/* * Copyright © 2008-2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Zou Nan hai <nanhai.zou@intel.com> * Xiang Hai hao<haihao.xiang@intel.com> * */ #include <drm/drmP.h> #include "i915_drv.h" #include <drm/i915_drm.h> #include "i915_trace.h" #include "intel_drv.h" static inline int ring_space(struct intel_ring_buffer *ring) { int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE); if (space < 0) space += ring->size; return space; } void __intel_ring_advance(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; ring->tail &= ring->size - 1; if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring)) return; ring->write_tail(ring, ring->tail); } static int gen2_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 cmd; int ret; cmd = MI_FLUSH; if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0) cmd |= MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) cmd |= MI_READ_FLUSH; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, cmd); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen4_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { struct drm_device *dev = ring->dev; u32 cmd; int ret; /* * read/write caches: * * I915_GEM_DOMAIN_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * I915_GEM_DOMAIN_COMMAND may not exist? * * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * I915_GEM_DOMAIN_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER * are flushed at any MI_FLUSH. */ cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) cmd &= ~MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) cmd |= MI_EXE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_COMMAND && (IS_G4X(dev) || IS_GEN5(dev))) cmd |= MI_INVALIDATE_ISP; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, cmd); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } /** * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring) { u32 scratch_addr = ring->scratch.gtt_offset + 128; int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); /* low dword */ intel_ring_emit(ring, 0); /* high dword */ intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen6_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; u32 scratch_addr = ring->scratch.gtt_offset + 128; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ ret = intel_emit_post_sync_nonzero_flush(ring); if (ret) return ret; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* * Ensure that any following seqno writes only happen * when the render cache is indeed flushed. */ flags |= PIPE_CONTROL_CS_STALL; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; } ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static int gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value) { int ret; if (!ring->fbc_dirty) return 0; ret = intel_ring_begin(ring, 6); if (ret) return ret; /* WaFbcNukeOn3DBlt:ivb/hsw */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, MSG_FBC_REND_STATE); intel_ring_emit(ring, value); intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT); intel_ring_emit(ring, MSG_FBC_REND_STATE); intel_ring_emit(ring, ring->scratch.gtt_offset + 256); intel_ring_advance(ring); ring->fbc_dirty = false; return 0; } static int gen7_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; u32 scratch_addr = ring->scratch.gtt_offset + 128; int ret; /* * Ensure that any following seqno writes only happen when the render * cache is indeed flushed. * * Workaround: 4th PIPE_CONTROL command (except the ones with only * read-cache invalidate bits set) must have the CS_STALL bit set. We * don't try to be clever and just set it unconditionally. */ flags |= PIPE_CONTROL_CS_STALL; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; /* Workaround: we must issue a pipe_control with CS-stall bit * set before a pipe_control command that has the state cache * invalidate bit set. */ gen7_render_ring_cs_stall_wa(ring); } ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr); intel_ring_emit(ring, 0); intel_ring_advance(ring); if (!invalidate_domains && flush_domains) return gen7_ring_fbc_flush(ring, FBC_REND_NUKE); return 0; } static int gen8_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; u32 scratch_addr = ring->scratch.gtt_offset + 128; int ret; flags |= PIPE_CONTROL_CS_STALL; if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; } ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static void ring_write_tail(struct intel_ring_buffer *ring, u32 value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; I915_WRITE_TAIL(ring, value); } u32 intel_ring_get_active_head(struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = ring->dev->dev_private; u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ? RING_ACTHD(ring->mmio_base) : ACTHD; return I915_READ(acthd_reg); } static void ring_setup_phys_status_page(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; u32 addr; addr = dev_priv->status_page_dmah->busaddr; if (INTEL_INFO(ring->dev)->gen >= 4) addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0; I915_WRITE(HWS_PGA, addr); } static int init_ring_common(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = ring->obj; int ret = 0; u32 head; gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL); /* Stop the ring if it's running. */ I915_WRITE_CTL(ring, 0); I915_WRITE_HEAD(ring, 0); ring->write_tail(ring, 0); if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) DRM_ERROR("%s :timed out trying to stop ring\n", ring->name); if (I915_NEED_GFX_HWS(dev)) intel_ring_setup_status_page(ring); else ring_setup_phys_status_page(ring); head = I915_READ_HEAD(ring) & HEAD_ADDR; /* G45 ring initialization fails to reset head to zero */ if (head != 0) { DRM_DEBUG_KMS("%s head not reset to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); I915_WRITE_HEAD(ring, 0); if (I915_READ_HEAD(ring) & HEAD_ADDR) { DRM_ERROR("failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); } } /* Initialize the ring. This must happen _after_ we've cleared the ring * registers with the above sequence (the readback of the HEAD registers * also enforces ordering), otherwise the hw might lose the new ring * register values. */ I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj)); I915_WRITE_CTL(ring, ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 && I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) && (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) { DRM_ERROR("%s initialization failed " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); ret = -EIO; goto out; } if (!drm_core_check_feature(ring->dev, DRIVER_MODESET)) i915_kernel_lost_context(ring->dev); else { ring->head = I915_READ_HEAD(ring); ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR; ring->space = ring_space(ring); ring->last_retired_head = -1; } memset(&ring->hangcheck, 0, sizeof(ring->hangcheck)); out: gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL); return ret; } static int init_pipe_control(struct intel_ring_buffer *ring) { int ret; if (ring->scratch.obj) return 0; ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096); if (ring->scratch.obj == NULL) { DRM_ERROR("Failed to allocate seqno page\n"); ret = -ENOMEM; goto err; } ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC); if (ret) goto err_unref; ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0); if (ret) goto err_unref; ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj); ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl)); if (ring->scratch.cpu_page == NULL) { ret = -ENOMEM; goto err_unpin; } DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n", ring->name, ring->scratch.gtt_offset); return 0; err_unpin: i915_gem_object_ggtt_unpin(ring->scratch.obj); err_unref: drm_gem_object_unreference(&ring->scratch.obj->base); err: return ret; } static int init_render_ring(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = init_ring_common(ring); if (INTEL_INFO(dev)->gen > 3) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw */ if (INTEL_INFO(dev)->gen >= 6) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); /* Required for the hardware to program scanline values for waiting */ if (INTEL_INFO(dev)->gen == 6) I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS)); if (IS_GEN7(dev)) I915_WRITE(GFX_MODE_GEN7, _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) | _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); if (INTEL_INFO(dev)->gen >= 5) { ret = init_pipe_control(ring); if (ret) return ret; } if (IS_GEN6(dev)) { /* From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); /* This is not explicitly set for GEN6, so read the register. * see intel_ring_mi_set_context() for why we care. * TODO: consider explicitly setting the bit for GEN5 */ ring->itlb_before_ctx_switch = !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS); } if (INTEL_INFO(dev)->gen >= 6) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); if (HAS_L3_DPF(dev)) I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev)); return ret; } static void render_ring_cleanup(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; if (ring->scratch.obj == NULL) return; if (INTEL_INFO(dev)->gen >= 5) { kunmap(sg_page(ring->scratch.obj->pages->sgl)); i915_gem_object_ggtt_unpin(ring->scratch.obj); } drm_gem_object_unreference(&ring->scratch.obj->base); ring->scratch.obj = NULL; } static void update_mboxes(struct intel_ring_buffer *ring, u32 mmio_offset) { /* NB: In order to be able to do semaphore MBOX updates for varying number * of rings, it's easiest if we round up each individual update to a * multiple of 2 (since ring updates must always be a multiple of 2) * even though the actual update only requires 3 dwords. */ #define MBOX_UPDATE_DWORDS 4 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, mmio_offset); intel_ring_emit(ring, ring->outstanding_lazy_seqno); intel_ring_emit(ring, MI_NOOP); } /** * gen6_add_request - Update the semaphore mailbox registers * * @ring - ring that is adding a request * @seqno - return seqno stuck into the ring * * Update the mailbox registers in the *other* rings with the current seqno. * This acts like a signal in the canonical semaphore. */ static int gen6_add_request(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *useless; int i, ret, num_dwords = 4; if (i915_semaphore_is_enabled(dev)) num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS); #undef MBOX_UPDATE_DWORDS ret = intel_ring_begin(ring, num_dwords); if (ret) return ret; if (i915_semaphore_is_enabled(dev)) { for_each_ring(useless, dev_priv, i) { u32 mbox_reg = ring->signal_mbox[i]; if (mbox_reg != GEN6_NOSYNC) update_mboxes(ring, mbox_reg); } } intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, ring->outstanding_lazy_seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); __intel_ring_advance(ring); return 0; } static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev, u32 seqno) { struct drm_i915_private *dev_priv = dev->dev_private; return dev_priv->last_seqno < seqno; } /** * intel_ring_sync - sync the waiter to the signaller on seqno * * @waiter - ring that is waiting * @signaller - ring which has, or will signal * @seqno - seqno which the waiter will block on */ static int gen6_ring_sync(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno) { int ret; u32 dw1 = MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER; /* Throughout all of the GEM code, seqno passed implies our current * seqno is >= the last seqno executed. However for hardware the * comparison is strictly greater than. */ seqno -= 1; WARN_ON(signaller->semaphore_register[waiter->id] == MI_SEMAPHORE_SYNC_INVALID); ret = intel_ring_begin(waiter, 4); if (ret) return ret; /* If seqno wrap happened, omit the wait with no-ops */ if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) { intel_ring_emit(waiter, dw1 | signaller->semaphore_register[waiter->id]); intel_ring_emit(waiter, seqno); intel_ring_emit(waiter, 0); intel_ring_emit(waiter, MI_NOOP); } else { intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); } intel_ring_advance(waiter); return 0; } #define PIPE_CONTROL_FLUSH(ring__, addr__) \ do { \ intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \ PIPE_CONTROL_DEPTH_STALL); \ intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \ intel_ring_emit(ring__, 0); \ intel_ring_emit(ring__, 0); \ } while (0) static int pc_render_add_request(struct intel_ring_buffer *ring) { u32 scratch_addr = ring->scratch.gtt_offset + 128; int ret; /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently * incoherent with writes to memory, i.e. completely fubar, * so we need to use PIPE_NOTIFY instead. * * However, we also need to workaround the qword write * incoherence by flushing the 6 PIPE_NOTIFY buffers out to * memory before requesting an interrupt. */ ret = intel_ring_begin(ring, 32); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE); intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, ring->outstanding_lazy_seqno); intel_ring_emit(ring, 0); PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; /* write to separate cachelines */ PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_NOTIFY); intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, ring->outstanding_lazy_seqno); intel_ring_emit(ring, 0); __intel_ring_advance(ring); return 0; } static u32 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { /* Workaround to force correct ordering between irq and seqno writes on * ivb (and maybe also on snb) by reading from a CS register (like * ACTHD) before reading the status page. */ if (!lazy_coherency) intel_ring_get_active_head(ring); return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static u32 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static void ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno) { intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno); } static u32 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { return ring->scratch.cpu_page[0]; } static void pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno) { ring->scratch.cpu_page[0] = seqno; } static bool gen5_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen5_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool i9xx_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { dev_priv->irq_mask &= ~ring->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void i9xx_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { dev_priv->irq_mask |= ring->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool i8xx_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { dev_priv->irq_mask &= ~ring->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); POSTING_READ16(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void i8xx_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { dev_priv->irq_mask |= ring->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); POSTING_READ16(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } void intel_ring_setup_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = ring->dev->dev_private; u32 mmio = 0; /* The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (IS_GEN7(dev)) { switch (ring->id) { case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; case VCS: mmio = BSD_HWS_PGA_GEN7; break; case VECS: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN6(ring->dev)) { mmio = RING_HWS_PGA_GEN6(ring->mmio_base); } else { /* XXX: gen8 returns to sanity */ mmio = RING_HWS_PGA(ring->mmio_base); } I915_WRITE(mmio, (u32)ring->status_page.gfx_addr); POSTING_READ(mmio); /* Flush the TLB for this page */ if (INTEL_INFO(dev)->gen >= 6) { u32 reg = RING_INSTPM(ring->mmio_base); /* ring should be idle before issuing a sync flush*/ WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0); I915_WRITE(reg, _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | INSTPM_SYNC_FLUSH)); if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0, 1000)) DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n", ring->name); } } static int bsd_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_FLUSH); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int i9xx_add_request(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, ring->outstanding_lazy_seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); __intel_ring_advance(ring); return 0; } static bool gen6_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { if (HAS_L3_DPF(dev) && ring->id == RCS) I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | GT_PARITY_ERROR(dev))); else I915_WRITE_IMR(ring, ~ring->irq_enable_mask); ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen6_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { if (HAS_L3_DPF(dev) && ring->id == RCS) I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev)); else I915_WRITE_IMR(ring, ~0); ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool hsw_vebox_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { I915_WRITE_IMR(ring, ~ring->irq_enable_mask); snb_enable_pm_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void hsw_vebox_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { I915_WRITE_IMR(ring, ~0); snb_disable_pm_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool gen8_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { if (HAS_L3_DPF(dev) && ring->id == RCS) { I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | GT_RENDER_L3_PARITY_ERROR_INTERRUPT)); } else { I915_WRITE_IMR(ring, ~ring->irq_enable_mask); } POSTING_READ(RING_IMR(ring->mmio_base)); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen8_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { if (HAS_L3_DPF(dev) && ring->id == RCS) { I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT); } else { I915_WRITE_IMR(ring, ~0); } POSTING_READ(RING_IMR(ring->mmio_base)); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static int i965_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length, unsigned flags) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } /* Just userspace ABI convention to limit the wa batch bo to a resonable size */ #define I830_BATCH_LIMIT (256*1024) static int i830_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags) { int ret; if (flags & I915_DISPATCH_PINNED) { ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER); intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_emit(ring, offset + len - 8); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } else { u32 cs_offset = ring->scratch.gtt_offset; if (len > I830_BATCH_LIMIT) return -ENOSPC; ret = intel_ring_begin(ring, 9+3); if (ret) return ret; /* Blit the batch (which has now all relocs applied) to the stable batch * scratch bo area (so that the CS never stumbles over its tlb * invalidation bug) ... */ intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD | XY_SRC_COPY_BLT_WRITE_ALPHA | XY_SRC_COPY_BLT_WRITE_RGB); intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096); intel_ring_emit(ring, 0); intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024); intel_ring_emit(ring, cs_offset); intel_ring_emit(ring, 0); intel_ring_emit(ring, 4096); intel_ring_emit(ring, offset); intel_ring_emit(ring, MI_FLUSH); /* ... and execute it. */ intel_ring_emit(ring, MI_BATCH_BUFFER); intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_emit(ring, cs_offset + len - 8); intel_ring_advance(ring); } return 0; } static int i915_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT); intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_advance(ring); return 0; } static void cleanup_status_page(struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; obj = ring->status_page.obj; if (obj == NULL) return; kunmap(sg_page(obj->pages->sgl)); i915_gem_object_ggtt_unpin(obj); drm_gem_object_unreference(&obj->base); ring->status_page.obj = NULL; } static int init_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_gem_object *obj; int ret; obj = i915_gem_alloc_object(dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate status page\n"); ret = -ENOMEM; goto err; } ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); if (ret) goto err_unref; ret = i915_gem_obj_ggtt_pin(obj, 4096, 0); if (ret) goto err_unref; ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj); ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl)); if (ring->status_page.page_addr == NULL) { ret = -ENOMEM; goto err_unpin; } ring->status_page.obj = obj; memset(ring->status_page.page_addr, 0, PAGE_SIZE); DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n", ring->name, ring->status_page.gfx_addr); return 0; err_unpin: i915_gem_object_ggtt_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); err: return ret; } static int init_phys_status_page(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; if (!dev_priv->status_page_dmah) { dev_priv->status_page_dmah = drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE); if (!dev_priv->status_page_dmah) return -ENOMEM; } ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(ring->status_page.page_addr, 0, PAGE_SIZE); return 0; } static int intel_init_ring_buffer(struct drm_device *dev, struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); ring->size = 32 * PAGE_SIZE; memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno)); init_waitqueue_head(&ring->irq_queue); if (I915_NEED_GFX_HWS(dev)) { ret = init_status_page(ring); if (ret) return ret; } else { BUG_ON(ring->id != RCS); ret = init_phys_status_page(ring); if (ret) return ret; } obj = NULL; if (!HAS_LLC(dev)) obj = i915_gem_object_create_stolen(dev, ring->size); if (obj == NULL) obj = i915_gem_alloc_object(dev, ring->size); if (obj == NULL) { DRM_ERROR("Failed to allocate ringbuffer\n"); ret = -ENOMEM; goto err_hws; } ring->obj = obj; ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE); if (ret) goto err_unref; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) goto err_unpin; ring->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj), ring->size); if (ring->virtual_start == NULL) { DRM_ERROR("Failed to map ringbuffer.\n"); ret = -EINVAL; goto err_unpin; } ret = ring->init(ring); if (ret) goto err_unmap; /* Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = ring->size; if (IS_I830(ring->dev) || IS_845G(ring->dev)) ring->effective_size -= 128; i915_cmd_parser_init_ring(ring); return 0; err_unmap: iounmap(ring->virtual_start); err_unpin: i915_gem_object_ggtt_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); ring->obj = NULL; err_hws: cleanup_status_page(ring); return ret; } void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv; int ret; if (ring->obj == NULL) return; /* Disable the ring buffer. The ring must be idle at this point */ dev_priv = ring->dev->dev_private; ret = intel_ring_idle(ring); if (ret && !i915_reset_in_progress(&dev_priv->gpu_error)) DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", ring->name, ret); I915_WRITE_CTL(ring, 0); iounmap(ring->virtual_start); i915_gem_object_ggtt_unpin(ring->obj); drm_gem_object_unreference(&ring->obj->base); ring->obj = NULL; ring->preallocated_lazy_request = NULL; ring->outstanding_lazy_seqno = 0; if (ring->cleanup) ring->cleanup(ring); cleanup_status_page(ring); } static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n) { struct drm_i915_gem_request *request; u32 seqno = 0, tail; int ret; if (ring->last_retired_head != -1) { ring->head = ring->last_retired_head; ring->last_retired_head = -1; ring->space = ring_space(ring); if (ring->space >= n) return 0; } list_for_each_entry(request, &ring->request_list, list) { int space; if (request->tail == -1) continue; space = request->tail - (ring->tail + I915_RING_FREE_SPACE); if (space < 0) space += ring->size; if (space >= n) { seqno = request->seqno; tail = request->tail; break; } /* Consume this request in case we need more space than * is available and so need to prevent a race between * updating last_retired_head and direct reads of * I915_RING_HEAD. It also provides a nice sanity check. */ request->tail = -1; } if (seqno == 0) return -ENOSPC; ret = i915_wait_seqno(ring, seqno); if (ret) return ret; ring->head = tail; ring->space = ring_space(ring); if (WARN_ON(ring->space < n)) return -ENOSPC; return 0; } static int ring_wait_for_space(struct intel_ring_buffer *ring, int n) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long end; int ret; ret = intel_ring_wait_request(ring, n); if (ret != -ENOSPC) return ret; /* force the tail write in case we have been skipping them */ __intel_ring_advance(ring); trace_i915_ring_wait_begin(ring); /* With GEM the hangcheck timer should kick us out of the loop, * leaving it early runs the risk of corrupting GEM state (due * to running on almost untested codepaths). But on resume * timers don't work yet, so prevent a complete hang in that * case by choosing an insanely large timeout. */ end = jiffies + 60 * HZ; do { ring->head = I915_READ_HEAD(ring); ring->space = ring_space(ring); if (ring->space >= n) { trace_i915_ring_wait_end(ring); return 0; } if (!drm_core_check_feature(dev, DRIVER_MODESET) && dev->primary->master) { struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; } msleep(1); ret = i915_gem_check_wedge(&dev_priv->gpu_error, dev_priv->mm.interruptible); if (ret) return ret; } while (!time_after(jiffies, end)); trace_i915_ring_wait_end(ring); return -EBUSY; } static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring) { uint32_t __iomem *virt; int rem = ring->size - ring->tail; if (ring->space < rem) { int ret = ring_wait_for_space(ring, rem); if (ret) return ret; } virt = ring->virtual_start + ring->tail; rem /= 4; while (rem--) iowrite32(MI_NOOP, virt++); ring->tail = 0; ring->space = ring_space(ring); return 0; } int intel_ring_idle(struct intel_ring_buffer *ring) { u32 seqno; int ret; /* We need to add any requests required to flush the objects and ring */ if (ring->outstanding_lazy_seqno) { ret = i915_add_request(ring, NULL); if (ret) return ret; } /* Wait upon the last request to be completed */ if (list_empty(&ring->request_list)) return 0; seqno = list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno; return i915_wait_seqno(ring, seqno); } static int intel_ring_alloc_seqno(struct intel_ring_buffer *ring) { if (ring->outstanding_lazy_seqno) return 0; if (ring->preallocated_lazy_request == NULL) { struct drm_i915_gem_request *request; request = kmalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) return -ENOMEM; ring->preallocated_lazy_request = request; } return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno); } static int __intel_ring_prepare(struct intel_ring_buffer *ring, int bytes) { int ret; if (unlikely(ring->tail + bytes > ring->effective_size)) { ret = intel_wrap_ring_buffer(ring); if (unlikely(ret)) return ret; } if (unlikely(ring->space < bytes)) { ret = ring_wait_for_space(ring, bytes); if (unlikely(ret)) return ret; } return 0; } int intel_ring_begin(struct intel_ring_buffer *ring, int num_dwords) { drm_i915_private_t *dev_priv = ring->dev->dev_private; int ret; ret = i915_gem_check_wedge(&dev_priv->gpu_error, dev_priv->mm.interruptible); if (ret) return ret; ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t)); if (ret) return ret; /* Preallocate the olr before touching the ring */ ret = intel_ring_alloc_seqno(ring); if (ret) return ret; ring->space -= num_dwords * sizeof(uint32_t); return 0; } /* Align the ring tail to a cacheline boundary */ int intel_ring_cacheline_align(struct intel_ring_buffer *ring) { int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t); int ret; if (num_dwords == 0) return 0; ret = intel_ring_begin(ring, num_dwords); if (ret) return ret; while (num_dwords--) intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; BUG_ON(ring->outstanding_lazy_seqno); if (INTEL_INFO(ring->dev)->gen >= 6) { I915_WRITE(RING_SYNC_0(ring->mmio_base), 0); I915_WRITE(RING_SYNC_1(ring->mmio_base), 0); if (HAS_VEBOX(ring->dev)) I915_WRITE(RING_SYNC_2(ring->mmio_base), 0); } ring->set_seqno(ring, seqno); ring->hangcheck.seqno = seqno; } static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring, u32 value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; /* Every tail move must follow the sequence below */ /* Disable notification that the ring is IDLE. The GT * will then assume that it is busy and bring it out of rc6. */ I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); /* Clear the context id. Here be magic! */ I915_WRITE64(GEN6_BSD_RNCID, 0x0); /* Wait for the ring not to be idle, i.e. for it to wake up. */ if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) & GEN6_BSD_SLEEP_INDICATOR) == 0, 50)) DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); /* Now that the ring is fully powered up, update the tail */ I915_WRITE_TAIL(ring, value); POSTING_READ(RING_TAIL(ring->mmio_base)); /* Let the ring send IDLE messages to the GT again, * and so let it sleep to conserve power when idle. */ I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); } static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring, u32 invalidate, u32 flush) { uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (INTEL_INFO(ring->dev)->gen >= 8) cmd += 1; /* * Bspec vol 1c.5 - video engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_GPU_DOMAINS) cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD | MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; intel_ring_emit(ring, cmd); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); if (INTEL_INFO(ring->dev)->gen >= 8) { intel_ring_emit(ring, 0); /* upper addr */ intel_ring_emit(ring, 0); /* value */ } else { intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); } intel_ring_advance(ring); return 0; } static int gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags) { struct drm_i915_private *dev_priv = ring->dev->dev_private; bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL && !(flags & I915_DISPATCH_SECURE); int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; /* FIXME(BDW): Address space and security selectors. */ intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8)); intel_ring_emit(ring, offset); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } static int gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } /* Blitter support (SandyBridge+) */ static int gen6_ring_flush(struct intel_ring_buffer *ring, u32 invalidate, u32 flush) { struct drm_device *dev = ring->dev; uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (INTEL_INFO(ring->dev)->gen >= 8) cmd += 1; /* * Bspec vol 1c.3 - blitter engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_DOMAIN_RENDER) cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; intel_ring_emit(ring, cmd); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); if (INTEL_INFO(ring->dev)->gen >= 8) { intel_ring_emit(ring, 0); /* upper addr */ intel_ring_emit(ring, 0); /* value */ } else { intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); } intel_ring_advance(ring); if (IS_GEN7(dev) && !invalidate && flush) return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN); return 0; } int intel_init_render_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; ring->name = "render ring"; ring->id = RCS; ring->mmio_base = RENDER_RING_BASE; if (INTEL_INFO(dev)->gen >= 6) { ring->add_request = gen6_add_request; ring->flush = gen7_render_ring_flush; if (INTEL_INFO(dev)->gen == 6) ring->flush = gen6_render_ring_flush; if (INTEL_INFO(dev)->gen >= 8) { ring->flush = gen8_render_ring_flush; ring->irq_get = gen8_ring_get_irq; ring->irq_put = gen8_ring_put_irq; } else { ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; } ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; ring->sync_to = gen6_ring_sync; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE; ring->signal_mbox[RCS] = GEN6_NOSYNC; ring->signal_mbox[VCS] = GEN6_VRSYNC; ring->signal_mbox[BCS] = GEN6_BRSYNC; ring->signal_mbox[VECS] = GEN6_VERSYNC; } else if (IS_GEN5(dev)) { ring->add_request = pc_render_add_request; ring->flush = gen4_render_ring_flush; ring->get_seqno = pc_render_get_seqno; ring->set_seqno = pc_render_set_seqno; ring->irq_get = gen5_ring_get_irq; ring->irq_put = gen5_ring_put_irq; ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; } else { ring->add_request = i9xx_add_request; if (INTEL_INFO(dev)->gen < 4) ring->flush = gen2_render_ring_flush; else ring->flush = gen4_render_ring_flush; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN2(dev)) { ring->irq_get = i8xx_ring_get_irq; ring->irq_put = i8xx_ring_put_irq; } else { ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->irq_enable_mask = I915_USER_INTERRUPT; } ring->write_tail = ring_write_tail; if (IS_HASWELL(dev)) ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer; else if (IS_GEN8(dev)) ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer; else if (INTEL_INFO(dev)->gen >= 6) ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; else if (INTEL_INFO(dev)->gen >= 4) ring->dispatch_execbuffer = i965_dispatch_execbuffer; else if (IS_I830(dev) || IS_845G(dev)) ring->dispatch_execbuffer = i830_dispatch_execbuffer; else ring->dispatch_execbuffer = i915_dispatch_execbuffer; ring->init = init_render_ring; ring->cleanup = render_ring_cleanup; /* Workaround batchbuffer to combat CS tlb bug. */ if (HAS_BROKEN_CS_TLB(dev)) { struct drm_i915_gem_object *obj; int ret; obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT); if (obj == NULL) { DRM_ERROR("Failed to allocate batch bo\n"); return -ENOMEM; } ret = i915_gem_obj_ggtt_pin(obj, 0, 0); if (ret != 0) { drm_gem_object_unreference(&obj->base); DRM_ERROR("Failed to ping batch bo\n"); return ret; } ring->scratch.obj = obj; ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj); } return intel_init_ring_buffer(dev, ring); } int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; ring->name = "render ring"; ring->id = RCS; ring->mmio_base = RENDER_RING_BASE; if (INTEL_INFO(dev)->gen >= 6) { /* non-kms not supported on gen6+ */ return -ENODEV; } /* Note: gem is not supported on gen5/ilk without kms (the corresponding * gem_init ioctl returns with -ENODEV). Hence we do not need to set up * the special gen5 functions. */ ring->add_request = i9xx_add_request; if (INTEL_INFO(dev)->gen < 4) ring->flush = gen2_render_ring_flush; else ring->flush = gen4_render_ring_flush; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN2(dev)) { ring->irq_get = i8xx_ring_get_irq; ring->irq_put = i8xx_ring_put_irq; } else { ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->irq_enable_mask = I915_USER_INTERRUPT; ring->write_tail = ring_write_tail; if (INTEL_INFO(dev)->gen >= 4) ring->dispatch_execbuffer = i965_dispatch_execbuffer; else if (IS_I830(dev) || IS_845G(dev)) ring->dispatch_execbuffer = i830_dispatch_execbuffer; else ring->dispatch_execbuffer = i915_dispatch_execbuffer; ring->init = init_render_ring; ring->cleanup = render_ring_cleanup; ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); ring->size = size; ring->effective_size = ring->size; if (IS_I830(ring->dev) || IS_845G(ring->dev)) ring->effective_size -= 128; ring->virtual_start = ioremap_wc(start, size); if (ring->virtual_start == NULL) { DRM_ERROR("can not ioremap virtual address for" " ring buffer\n"); return -ENOMEM; } if (!I915_NEED_GFX_HWS(dev)) { ret = init_phys_status_page(ring); if (ret) return ret; } return 0; } int intel_init_bsd_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[VCS]; ring->name = "bsd ring"; ring->id = VCS; ring->write_tail = ring_write_tail; if (INTEL_INFO(dev)->gen >= 6) { ring->mmio_base = GEN6_BSD_RING_BASE; /* gen6 bsd needs a special wa for tail updates */ if (IS_GEN6(dev)) ring->write_tail = gen6_bsd_ring_write_tail; ring->flush = gen6_bsd_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; if (INTEL_INFO(dev)->gen >= 8) { ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT; ring->irq_get = gen8_ring_get_irq; ring->irq_put = gen8_ring_put_irq; ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer; } else { ring->irq_enable_mask = GT_BSD_USER_INTERRUPT; ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; } ring->sync_to = gen6_ring_sync; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE; ring->signal_mbox[RCS] = GEN6_RVSYNC; ring->signal_mbox[VCS] = GEN6_NOSYNC; ring->signal_mbox[BCS] = GEN6_BVSYNC; ring->signal_mbox[VECS] = GEN6_VEVSYNC; } else { ring->mmio_base = BSD_RING_BASE; ring->flush = bsd_ring_flush; ring->add_request = i9xx_add_request; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN5(dev)) { ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT; ring->irq_get = gen5_ring_get_irq; ring->irq_put = gen5_ring_put_irq; } else { ring->irq_enable_mask = I915_BSD_USER_INTERRUPT; ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->dispatch_execbuffer = i965_dispatch_execbuffer; } ring->init = init_ring_common; return intel_init_ring_buffer(dev, ring); } int intel_init_blt_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; ring->name = "blitter ring"; ring->id = BCS; ring->mmio_base = BLT_RING_BASE; ring->write_tail = ring_write_tail; ring->flush = gen6_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; if (INTEL_INFO(dev)->gen >= 8) { ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; ring->irq_get = gen8_ring_get_irq; ring->irq_put = gen8_ring_put_irq; ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer; } else { ring->irq_enable_mask = GT_BLT_USER_INTERRUPT; ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; } ring->sync_to = gen6_ring_sync; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE; ring->signal_mbox[RCS] = GEN6_RBSYNC; ring->signal_mbox[VCS] = GEN6_VBSYNC; ring->signal_mbox[BCS] = GEN6_NOSYNC; ring->signal_mbox[VECS] = GEN6_VEBSYNC; ring->init = init_ring_common; return intel_init_ring_buffer(dev, ring); } int intel_init_vebox_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[VECS]; ring->name = "video enhancement ring"; ring->id = VECS; ring->mmio_base = VEBOX_RING_BASE; ring->write_tail = ring_write_tail; ring->flush = gen6_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; if (INTEL_INFO(dev)->gen >= 8) { ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT; ring->irq_get = gen8_ring_get_irq; ring->irq_put = gen8_ring_put_irq; ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer; } else { ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; ring->irq_get = hsw_vebox_get_irq; ring->irq_put = hsw_vebox_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; } ring->sync_to = gen6_ring_sync; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID; ring->signal_mbox[RCS] = GEN6_RVESYNC; ring->signal_mbox[VCS] = GEN6_VVESYNC; ring->signal_mbox[BCS] = GEN6_BVESYNC; ring->signal_mbox[VECS] = GEN6_NOSYNC; ring->init = init_ring_common; return intel_init_ring_buffer(dev, ring); } int intel_ring_flush_all_caches(struct intel_ring_buffer *ring) { int ret; if (!ring->gpu_caches_dirty) return 0; ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS); if (ret) return ret; trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS); ring->gpu_caches_dirty = false; return 0; } int intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring) { uint32_t flush_domains; int ret; flush_domains = 0; if (ring->gpu_caches_dirty) flush_domains = I915_GEM_GPU_DOMAINS; ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains); if (ret) return ret; trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains); ring->gpu_caches_dirty = false; return 0; }