/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_bios.h" #include "nouveau_hw.h" #include "nouveau_pm.h" enum clk_src { clk_src_crystal, clk_src_href, clk_src_hclk, clk_src_hclkm3, clk_src_hclkm3d2, clk_src_host, clk_src_nvclk, clk_src_sclk, clk_src_mclk, clk_src_vdec, clk_src_dom6 }; static u32 read_clk(struct drm_device *, enum clk_src); static u32 read_div(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; switch (dev_priv->chipset) { case 0x50: /* it exists, but only has bit 31, not the dividers.. */ case 0x84: case 0x86: case 0x98: case 0xa0: return nv_rd32(dev, 0x004700); case 0x92: case 0x94: case 0x96: return nv_rd32(dev, 0x004800); default: return 0x00000000; } } static u32 read_pll_src(struct drm_device *dev, u32 base) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 coef, ref = read_clk(dev, clk_src_crystal); u32 rsel = nv_rd32(dev, 0x00e18c); int P, N, M, id; switch (dev_priv->chipset) { case 0x50: case 0xa0: switch (base) { case 0x4020: case 0x4028: id = !!(rsel & 0x00000004); break; case 0x4008: id = !!(rsel & 0x00000008); break; case 0x4030: id = 0; break; default: NV_ERROR(dev, "ref: bad pll 0x%06x\n", base); return 0; } coef = nv_rd32(dev, 0x00e81c + (id * 0x0c)); ref *= (coef & 0x01000000) ? 2 : 4; P = (coef & 0x00070000) >> 16; N = ((coef & 0x0000ff00) >> 8) + 1; M = ((coef & 0x000000ff) >> 0) + 1; break; case 0x84: case 0x86: case 0x92: coef = nv_rd32(dev, 0x00e81c); P = (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; case 0x94: case 0x96: case 0x98: rsel = nv_rd32(dev, 0x00c050); switch (base) { case 0x4020: rsel = (rsel & 0x00000003) >> 0; break; case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break; case 0x4028: rsel = (rsel & 0x00001800) >> 11; break; case 0x4030: rsel = 3; break; default: NV_ERROR(dev, "ref: bad pll 0x%06x\n", base); return 0; } switch (rsel) { case 0: id = 1; break; case 1: return read_clk(dev, clk_src_crystal); case 2: return read_clk(dev, clk_src_href); case 3: id = 0; break; } coef = nv_rd32(dev, 0x00e81c + (id * 0x28)); P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7; P += (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; default: BUG_ON(1); } if (M) return (ref * N / M) >> P; return 0; } static u32 read_pll_ref(struct drm_device *dev, u32 base) { u32 src, mast = nv_rd32(dev, 0x00c040); switch (base) { case 0x004028: src = !!(mast & 0x00200000); break; case 0x004020: src = !!(mast & 0x00400000); break; case 0x004008: src = !!(mast & 0x00010000); break; case 0x004030: src = !!(mast & 0x02000000); break; case 0x00e810: return read_clk(dev, clk_src_crystal); default: NV_ERROR(dev, "bad pll 0x%06x\n", base); return 0; } if (src) return read_clk(dev, clk_src_href); return read_pll_src(dev, base); } static u32 read_pll(struct drm_device *dev, u32 base) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mast = nv_rd32(dev, 0x00c040); u32 ctrl = nv_rd32(dev, base + 0); u32 coef = nv_rd32(dev, base + 4); u32 ref = read_pll_ref(dev, base); u32 clk = 0; int N1, N2, M1, M2; if (base == 0x004028 && (mast & 0x00100000)) { /* wtf, appears to only disable post-divider on nva0 */ if (dev_priv->chipset != 0xa0) return read_clk(dev, clk_src_dom6); } N2 = (coef & 0xff000000) >> 24; M2 = (coef & 0x00ff0000) >> 16; N1 = (coef & 0x0000ff00) >> 8; M1 = (coef & 0x000000ff); if ((ctrl & 0x80000000) && M1) { clk = ref * N1 / M1; if ((ctrl & 0x40000100) == 0x40000000) { if (M2) clk = clk * N2 / M2; else clk = 0; } } return clk; } static u32 read_clk(struct drm_device *dev, enum clk_src src) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mast = nv_rd32(dev, 0x00c040); u32 P = 0; switch (src) { case clk_src_crystal: return dev_priv->crystal; case clk_src_href: return 100000; /* PCIE reference clock */ case clk_src_hclk: return read_clk(dev, clk_src_href) * 27778 / 10000; case clk_src_hclkm3: return read_clk(dev, clk_src_hclk) * 3; case clk_src_hclkm3d2: return read_clk(dev, clk_src_hclk) * 3 / 2; case clk_src_host: switch (mast & 0x30000000) { case 0x00000000: return read_clk(dev, clk_src_href); case 0x10000000: break; case 0x20000000: /* !0x50 */ case 0x30000000: return read_clk(dev, clk_src_hclk); } break; case clk_src_nvclk: if (!(mast & 0x00100000)) P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16; switch (mast & 0x00000003) { case 0x00000000: return read_clk(dev, clk_src_crystal) >> P; case 0x00000001: return read_clk(dev, clk_src_dom6); case 0x00000002: return read_pll(dev, 0x004020) >> P; case 0x00000003: return read_pll(dev, 0x004028) >> P; } break; case clk_src_sclk: P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16; switch (mast & 0x00000030) { case 0x00000000: if (mast & 0x00000080) return read_clk(dev, clk_src_host) >> P; return read_clk(dev, clk_src_crystal) >> P; case 0x00000010: break; case 0x00000020: return read_pll(dev, 0x004028) >> P; case 0x00000030: return read_pll(dev, 0x004020) >> P; } break; case clk_src_mclk: P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16; if (nv_rd32(dev, 0x004008) & 0x00000200) { switch (mast & 0x0000c000) { case 0x00000000: return read_clk(dev, clk_src_crystal) >> P; case 0x00008000: case 0x0000c000: return read_clk(dev, clk_src_href) >> P; } } else { return read_pll(dev, 0x004008) >> P; } break; case clk_src_vdec: P = (read_div(dev) & 0x00000700) >> 8; switch (dev_priv->chipset) { case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0xa0: switch (mast & 0x00000c00) { case 0x00000000: if (dev_priv->chipset == 0xa0) /* wtf?? */ return read_clk(dev, clk_src_nvclk) >> P; return read_clk(dev, clk_src_crystal) >> P; case 0x00000400: return 0; case 0x00000800: if (mast & 0x01000000) return read_pll(dev, 0x004028) >> P; return read_pll(dev, 0x004030) >> P; case 0x00000c00: return read_clk(dev, clk_src_nvclk) >> P; } break; case 0x98: switch (mast & 0x00000c00) { case 0x00000000: return read_clk(dev, clk_src_nvclk) >> P; case 0x00000400: return 0; case 0x00000800: return read_clk(dev, clk_src_hclkm3d2) >> P; case 0x00000c00: return read_pll(dev, clk_src_mclk) >> P; } break; } break; case clk_src_dom6: switch (dev_priv->chipset) { case 0x50: case 0xa0: return read_pll(dev, 0x00e810) >> 2; case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0x98: P = (read_div(dev) & 0x00000007) >> 0; switch (mast & 0x0c000000) { case 0x00000000: return read_clk(dev, clk_src_href); case 0x04000000: break; case 0x08000000: return read_clk(dev, clk_src_hclk); case 0x0c000000: return read_clk(dev, clk_src_hclkm3) >> P; } break; default: break; } default: break; } NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast); return 0; } int nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (dev_priv->chipset == 0xaa || dev_priv->chipset == 0xac) return 0; perflvl->core = read_clk(dev, clk_src_nvclk); perflvl->shader = read_clk(dev, clk_src_sclk); perflvl->memory = read_clk(dev, clk_src_mclk); if (dev_priv->chipset != 0x50) { perflvl->vdec = read_clk(dev, clk_src_vdec); perflvl->dom6 = read_clk(dev, clk_src_dom6); } return 0; } struct nv50_pm_state { u32 emast; u32 nctrl; u32 ncoef; u32 sctrl; u32 scoef; u32 amast; u32 pdivs; u32 mscript; u32 mctrl; u32 mcoef; }; static u32 calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll, u32 clk, int *N1, int *M1, int *log2P) { struct nouveau_pll_vals coef; int ret; ret = get_pll_limits(dev, reg, pll); if (ret) return 0; pll->vco2.maxfreq = 0; pll->refclk = read_pll_ref(dev, reg); if (!pll->refclk) return 0; ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef); if (ret == 0) return 0; *N1 = coef.N1; *M1 = coef.M1; *log2P = coef.log2P; return ret; } static inline u32 calc_div(u32 src, u32 target, int *div) { u32 clk0 = src, clk1 = src; for (*div = 0; *div <= 7; (*div)++) { if (clk0 <= target) { clk1 = clk0 << (*div ? 1 : 0); break; } clk0 >>= 1; } if (target - clk0 <= clk1 - target) return clk0; (*div)--; return clk1; } static inline u32 clk_same(u32 a, u32 b) { return ((a / 1000) == (b / 1000)); } void * nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv50_pm_state *info; struct pll_lims pll; int ret = -EINVAL; int N, M, P1, P2; u32 clk, out; if (dev_priv->chipset == 0xaa || dev_priv->chipset == 0xac) return ERR_PTR(-ENODEV); info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); /* core: for the moment at least, always use nvpll */ clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1); if (clk == 0) goto error; info->emast = 0x00000003; info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16); info->ncoef = (N << 8) | M; /* shader: tie to nvclk if possible, otherwise use spll. have to be * very careful that the shader clock is at least twice the core, or * some chipsets will be very unhappy. i expect most or all of these * cases will be handled by tying to nvclk, but it's possible there's * corners */ if (P1-- && perflvl->shader == (perflvl->core << 1)) { info->emast |= 0x00000020; info->sctrl = 0x00000000 | (P1 << 19) | (P1 << 16); info->scoef = nv_rd32(dev, 0x004024); } else { clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1); if (clk == 0) goto error; info->emast |= 0x00000030; info->sctrl = 0x80000000 | (P1 << 19) | (P1 << 16); info->scoef = (N << 8) | M; } /* memory: use pcie refclock if possible, otherwise use mpll */ info->mscript = perflvl->memscript; if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) { info->mctrl = 0x00000200 | (pll.log2p_bias << 19); info->mcoef = nv_rd32(dev, 0x400c); } else if (perflvl->memory) { clk = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P1); if (clk == 0) goto error; info->mctrl = 0x80000000 | (P1 << 22) | (P1 << 16); info->mctrl |= pll.log2p_bias << 19; info->mcoef = (N << 8) | M; } else { info->mctrl = 0x00000000; } /* vdec: avoid modifying xpll until we know exactly how the other * clock domains work, i suspect at least some of them can also be * tied to xpll... */ info->amast = nv_rd32(dev, 0x00c040); info->pdivs = read_div(dev); if (perflvl->vdec) { /* see how close we can get using nvclk as a source */ clk = calc_div(perflvl->core, perflvl->vdec, &P1); /* see how close we can get using xpll/hclk as a source */ if (dev_priv->chipset != 0x98) out = read_pll(dev, 0x004030); else out = read_clk(dev, clk_src_hclkm3d2); out = calc_div(out, perflvl->vdec, &P2); /* select whichever gets us closest */ info->amast &= ~0x00000c00; info->pdivs &= ~0x00000700; if (abs((int)perflvl->vdec - clk) <= abs((int)perflvl->vdec - out)) { if (dev_priv->chipset != 0x98) info->amast |= 0x00000c00; info->pdivs |= P1 << 8; } else { info->amast |= 0x00000800; info->pdivs |= P2 << 8; } } /* dom6: nfi what this is, but we're limited to various combinations * of the host clock frequency */ if (perflvl->dom6) { info->amast &= ~0x0c000000; if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) { info->amast |= 0x00000000; } else if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) { info->amast |= 0x08000000; } else { clk = read_clk(dev, clk_src_hclk) * 3; clk = calc_div(clk, perflvl->dom6, &P1); info->amast |= 0x0c000000; info->pdivs = (info->pdivs & ~0x00000007) | P1; } } return info; error: kfree(info); return ERR_PTR(ret); } int nv50_pm_clocks_set(struct drm_device *dev, void *data) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv50_pm_state *info = data; struct bit_entry M; int ret = 0; /* halt and idle execution engines */ nv_mask(dev, 0x002504, 0x00000001, 0x00000001); if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010)) goto error; /* reclock vdec/dom6 */ nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000); switch (dev_priv->chipset) { case 0x92: case 0x94: case 0x96: nv_mask(dev, 0x004800, 0x00000707, info->pdivs); break; default: nv_mask(dev, 0x004700, 0x00000707, info->pdivs); break; } nv_mask(dev, 0x00c040, 0x0c000c00, info->amast); /* core/shader: make sure sclk/nvclk are disconnected from their * plls (nvclk to dom6, sclk to hclk), modify the plls, and * reconnect sclk/nvclk to their new clock source */ if (dev_priv->chipset < 0x92) nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */ else nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081); nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl); nv_wr32(dev, 0x004024, info->scoef); nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl); nv_wr32(dev, 0x00402c, info->ncoef); nv_mask(dev, 0x00c040, 0x00100033, info->emast); /* memory */ if (!info->mctrl) goto resume; /* execute some scripts that do ??? from the vbios.. */ if (!bit_table(dev, 'M', &M) && M.version == 1) { if (M.length >= 6) nouveau_bios_init_exec(dev, ROM16(M.data[5])); if (M.length >= 8) nouveau_bios_init_exec(dev, ROM16(M.data[7])); if (M.length >= 10) nouveau_bios_init_exec(dev, ROM16(M.data[9])); nouveau_bios_init_exec(dev, info->mscript); } /* disable display */ if (dev_priv->chipset >= 0x92) { nv_wr32(dev, 0x611200, 0x00003300); udelay(100); } /* prepare ram for reclocking */ nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */ nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */ nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */ nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto-refresh */ nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */ /* modify mpll */ nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000); nv_mask(dev, 0x004008, 0x01ff0200, 0x00000200 | info->mctrl); nv_wr32(dev, 0x00400c, info->mcoef); udelay(100); nv_mask(dev, 0x004008, 0x81ff0200, info->mctrl); /* re-enable normal operation of memory controller */ nv_wr32(dev, 0x1002dc, 0x00000000); nv_mask(dev, 0x100210, 0x80000000, 0x80000000); udelay(100); /* re-enable display */ if (dev_priv->chipset >= 0x92) nv_wr32(dev, 0x611200, 0x00003330); goto resume; error: ret = -EBUSY; resume: nv_mask(dev, 0x002504, 0x00000001, 0x00000000); kfree(info); return ret; } static int pwm_info(struct drm_device *dev, struct dcb_gpio_entry *gpio, int *ctrl, int *line, int *indx) { if (gpio->line == 0x04) { *ctrl = 0x00e100; *line = 4; *indx = 0; } else if (gpio->line == 0x09) { *ctrl = 0x00e100; *line = 9; *indx = 1; } else if (gpio->line == 0x10) { *ctrl = 0x00e28c; *line = 0; *indx = 0; } else { NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", gpio->line); return -ENODEV; } return 0; } int nv50_pm_pwm_get(struct drm_device *dev, struct dcb_gpio_entry *gpio, u32 *divs, u32 *duty) { int ctrl, line, id, ret = pwm_info(dev, gpio, &ctrl, &line, &id); if (ret) return ret; if (nv_rd32(dev, ctrl) & (1 << line)) { *divs = nv_rd32(dev, 0x00e114 + (id * 8)); *duty = nv_rd32(dev, 0x00e118 + (id * 8)); return 0; } return -EINVAL; } int nv50_pm_pwm_set(struct drm_device *dev, struct dcb_gpio_entry *gpio, u32 divs, u32 duty) { int ctrl, line, id, ret = pwm_info(dev, gpio, &ctrl, &line, &id); if (ret) return ret; nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line); nv_wr32(dev, 0x00e114 + (id * 8), divs); nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000); return 0; }