock, flags); /* Rearm the stall timer *before* entering FSM (which may then * delete the timer) */ mod_timer(&ace->stall_timer, jiffies + HZ); /* Loop over state machine until told to stop */ ace->fsm_continue_flag = 1; while (ace->fsm_continue_flag) ace_fsm_dostate(ace); spin_unlock_irqrestore(&ace->lock, flags); } /* --------------------------------------------------------------------- * Interrupt handling routines */ static int ace_interrupt_checkstate(struct ace_device *ace) { u32 sreg = ace_in32(ace, ACE_STATUS); u16 creg = ace_in(ace, ACE_CTRL); /* Check for error occurrence */ if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) && (creg & ACE_CTRL_ERRORIRQ)) { dev_err(ace->dev, "transfer failure\n"); ace_dump_regs(ace); return -EIO; } return 0; } static irqreturn_t ace_interrupt(int irq, void *dev_id) { u16 creg; struct ace_device *ace = dev_id; /* be safe and get the lock */ spin_lock(&ace->lock); ace->in_irq = 1; /* clear the interrupt */ creg = ace_in(ace, ACE_CTRL); ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ); ace_out(ace, ACE_CTRL, creg); /* check for IO failures */ if (ace_interrupt_checkstate(ace)) ace->data_result = -EIO; if (ace->fsm_task == 0) { dev_err(ace->dev, "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n", ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL), ace_in(ace, ACE_SECCNTCMD)); dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n", ace->fsm_task, ace->fsm_state, ace->data_count); } /* Loop over state machine until told to stop */ ace->fsm_continue_flag = 1; while (ace->fsm_continue_flag) ace_fsm_dostate(ace); /* done with interrupt; drop the lock */ ace->in_irq = 0; spin_unlock(&ace->lock); return IRQ_HANDLED; } /* --------------------------------------------------------------------- * Block ops */ static void ace_request(struct request_queue * q) { struct request *req; struct ace_device *ace; req = ace_get_next_request(q); if (req) { ace = req->rq_disk->private_data; tasklet_schedule(&ace->fsm_tasklet); } } static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing) { struct ace_device *ace = gd->private_data; dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change); return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0; } static int ace_revalidate_disk(struct gendisk *gd) { struct ace_device *ace = gd->private_data; unsigned long flags; dev_dbg(ace->dev, "ace_revalidate_disk()\n"); if (ace->media_change) { dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n"); spin_lock_irqsave(&ace->lock, flags); ace->id_req_count++; spin_unlock_irqrestore(&ace->lock, flags); tasklet_schedule(&ace->fsm_tasklet); wait_for_completion(&ace->id_completion); } dev_dbg(ace->dev, "revalidate complete\n"); return ace->id_result; } static int ace_open(struct block_device *bdev, fmode_t mode) { struct ace_device *ace = bdev->bd_disk->private_data; unsigned long flags; dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1); mutex_lock(&xsysace_mutex); spin_lock_irqsave(&ace->lock, flags); ace->users++; spin_unlock_irqrestore(&ace->lock, flags); check_disk_change(bdev); mutex_unlock(&xsysace_mutex); return 0; } static void ace_release(struct gendisk *disk, fmode_t mode) { struct ace_device *ace = disk->private_data; unsigned long flags; u16 val; dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1); mutex_lock(&xsysace_mutex); spin_lock_irqsave(&ace->lock, flags); ace->users--; if (ace->users == 0) { val = ace_in(ace, ACE_CTRL); ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ); } spin_unlock_irqrestore(&ace->lock, flags); mutex_unlock(&xsysace_mutex); } static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct ace_device *ace = bdev->bd_disk->private_data; u16 *cf_id = ace->cf_id; dev_dbg(ace->dev, "ace_getgeo()\n"); geo->heads = cf_id[ATA_ID_HEADS]; geo->sectors = cf_id[ATA_ID_SECTORS]; geo->cylinders = cf_id[ATA_ID_CYLS]; return 0; } static const struct block_device_operations ace_fops = { .owner = THIS_MODULE, .open = ace_open, .release = ace_release, .check_events = ace_check_events, .revalidate_disk = ace_revalidate_disk, .getgeo = ace_getgeo, }; /* -------------------------------------------------------------------- * SystemACE device setup/teardown code */ static int ace_setup(struct ace_device *ace) { u16 version; u16 val; int rc; dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace); dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n", (unsigned long long)ace->physaddr, ace->irq); spin_lock_init(&ace->lock); init_completion(&ace->id_completion); /* * Map the device */ ace->baseaddr = ioremap(ace->physaddr, 0x80); if (!ace->baseaddr) goto err_ioremap; /* * Initialize the state machine tasklet and stall timer */ tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace); setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace); /* * Initialize the request queue */ ace->queue = blk_init_queue(ace_request, &ace->lock); if (ace->queue == NULL) goto err_blk_initq; blk_queue_logical_block_size(ace->queue, 512); blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH); /* * Allocate and initialize GD structure */ ace->gd = alloc_disk(ACE_NUM_MINORS); if (!ace->gd) goto err_alloc_disk; ace->gd->major = ace_major; ace->gd->first_minor = ace->id * ACE_NUM_MINORS; ace->gd->fops = &ace_fops; ace->gd->queue = ace->queue; ace->gd->private_data = ace; snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a'); /* set bus width */ if (ace->bus_width == ACE_BUS_WIDTH_16) { /* 0x0101 should work regardless of endianess */ ace_out_le16(ace, ACE_BUSMODE, 0x0101); /* read it back to determine endianess */ if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001) ace->reg_ops = &ace_reg_le16_ops; else ace->reg_ops = &ace_reg_be16_ops; } else { ace_out_8(ace, ACE_BUSMODE, 0x00); ace->reg_ops = &ace_reg_8_ops; } /* Make sure version register is sane */ version = ace_in(ace, ACE_VERSION); if ((version == 0) || (version == 0xFFFF)) goto err_read; /* Put sysace in a sane state by clearing most control reg bits */ ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE | ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ); /* Now we can hook up the irq handler */ if (ace->irq) { rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace); if (rc) { /* Failure - fall back to polled mode */ dev_err(ace->dev, "request_irq failed\n"); ace->irq = 0; } } /* Enable interrupts */ val = ace_in(ace, ACE_CTRL); val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ; ace_out(ace, ACE_CTRL, val); /* Print the identification */ dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n", (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff); dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n", (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq); ace->media_change = 1; ace_revalidate_disk(ace->gd); /* Make the sysace device 'live' */ add_disk(ace->gd); return 0; err_read: put_disk(ace->gd); err_alloc_disk: blk_cleanup_queue(ace->queue); err_blk_initq: iounmap(ace->baseaddr); err_ioremap: dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n", (unsigned long long) ace->physaddr); return -ENOMEM; } static void ace_teardown(struct ace_device *ace) { if (ace->gd) { del_gendisk(ace->gd); put_disk(ace->gd); } if (ace->queue) blk_cleanup_queue(ace->queue); tasklet_kill(&ace->fsm_tasklet); if (ace->irq) free_irq(ace->irq, ace); iounmap(ace->baseaddr); } static int ace_alloc(struct device *dev, int id, resource_size_t physaddr, int irq, int bus_width) { struct ace_device *ace; int rc; dev_dbg(dev, "ace_alloc(%p)\n", dev); if (!physaddr) { rc = -ENODEV; goto err_noreg; } /* Allocate and initialize the ace device structure */ ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL); if (!ace) { rc = -ENOMEM; goto err_alloc; } ace->dev = dev; ace->id = id; ace->physaddr = physaddr; ace->irq = irq; ace->bus_width = bus_width; /* Call the setup code */ rc = ace_setup(ace); if (rc) goto err_setup; dev_set_drvdata(dev, ace); return 0; err_setup: dev_set_drvdata(dev, NULL); kfree(ace); err_alloc: err_noreg: dev_err(dev, "could not initialize device, err=%i\n", rc); return rc; } static void ace_free(struct device *dev) { struct ace_device *ace = dev_get_drvdata(dev); dev_dbg(dev, "ace_free(%p)\n", dev); if (ace) { ace_teardown(ace); dev_set_drvdata(dev, NULL); kfree(ace); } } /* --------------------------------------------------------------------- * Platform Bus Support */ static int ace_probe(struct platform_device *dev) { resource_size_t physaddr = 0; int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */ u32 id = dev->id; int irq = 0; int i; dev_dbg(&dev->dev, "ace_probe(%p)\n", dev); /* device id and bus width */ if (of_property_read_u32(dev->dev.of_node, "port-number", &id)) id = 0; if (of_find_property(dev->dev.of_node, "8-bit", NULL)) bus_width = ACE_BUS_WIDTH_8; for (i = 0; i < dev->num_resources; i++) { if (dev->resource[i].flags & IORESOURCE_MEM) physaddr = dev->resource[i].start; if (dev->resource[i].flags & IORESOURCE_IRQ) irq = dev->resource[i].start; } /* Call the bus-independent setup code */ return ace_alloc(&dev->dev, id, physaddr, irq, bus_width); } /* * Platform bus remove() method */ static int ace_remove(struct platform_device *dev) { ace_free(&dev->dev); return 0; } #if defined(CONFIG_OF) /* Match table for of_platform binding */ static const struct of_device_id ace_of_match[] = { { .compatible = "xlnx,opb-sysace-1.00.b", }, { .compatible = "xlnx,opb-sysace-1.00.c", }, { .compatible = "xlnx,xps-sysace-1.00.a", }, { .compatible = "xlnx,sysace", }, {}, }; MODULE_DEVICE_TABLE(of, ace_of_match); #else /* CONFIG_OF */ #define ace_of_match NULL #endif /* CONFIG_OF */ static struct platform_driver ace_platform_driver = { .probe = ace_probe, .remove = ace_remove, .driver = { .name = "xsysace", .of_match_table = ace_of_match, }, }; /* --------------------------------------------------------------------- * Module init/exit routines */ static int __init ace_init(void) { int rc; ace_major = register_blkdev(ace_major, "xsysace"); if (ace_major <= 0) { rc = -ENOMEM; goto err_blk; } rc = platform_driver_register(&ace_platform_driver); if (rc) goto err_plat; pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major); return 0; err_plat: unregister_blkdev(ace_major, "xsysace"); err_blk: printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc); return rc; } module_init(ace_init); static void __exit ace_exit(void) { pr_debug("Unregistering Xilinx SystemACE driver\n"); platform_driver_unregister(&ace_platform_driver); unregister_blkdev(ace_major, "xsysace"); } module_exit(ace_exit);