/* * hcd.c - DesignWare HS OTG Controller host-mode routines * * Copyright (C) 2004-2013 Synopsys, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains the core HCD code, and implements the Linux hc_driver * API */ #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "hcd.h" /** * dwc2_dump_channel_info() - Prints the state of a host channel * * @hsotg: Programming view of DWC_otg controller * @chan: Pointer to the channel to dump * * Must be called with interrupt disabled and spinlock held * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { #ifdef VERBOSE_DEBUG int num_channels = hsotg->core_params->host_channels; struct dwc2_qh *qh; u32 hcchar; u32 hcsplt; u32 hctsiz; u32 hc_dma; int i; if (chan == NULL) return; hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num)); hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num)); dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", hcchar, hcsplt); dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", hctsiz, hc_dma); dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", chan->dev_addr, chan->ep_num, chan->ep_is_in); dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", (unsigned long)chan->xfer_dma); dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); dev_dbg(hsotg->dev, " NP inactive sched:\n"); list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, qh_list_entry) dev_dbg(hsotg->dev, " %p\n", qh); dev_dbg(hsotg->dev, " NP active sched:\n"); list_for_each_entry(qh, &hsotg->non_periodic_sched_active, qh_list_entry) dev_dbg(hsotg->dev, " %p\n", qh); dev_dbg(hsotg->dev, " Channels:\n"); for (i = 0; i < num_channels; i++) { struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); } #endif /* VERBOSE_DEBUG */ } /* * Processes all the URBs in a single list of QHs. Completes them with * -ETIMEDOUT and frees the QTD. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, struct list_head *qh_list) { struct dwc2_qh *qh, *qh_tmp; struct dwc2_qtd *qtd, *qtd_tmp; list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) { dwc2_host_complete(hsotg, qtd, -ECONNRESET); dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); } } } static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, struct list_head *qh_list) { struct dwc2_qtd *qtd, *qtd_tmp; struct dwc2_qh *qh, *qh_tmp; unsigned long flags; if (!qh_list->next) /* The list hasn't been initialized yet */ return; spin_lock_irqsave(&hsotg->lock, flags); /* Ensure there are no QTDs or URBs left */ dwc2_kill_urbs_in_qh_list(hsotg, qh_list); list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_hcd_qh_free(hsotg, qh); spin_lock_irqsave(&hsotg->lock, flags); } spin_unlock_irqrestore(&hsotg->lock, flags); } /* * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic * and periodic schedules. The QTD associated with each URB is removed from * the schedule and freed. This function may be called when a disconnect is * detected or when the HCD is being stopped. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) { dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); } /** * dwc2_hcd_start() - Starts the HCD when switching to Host mode * * @hsotg: Pointer to struct dwc2_hsotg */ void dwc2_hcd_start(struct dwc2_hsotg *hsotg) { u32 hprt0; if (hsotg->op_state == OTG_STATE_B_HOST) { /* * Reset the port. During a HNP mode switch the reset * needs to occur within 1ms and have a duration of at * least 50ms. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_RST; dwc2_writel(hprt0, hsotg->regs + HPRT0); } queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, msecs_to_jiffies(50)); } /* Must be called with interrupt disabled and spinlock held */ static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) { int num_channels = hsotg->core_params->host_channels; struct dwc2_host_chan *channel; u32 hcchar; int i; if (hsotg->core_params->dma_enable <= 0) { /* Flush out any channel requests in slave mode */ for (i = 0; i < num_channels; i++) { channel = hsotg->hc_ptr_array[i]; if (!list_empty(&channel->hc_list_entry)) continue; hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); hcchar |= HCCHAR_CHDIS; dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); } } } for (i = 0; i < num_channels; i++) { channel = hsotg->hc_ptr_array[i]; if (!list_empty(&channel->hc_list_entry)) continue; hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { /* Halt the channel */ hcchar |= HCCHAR_CHDIS; dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); } dwc2_hc_cleanup(hsotg, channel); list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); /* * Added for Descriptor DMA to prevent channel double cleanup in * release_channel_ddma(), which is called from ep_disable when * device disconnects */ channel->qh = NULL; } /* All channels have been freed, mark them available */ if (hsotg->core_params->uframe_sched > 0) { hsotg->available_host_channels = hsotg->core_params->host_channels; } else { hsotg->non_periodic_channels = 0; hsotg->periodic_channels = 0; } } /** * dwc2_hcd_connect() - Handles connect of the HCD * * @hsotg: Pointer to struct dwc2_hsotg * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) { if (hsotg->lx_state != DWC2_L0) usb_hcd_resume_root_hub(hsotg->priv); hsotg->flags.b.port_connect_status_change = 1; hsotg->flags.b.port_connect_status = 1; } /** * dwc2_hcd_disconnect() - Handles disconnect of the HCD * * @hsotg: Pointer to struct dwc2_hsotg * @force: If true, we won't try to reconnect even if we see device connected. * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) { u32 intr; u32 hprt0; /* Set status flags for the hub driver */ hsotg->flags.b.port_connect_status_change = 1; hsotg->flags.b.port_connect_status = 0; /* * Shutdown any transfers in process by clearing the Tx FIFO Empty * interrupt mask and status bits and disabling subsequent host * channel interrupts. */ intr = dwc2_readl(hsotg->regs + GINTMSK); intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); dwc2_writel(intr, hsotg->regs + GINTMSK); intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; dwc2_writel(intr, hsotg->regs + GINTSTS); /* * Turn off the vbus power only if the core has transitioned to device * mode. If still in host mode, need to keep power on to detect a * reconnection. */ if (dwc2_is_device_mode(hsotg)) { if (hsotg->op_state != OTG_STATE_A_SUSPEND) { dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); dwc2_writel(0, hsotg->regs + HPRT0); } dwc2_disable_host_interrupts(hsotg); } /* Respond with an error status to all URBs in the schedule */ dwc2_kill_all_urbs(hsotg); if (dwc2_is_host_mode(hsotg)) /* Clean up any host channels that were in use */ dwc2_hcd_cleanup_channels(hsotg); dwc2_host_disconnect(hsotg); /* * Add an extra check here to see if we're actually connected but * we don't have a detection interrupt pending. This can happen if: * 1. hardware sees connect * 2. hardware sees disconnect * 3. hardware sees connect * 4. dwc2_port_intr() - clears connect interrupt * 5. dwc2_handle_common_intr() - calls here * * Without the extra check here we will end calling disconnect * and won't get any future interrupts to handle the connect. */ if (!force) { hprt0 = dwc2_readl(hsotg->regs + HPRT0); if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) dwc2_hcd_connect(hsotg); } } /** * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup * * @hsotg: Pointer to struct dwc2_hsotg */ static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) { if (hsotg->bus_suspended) { hsotg->flags.b.port_suspend_change = 1; usb_hcd_resume_root_hub(hsotg->priv); } if (hsotg->lx_state == DWC2_L1) hsotg->flags.b.port_l1_change = 1; } /** * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner * * @hsotg: Pointer to struct dwc2_hsotg * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) { dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); /* * The root hub should be disconnected before this function is called. * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) * and the QH lists (via ..._hcd_endpoint_disable). */ /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); /* Turn off the vbus power */ dev_dbg(hsotg->dev, "PortPower off\n"); dwc2_writel(0, hsotg->regs + HPRT0); } /* Caller must hold driver lock */ static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, struct dwc2_qtd *qtd) { u32 intr_mask; int retval; int dev_speed; if (!hsotg->flags.b.port_connect_status) { /* No longer connected */ dev_err(hsotg->dev, "Not connected\n"); return -ENODEV; } dev_speed = dwc2_host_get_speed(hsotg, urb->priv); /* Some configurations cannot support LS traffic on a FS root port */ if ((dev_speed == USB_SPEED_LOW) && (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0); u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; if (prtspd == HPRT0_SPD_FULL_SPEED) return -ENODEV; } if (!qtd) return -EINVAL; dwc2_hcd_qtd_init(qtd, urb); retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); if (retval) { dev_err(hsotg->dev, "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", retval); return retval; } intr_mask = dwc2_readl(hsotg->regs + GINTMSK); if (!(intr_mask & GINTSTS_SOF)) { enum dwc2_transaction_type tr_type; if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && !(qtd->urb->flags & URB_GIVEBACK_ASAP)) /* * Do not schedule SG transactions until qtd has * URB_GIVEBACK_ASAP set */ return 0; tr_type = dwc2_hcd_select_transactions(hsotg); if (tr_type != DWC2_TRANSACTION_NONE) dwc2_hcd_queue_transactions(hsotg, tr_type); } return 0; } /* Must be called with interrupt disabled and spinlock held */ static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb) { struct dwc2_qh *qh; struct dwc2_qtd *urb_qtd; urb_qtd = urb->qtd; if (!urb_qtd) { dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); return -EINVAL; } qh = urb_qtd->qh; if (!qh) { dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); return -EINVAL; } urb->priv = NULL; if (urb_qtd->in_process && qh->channel) { dwc2_dump_channel_info(hsotg, qh->channel); /* The QTD is in process (it has been assigned to a channel) */ if (hsotg->flags.b.port_connect_status) /* * If still connected (i.e. in host mode), halt the * channel so it can be used for other transfers. If * no longer connected, the host registers can't be * written to halt the channel since the core is in * device mode. */ dwc2_hc_halt(hsotg, qh->channel, DWC2_HC_XFER_URB_DEQUEUE); } /* * Free the QTD and clean up the associated QH. Leave the QH in the * schedule if it has any remaining QTDs. */ if (hsotg->core_params->dma_desc_enable <= 0) { u8 in_process = urb_qtd->in_process; dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); if (in_process) { dwc2_hcd_qh_deactivate(hsotg, qh, 0); qh->channel = NULL; } else if (list_empty(&qh->qtd_list)) { dwc2_hcd_qh_unlink(hsotg, qh); } } else { dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); } return 0; } /* Must NOT be called with interrupt disabled or spinlock held */ static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep, int retry) { struct dwc2_qtd *qtd, *qtd_tmp; struct dwc2_qh *qh; unsigned long flags; int rc; spin_lock_irqsave(&hsotg->lock, flags); qh = ep->hcpriv; if (!qh) { rc = -EINVAL; goto err; } while (!list_empty(&qh->qtd_list) && retry--) { if (retry == 0) { dev_err(hsotg->dev, "## timeout in dwc2_hcd_endpoint_disable() ##\n"); rc = -EBUSY; goto err; } spin_unlock_irqrestore(&hsotg->lock, flags); usleep_range(20000, 40000); spin_lock_irqsave(&hsotg->lock, flags); qh = ep->hcpriv; if (!qh) { rc = -EINVAL; goto err; } } dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); ep->hcpriv = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_hcd_qh_free(hsotg, qh); return 0; err: ep->hcpriv = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); return rc; } /* Must be called with interrupt disabled and spinlock held */ static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { struct dwc2_qh *qh = ep->hcpriv; if (!qh) return -EINVAL; qh->data_toggle = DWC2_HC_PID_DATA0; return 0; } /* * Initializes dynamic portions of the DWC_otg HCD state * * Must be called with interrupt disabled and spinlock held */ static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) { struct dwc2_host_chan *chan, *chan_tmp; int num_channels; int i; hsotg->flags.d32 = 0; hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; if (hsotg->core_params->uframe_sched > 0) { hsotg->available_host_channels = hsotg->core_params->host_channels; } else { hsotg->non_periodic_channels = 0; hsotg->periodic_channels = 0; } /* * Put all channels in the free channel list and clean up channel * states */ list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, hc_list_entry) list_del_init(&chan->hc_list_entry); num_channels = hsotg->core_params->host_channels; for (i = 0; i < num_channels; i++) { chan = hsotg->hc_ptr_array[i]; list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); dwc2_hc_cleanup(hsotg, chan); } /* Initialize the DWC core for host mode operation */ dwc2_core_host_init(hsotg); } static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) { int hub_addr, hub_port; chan->do_split = 1; chan->xact_pos = qtd->isoc_split_pos; chan->complete_split = qtd->complete_split; dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); chan->hub_addr = (u8)hub_addr; chan->hub_port = (u8)hub_port; } static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd) { struct dwc2_hcd_urb *urb = qtd->urb; struct dwc2_hcd_iso_packet_desc *frame_desc; switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { case USB_ENDPOINT_XFER_CONTROL: chan->ep_type = USB_ENDPOINT_XFER_CONTROL; switch (qtd->control_phase) { case DWC2_CONTROL_SETUP: dev_vdbg(hsotg->dev, " Control setup transaction\n"); chan->do_ping = 0; chan->ep_is_in = 0; chan->data_pid_start = DWC2_HC_PID_SETUP; if (hsotg->core_params->dma_enable > 0) chan->xfer_dma = urb->setup_dma; else chan->xfer_buf = urb->setup_packet; chan->xfer_len = 8; break; case DWC2_CONTROL_DATA: dev_vdbg(hsotg->dev, " Control data transaction\n"); chan->data_pid_start = qtd->data_toggle; break; case DWC2_CONTROL_STATUS: /* * Direction is opposite of data direction or IN if no * data */ dev_vdbg(hsotg->dev, " Control status transaction\n"); if (urb->length == 0) chan->ep_is_in = 1; else chan->ep_is_in = dwc2_hcd_is_pipe_out(&urb->pipe_info); if (chan->ep_is_in) chan->do_ping = 0; chan->data_pid_start = DWC2_HC_PID_DATA1; chan->xfer_len = 0; if (hsotg->core_params->dma_enable > 0) chan->xfer_dma = hsotg->status_buf_dma; else chan->xfer_buf = hsotg->status_buf; break; } break; case USB_ENDPOINT_XFER_BULK: chan->ep_type = USB_ENDPOINT_XFER_BULK; break; case USB_ENDPOINT_XFER_INT: chan->ep_type = USB_ENDPOINT_XFER_INT; break; case USB_ENDPOINT_XFER_ISOC: chan->ep_type = USB_ENDPOINT_XFER_ISOC; if (hsotg->core_params->dma_desc_enable > 0) break; frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; frame_desc->status = 0; if (hsotg->core_params->dma_enable > 0) { chan->xfer_dma = urb->dma; chan->xfer_dma += frame_desc->offset + qtd->isoc_split_offset; } else { chan->xfer_buf = urb->buf; chan->xfer_buf += frame_desc->offset + qtd->isoc_split_offset; } chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { if (chan->xfer_len <= 188) chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; else chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; } break; } } #define DWC2_USB_DMA_ALIGN 4 struct dma_aligned_buffer { void *kmalloc_ptr; void *old_xfer_buffer; u8 data[0]; }; static void dwc2_free_dma_aligned_buffer(struct urb *urb) { struct dma_aligned_buffer *temp; if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) return; temp = container_of(urb->transfer_buffer, struct dma_aligned_buffer, data); if (usb_urb_dir_in(urb)) memcpy(temp->old_xfer_buffer, temp->data, urb->transfer_buffer_length); urb->transfer_buffer = temp->old_xfer_buffer; kfree(temp->kmalloc_ptr); urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; } static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) { struct dma_aligned_buffer *temp, *kmalloc_ptr; size_t kmalloc_size; if (urb->num_sgs || urb->sg || urb->transfer_buffer_length == 0 || !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) return 0; /* Allocate a buffer with enough padding for alignment */ kmalloc_size = urb->transfer_buffer_length + sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1; kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); if (!kmalloc_ptr) return -ENOMEM; /* Position our struct dma_aligned_buffer such that data is aligned */ temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1; temp->kmalloc_ptr = kmalloc_ptr; temp->old_xfer_buffer = urb->transfer_buffer; if (usb_urb_dir_out(urb)) memcpy(temp->data, urb->transfer_buffer, urb->transfer_buffer_length); urb->transfer_buffer = temp->data; urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; return 0; } static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { int ret; /* We assume setup_dma is always aligned; warn if not */ WARN_ON_ONCE(urb->setup_dma && (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); if (ret) return ret; ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); if (ret) dwc2_free_dma_aligned_buffer(urb); return ret; } static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { usb_hcd_unmap_urb_for_dma(hcd, urb); dwc2_free_dma_aligned_buffer(urb); } /** * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host * channel and initializes the host channel to perform the transactions. The * host channel is removed from the free list. * * @hsotg: The HCD state structure * @qh: Transactions from the first QTD for this QH are selected and assigned * to a free host channel */ static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { struct dwc2_host_chan *chan; struct dwc2_hcd_urb *urb; struct dwc2_qtd *qtd; if (dbg_qh(qh)) dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); if (list_empty(&qh->qtd_list)) { dev_dbg(hsotg->dev, "No QTDs in QH list\n"); return -ENOMEM; } if (list_empty(&hsotg->free_hc_list)) { dev_dbg(hsotg->dev, "No free channel to assign\n"); return -ENOMEM; } chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, hc_list_entry); /* Remove host channel from free list */ list_del_init(&chan->hc_list_entry); qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); urb = qtd->urb; qh->channel = chan; qtd->in_process = 1; /* * Use usb_pipedevice to determine device address. This address is * 0 before the SET_ADDRESS command and the correct address afterward. */ chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); chan->speed = qh->dev_speed; chan->max_packet = dwc2_max_packet(qh->maxp); chan->xfer_started = 0; chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; chan->error_state = (qtd->error_count > 0); chan->halt_on_queue = 0; chan->halt_pending = 0; chan->requests = 0; /* * The following values may be modified in the transfer type section * below. The xfer_len value may be reduced when the transfer is * started to accommodate the max widths of the XferSize and PktCnt * fields in the HCTSIZn register. */ chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); if (chan->ep_is_in) chan->do_ping = 0; else chan->do_ping = qh->ping_state; chan->data_pid_start = qh->data_toggle; chan->multi_count = 1; if (urb->actual_length > urb->length && !dwc2_hcd_is_pipe_in(&urb->pipe_info)) urb->actual_length = urb->length; if (hsotg->core_params->dma_enable > 0) chan->xfer_dma = urb->dma + urb->actual_length; else chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; chan->xfer_len = urb->length - urb->actual_length; chan->xfer_count = 0; /* Set the split attributes if required */ if (qh->do_split) dwc2_hc_init_split(hsotg, chan, qtd, urb); else chan->do_split = 0; /* Set the transfer attributes */ dwc2_hc_init_xfer(hsotg, chan, qtd); if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) /* * This value may be modified when the transfer is started * to reflect the actual transfer length */ chan->multi_count = dwc2_hb_mult(qh->maxp); if (hsotg->core_params->dma_desc_enable > 0) { chan->desc_list_addr = qh->desc_list_dma; chan->desc_list_sz = qh->desc_list_sz; } dwc2_hc_init(hsotg, chan); chan->qh = qh; return 0; } /** * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer * schedule and assigns them to available host channels. Called from the HCD * interrupt handler functions. * * @hsotg: The HCD state structure * * Return: The types of new transactions that were assigned to host channels */ enum dwc2_transaction_type dwc2_hcd_select_transactions( struct dwc2_hsotg *hsotg) { enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; struct list_head *qh_ptr; struct dwc2_qh *qh; int num_channels; #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, " Select Transactions\n"); #endif /* Process entries in the periodic ready list */ qh_ptr = hsotg->periodic_sched_ready.next; while (qh_ptr != &hsotg->periodic_sched_ready) { if (list_empty(&hsotg->free_hc_list)) break; if (hsotg->core_params->uframe_sched > 0) { if (hsotg->available_host_channels <= 1) break; hsotg->available_host_channels--; } qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (dwc2_assign_and_init_hc(hsotg, qh)) break; /* * Move the QH from the periodic ready schedule to the * periodic assigned schedule */ qh_ptr = qh_ptr->next; list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned); ret_val = DWC2_TRANSACTION_PERIODIC; } /* * Process entries in the inactive portion of the non-periodic * schedule. Some free host channels may not be used if they are * reserved for periodic transfers. */ num_channels = hsotg->core_params->host_channels; qh_ptr = hsotg->non_periodic_sched_inactive.next; while (qh_ptr != &hsotg->non_periodic_sched_inactive) { if (hsotg->core_params->uframe_sched <= 0 && hsotg->non_periodic_channels >= num_channels - hsotg->periodic_channels) break; if (list_empty(&hsotg->free_hc_list)) break; qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (hsotg->core_params->uframe_sched > 0) { if (hsotg->available_host_channels < 1) break; hsotg->available_host_channels--; } if (dwc2_assign_and_init_hc(hsotg, qh)) break; /* * Move the QH from the non-periodic inactive schedule to the * non-periodic active schedule */ qh_ptr = qh_ptr->next; list_move(&qh->qh_list_entry, &hsotg->non_periodic_sched_active); if (ret_val == DWC2_TRANSACTION_NONE) ret_val = DWC2_TRANSACTION_NON_PERIODIC; else ret_val = DWC2_TRANSACTION_ALL; if (hsotg->core_params->uframe_sched <= 0) hsotg->non_periodic_channels++; } return ret_val; } /** * dwc2_queue_transaction() - Attempts to queue a single transaction request for * a host channel associated with either a periodic or non-periodic transfer * * @hsotg: The HCD state structure * @chan: Host channel descriptor associated with either a periodic or * non-periodic transfer * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO * for periodic transfers or the non-periodic Tx FIFO * for non-periodic transfers * * Return: 1 if a request is queued and more requests may be needed to * complete the transfer, 0 if no more requests are required for this * transfer, -1 if there is insufficient space in the Tx FIFO * * This function assumes that there is space available in the appropriate * request queue. For an OUT transfer or SETUP transaction in Slave mode, * it checks whether space is available in the appropriate Tx FIFO. * * Must be called with interrupt disabled and spinlock held */ static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, u16 fifo_dwords_avail) { int retval = 0; if (hsotg->core_params->dma_enable > 0) { if (hsotg->core_params->dma_desc_enable > 0) { if (!chan->xfer_started || chan->ep_type == USB_ENDPOINT_XFER_ISOC) { dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); chan->qh->ping_state = 0; } } else if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); chan->qh->ping_state = 0; } } else if (chan->halt_pending) { /* Don't queue a request if the channel has been halted */ } else if (chan->halt_on_queue) { dwc2_hc_halt(hsotg, chan, chan->halt_status); } else if (chan->do_ping) { if (!chan->xfer_started) dwc2_hc_start_transfer(hsotg, chan); } else if (!chan->ep_is_in || chan->data_pid_start == DWC2_HC_PID_SETUP) { if ((fifo_dwords_avail * 4) >= chan->max_packet) { if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); retval = 1; } else { retval = dwc2_hc_continue_transfer(hsotg, chan); } } else { retval = -1; } } else { if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); retval = 1; } else { retval = dwc2_hc_continue_transfer(hsotg, chan); } } return retval; } /* * Processes periodic channels for the next frame and queues transactions for * these channels to the DWC_otg controller. After queueing transactions, the * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions * to queue as Periodic Tx FIFO or request queue space becomes available. * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) { struct list_head *qh_ptr; struct dwc2_qh *qh; u32 tx_status; u32 fspcavail; u32 gintmsk; int status; int no_queue_space = 0; int no_fifo_space = 0; u32 qspcavail; if (dbg_perio()) dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); tx_status = dwc2_readl(hsotg->regs + HPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; if (dbg_perio()) { dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", fspcavail); } qh_ptr = hsotg->periodic_sched_assigned.next; while (qh_ptr != &hsotg->periodic_sched_assigned) { tx_status = dwc2_readl(hsotg->regs + HPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; if (qspcavail == 0) { no_queue_space = 1; break; } qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (!qh->channel) { qh_ptr = qh_ptr->next; continue; } /* Make sure EP's TT buffer is clean before queueing qtds */ if (qh->tt_buffer_dirty) { qh_ptr = qh_ptr->next; continue; } /* * Set a flag if we're queuing high-bandwidth in slave mode. * The flag prevents any halts to get into the request queue in * the middle of multiple high-bandwidth packets getting queued. */ if (hsotg->core_params->dma_enable <= 0 && qh->channel->multi_count > 1) hsotg->queuing_high_bandwidth = 1; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); if (status < 0) { no_fifo_space = 1; break; } /* * In Slave mode, stay on the current transfer until there is * nothing more to do or the high-bandwidth request count is * reached. In DMA mode, only need to queue one request. The * controller automatically handles multiple packets for * high-bandwidth transfers. */ if (hsotg->core_params->dma_enable > 0 || status == 0 || qh->channel->requests == qh->channel->multi_count) { qh_ptr = qh_ptr->next; /* * Move the QH from the periodic assigned schedule to * the periodic queued schedule */ list_move(&qh->qh_list_entry, &hsotg->periodic_sched_queued); /* done queuing high bandwidth */ hsotg->queuing_high_bandwidth = 0; } } if (hsotg->core_params->dma_enable <= 0) { tx_status = dwc2_readl(hsotg->regs + HPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; if (dbg_perio()) { dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (after queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (after queue): %d\n", fspcavail); } if (!list_empty(&hsotg->periodic_sched_assigned) || no_queue_space || no_fifo_space) { /* * May need to queue more transactions as the request * queue or Tx FIFO empties. Enable the periodic Tx * FIFO empty interrupt. (Always use the half-empty * level to ensure that new requests are loaded as * soon as possible.) */ gintmsk = dwc2_readl(hsotg->regs + GINTMSK); gintmsk |= GINTSTS_PTXFEMP; dwc2_writel(gintmsk, hsotg->regs + GINTMSK); } else { /* * Disable the Tx FIFO empty interrupt since there are * no more transactions that need to be queued right * now. This function is called from interrupt * handlers to queue more transactions as transfer * states change. */ gintmsk = dwc2_readl(hsotg->regs + GINTMSK); gintmsk &= ~GINTSTS_PTXFEMP; dwc2_writel(gintmsk, hsotg->regs + GINTMSK); } } } /* * Processes active non-periodic channels and queues transactions for these * channels to the DWC_otg controller. After queueing transactions, the NP Tx * FIFO Empty interrupt is enabled if there are more transactions to queue as * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx * FIFO Empty interrupt is disabled. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) { struct list_head *orig_qh_ptr; struct dwc2_qh *qh; u32 tx_status; u32 qspcavail; u32 fspcavail; u32 gintmsk; int status; int no_queue_space = 0; int no_fifo_space = 0; int more_to_do = 0; dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", fspcavail); /* * Keep track of the starting point. Skip over the start-of-list * entry. */ if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; orig_qh_ptr = hsotg->non_periodic_qh_ptr; /* * Process once through the active list or until no more space is * available in the request queue or the Tx FIFO */ do { tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) { no_queue_space = 1; break; } qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, qh_list_entry); if (!qh->channel) goto next; /* Make sure EP's TT buffer is clean before queueing qtds */ if (qh->tt_buffer_dirty) goto next; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); if (status > 0) { more_to_do = 1; } else if (status < 0) { no_fifo_space = 1; break; } next: /* Advance to next QH, skipping start-of-list entry */ hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); if (hsotg->core_params->dma_enable <= 0) { tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (after queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (after queue): %d\n", fspcavail); if (more_to_do || no_queue_space || no_fifo_space) { /* * May need to queue more transactions as the request * queue or Tx FIFO empties. Enable the non-periodic * Tx FIFO empty interrupt. (Always use the half-empty * level to ensure that new requests are loaded as * soon as possible.) */ gintmsk = dwc2_readl(hsotg->regs + GINTMSK); gintmsk |= GINTSTS_NPTXFEMP; dwc2_writel(gintmsk, hsotg->regs + GINTMSK); } else { /* * Disable the Tx FIFO empty interrupt since there are * no more transactions that need to be queued right * now. This function is called from interrupt * handlers to queue more transactions as transfer * states change. */ gintmsk = dwc2_readl(hsotg->regs + GINTMSK); gintmsk &= ~GINTSTS_NPTXFEMP; dwc2_writel(gintmsk, hsotg->regs + GINTMSK); } } } /** * dwc2_hcd_queue_transactions() - Processes the currently active host channels * and queues transactions for these channels to the DWC_otg controller. Called * from the HCD interrupt handler functions. * * @hsotg: The HCD state structure * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, * or both) * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, enum dwc2_transaction_type tr_type) { #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, "Queue Transactions\n"); #endif /* Process host channels associated with periodic transfers */ if ((tr_type == DWC2_TRANSACTION_PERIODIC || tr_type == DWC2_TRANSACTION_ALL) && !list_empty(&hsotg->periodic_sched_assigned)) dwc2_process_periodic_channels(hsotg); /* Process host channels associated with non-periodic transfers */ if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || tr_type == DWC2_TRANSACTION_ALL) { if (!list_empty(&hsotg->non_periodic_sched_active)) { dwc2_process_non_periodic_channels(hsotg); } else { /* * Ensure NP Tx FIFO empty interrupt is disabled when * there are no non-periodic transfers to process */ u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); gintmsk &= ~GINTSTS_NPTXFEMP; dwc2_writel(gintmsk, hsotg->regs + GINTMSK); } } } static void dwc2_conn_id_status_change(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, wf_otg); u32 count = 0; u32 gotgctl; unsigned long flags; dev_dbg(hsotg->dev, "%s()\n", __func__); gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", !!(gotgctl & GOTGCTL_CONID_B)); /* B-Device connector (Device Mode) */ if (gotgctl & GOTGCTL_CONID_B) { /* Wait for switch to device mode */ dev_dbg(hsotg->dev, "connId B\n"); while (!dwc2_is_device_mode(hsotg)) { dev_info(hsotg->dev, "Waiting for Peripheral Mode, Mode=%s\n", dwc2_is_host_mode(hsotg) ? "Host" : "Peripheral"); usleep_range(20000, 40000); if (++count > 250) break; } if (count > 250) dev_err(hsotg->dev, "Connection id status change timed out\n"); hsotg->op_state = OTG_STATE_B_PERIPHERAL; dwc2_core_init(hsotg, false); dwc2_enable_global_interrupts(hsotg); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hsotg_core_init_disconnected(hsotg, false); spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_hsotg_core_connect(hsotg); } else { /* A-Device connector (Host Mode) */ dev_dbg(hsotg->dev, "connId A\n"); while (!dwc2_is_host_mode(hsotg)) { dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", dwc2_is_host_mode(hsotg) ? "Host" : "Peripheral"); usleep_range(20000, 40000); if (++count > 250) break; } if (count > 250) dev_err(hsotg->dev, "Connection id status change timed out\n"); hsotg->op_state = OTG_STATE_A_HOST; /* Initialize the Core for Host mode */ dwc2_core_init(hsotg, false); dwc2_enable_global_interrupts(hsotg); dwc2_hcd_start(hsotg); } } static void dwc2_wakeup_detected(unsigned long data) { struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data; u32 hprt0; dev_dbg(hsotg->dev, "%s()\n", __func__); /* * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms * so that OPT tests pass with all PHYs.) */ hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); hprt0 &= ~HPRT0_RES; dwc2_writel(hprt0, hsotg->regs + HPRT0); dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", dwc2_readl(hsotg->regs + HPRT0)); dwc2_hcd_rem_wakeup(hsotg); hsotg->bus_suspended = 0; /* Change to L0 state */ hsotg->lx_state = DWC2_L0; } static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); return hcd->self.b_hnp_enable; } /* Must NOT be called with interrupt disabled or spinlock held */ static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) { unsigned long flags; u32 hprt0; u32 pcgctl; u32 gotgctl; dev_dbg(hsotg->dev, "%s()\n", __func__); spin_lock_irqsave(&hsotg->lock, flags); if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); gotgctl |= GOTGCTL_HSTSETHNPEN; dwc2_writel(gotgctl, hsotg->regs + GOTGCTL); hsotg->op_state = OTG_STATE_A_SUSPEND; } hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_SUSP; dwc2_writel(hprt0, hsotg->regs + HPRT0); hsotg->bus_suspended = 1; /* * If hibernation is supported, Phy clock will be suspended * after registers are backuped. */ if (!hsotg->core_params->hibernation) { /* Suspend the Phy Clock */ pcgctl = dwc2_readl(hsotg->regs + PCGCTL); pcgctl |= PCGCTL_STOPPCLK; dwc2_writel(pcgctl, hsotg->regs + PCGCTL); udelay(10); } /* For HNP the bus must be suspended for at least 200ms */ if (dwc2_host_is_b_hnp_enabled(hsotg)) { pcgctl = dwc2_readl(hsotg->regs + PCGCTL); pcgctl &= ~PCGCTL_STOPPCLK; dwc2_writel(pcgctl, hsotg->regs + PCGCTL); spin_unlock_irqrestore(&hsotg->lock, flags); usleep_range(200000, 250000); } else { spin_unlock_irqrestore(&hsotg->lock, flags); } } /* Must NOT be called with interrupt disabled or spinlock held */ static void dwc2_port_resume(struct dwc2_hsotg *hsotg) { unsigned long flags; u32 hprt0; u32 pcgctl; spin_lock_irqsave(&hsotg->lock, flags); /* * If hibernation is supported, Phy clock is already resumed * after registers restore. */ if (!hsotg->core_params->hibernation) { pcgctl = dwc2_readl(hsotg->regs + PCGCTL); pcgctl &= ~PCGCTL_STOPPCLK; dwc2_writel(pcgctl, hsotg->regs + PCGCTL); spin_unlock_irqrestore(&hsotg->lock, flags); usleep_range(20000, 40000); spin_lock_irqsave(&hsotg->lock, flags); } hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_RES; hprt0 &= ~HPRT0_SUSP; dwc2_writel(hprt0, hsotg->regs + HPRT0); spin_unlock_irqrestore(&hsotg->lock, flags); msleep(USB_RESUME_TIMEOUT); spin_lock_irqsave(&hsotg->lock, flags); hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); dwc2_writel(hprt0, hsotg->regs + HPRT0); hsotg->bus_suspended = 0; spin_unlock_irqrestore(&hsotg->lock, flags); } /* Handles hub class-specific requests */ static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, u16 wvalue, u16 windex, char *buf, u16 wlength) { struct usb_hub_descriptor *hub_desc; int retval = 0; u32 hprt0; u32 port_status; u32 speed; u32 pcgctl; switch (typereq) { case ClearHubFeature: dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); switch (wvalue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* Nothing required here */ break; default: retval = -EINVAL; dev_err(hsotg->dev, "ClearHubFeature request %1xh unknown\n", wvalue); } break; case ClearPortFeature: if (wvalue != USB_PORT_FEAT_L1) if (!windex || windex > 1) goto error; switch (wvalue) { case USB_PORT_FEAT_ENABLE: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_ENA; dwc2_writel(hprt0, hsotg->regs + HPRT0); break; case USB_PORT_FEAT_SUSPEND: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); if (hsotg->bus_suspended) dwc2_port_resume(hsotg); break; case USB_PORT_FEAT_POWER: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_POWER\n"); hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~HPRT0_PWR; dwc2_writel(hprt0, hsotg->regs + HPRT0); break; case USB_PORT_FEAT_INDICATOR: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); /* Port indicator not supported */ break; case USB_PORT_FEAT_C_CONNECTION: /* * Clears driver's internal Connect Status Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); hsotg->flags.b.port_connect_status_change = 0; break; case USB_PORT_FEAT_C_RESET: /* Clears driver's internal Port Reset Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); hsotg->flags.b.port_reset_change = 0; break; case USB_PORT_FEAT_C_ENABLE: /* * Clears the driver's internal Port Enable/Disable * Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); hsotg->flags.b.port_enable_change = 0; break; case USB_PORT_FEAT_C_SUSPEND: /* * Clears the driver's internal Port Suspend Change * flag, which is set when resume signaling on the host * port is complete */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); hsotg->flags.b.port_suspend_change = 0; break; case USB_PORT_FEAT_C_PORT_L1: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); hsotg->flags.b.port_l1_change = 0; break; case USB_PORT_FEAT_C_OVER_CURRENT: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); hsotg->flags.b.port_over_current_change = 0; break; default: retval = -EINVAL; dev_err(hsotg->dev, "ClearPortFeature request %1xh unknown or unsupported\n", wvalue); } break; case GetHubDescriptor: dev_dbg(hsotg->dev, "GetHubDescriptor\n"); hub_desc = (struct usb_hub_descriptor *)buf; hub_desc->bDescLength = 9; hub_desc->bDescriptorType = USB_DT_HUB; hub_desc->bNbrPorts = 1; hub_desc->wHubCharacteristics = cpu_to_le16(HUB_CHAR_COMMON_LPSM | HUB_CHAR_INDV_PORT_OCPM); hub_desc->bPwrOn2PwrGood = 1; hub_desc->bHubContrCurrent = 0; hub_desc->u.hs.DeviceRemovable[0] = 0; hub_desc->u.hs.DeviceRemovable[1] = 0xff; break; case GetHubStatus: dev_dbg(hsotg->dev, "GetHubStatus\n"); memset(buf, 0, 4); break; case GetPortStatus: dev_vdbg(hsotg->dev, "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, hsotg->flags.d32); if (!windex || windex > 1) goto error; port_status = 0; if (hsotg->flags.b.port_connect_status_change) port_status |= USB_PORT_STAT_C_CONNECTION << 16; if (hsotg->flags.b.port_enable_change) port_status |= USB_PORT_STAT_C_ENABLE << 16; if (hsotg->flags.b.port_suspend_change) port_status |= USB_PORT_STAT_C_SUSPEND << 16; if (hsotg->flags.b.port_l1_change) port_status |= USB_PORT_STAT_C_L1 << 16; if (hsotg->flags.b.port_reset_change) port_status |= USB_PORT_STAT_C_RESET << 16; if (hsotg->flags.b.port_over_current_change) { dev_warn(hsotg->dev, "Overcurrent change detected\n"); port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; } if (!hsotg->flags.b.port_connect_status) { /* * The port is disconnected, which means the core is * either in device mode or it soon will be. Just * return 0's for the remainder of the port status * since the port register can't be read if the core * is in device mode. */ *(__le32 *)buf = cpu_to_le32(port_status); break; } hprt0 = dwc2_readl(hsotg->regs + HPRT0); dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); if (hprt0 & HPRT0_CONNSTS) port_status |= USB_PORT_STAT_CONNECTION; if (hprt0 & HPRT0_ENA) port_status |= USB_PORT_STAT_ENABLE; if (hprt0 & HPRT0_SUSP) port_status |= USB_PORT_STAT_SUSPEND; if (hprt0 & HPRT0_OVRCURRACT) port_status |= USB_PORT_STAT_OVERCURRENT; if (hprt0 & HPRT0_RST) port_status |= USB_PORT_STAT_RESET; if (hprt0 & HPRT0_PWR) port_status |= USB_PORT_STAT_POWER; speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; if (speed == HPRT0_SPD_HIGH_SPEED) port_status |= USB_PORT_STAT_HIGH_SPEED; else if (speed == HPRT0_SPD_LOW_SPEED) port_status |= USB_PORT_STAT_LOW_SPEED; if (hprt0 & HPRT0_TSTCTL_MASK) port_status |= USB_PORT_STAT_TEST; /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ if (hsotg->core_params->dma_desc_fs_enable) { /* * Enable descriptor DMA only if a full speed * device is connected. */ if (hsotg->new_connection && ((port_status & (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_HIGH_SPEED | USB_PORT_STAT_LOW_SPEED)) == USB_PORT_STAT_CONNECTION)) { u32 hcfg; dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); hsotg->core_params->dma_desc_enable = 1; hcfg = dwc2_readl(hsotg->regs + HCFG); hcfg |= HCFG_DESCDMA; dwc2_writel(hcfg, hsotg->regs + HCFG); hsotg->new_connection = false; } } dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); *(__le32 *)buf = cpu_to_le32(port_status); break; case SetHubFeature: dev_dbg(hsotg->dev, "SetHubFeature\n"); /* No HUB features supported */ break; case SetPortFeature: dev_dbg(hsotg->dev, "SetPortFeature\n"); if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) goto error; if (!hsotg->flags.b.port_connect_status) { /* * The port is disconnected, which means the core is * either in device mode or it soon will be. Just * return without doing anything since the port * register can't be written if the core is in device * mode. */ break; } switch (wvalue) { case USB_PORT_FEAT_SUSPEND: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); if (windex != hsotg->otg_port) goto error; dwc2_port_suspend(hsotg, windex); break; case USB_PORT_FEAT_POWER: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_POWER\n"); hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_PWR; dwc2_writel(hprt0, hsotg->regs + HPRT0); break; case USB_PORT_FEAT_RESET: hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_RESET\n"); pcgctl = dwc2_readl(hsotg->regs + PCGCTL); pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); dwc2_writel(pcgctl, hsotg->regs + PCGCTL); /* ??? Original driver does this */ dwc2_writel(0, hsotg->regs + PCGCTL); hprt0 = dwc2_read_hprt0(hsotg); /* Clear suspend bit if resetting from suspend state */ hprt0 &= ~HPRT0_SUSP; /* * When B-Host the Port reset bit is set in the Start * HCD Callback function, so that the reset is started * within 1ms of the HNP success interrupt */ if (!dwc2_hcd_is_b_host(hsotg)) { hprt0 |= HPRT0_PWR | HPRT0_RST; dev_dbg(hsotg->dev, "In host mode, hprt0=%08x\n", hprt0); dwc2_writel(hprt0, hsotg->regs + HPRT0); } /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ usleep_range(50000, 70000); hprt0 &= ~HPRT0_RST; dwc2_writel(hprt0, hsotg->regs + HPRT0); hsotg->lx_state = DWC2_L0; /* Now back to On state */ break; case USB_PORT_FEAT_INDICATOR: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); /* Not supported */ break; case USB_PORT_FEAT_TEST: hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_TEST\n"); hprt0 &= ~HPRT0_TSTCTL_MASK; hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; dwc2_writel(hprt0, hsotg->regs + HPRT0); break; default: retval = -EINVAL; dev_err(hsotg->dev, "SetPortFeature %1xh unknown or unsupported\n", wvalue); break; } break; default: error: retval = -EINVAL; dev_dbg(hsotg->dev, "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", typereq, windex, wvalue); break; } return retval; } static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) { int retval; if (port != 1) return -EINVAL; retval = (hsotg->flags.b.port_connect_status_change || hsotg->flags.b.port_reset_change || hsotg->flags.b.port_enable_change || hsotg->flags.b.port_suspend_change || hsotg->flags.b.port_over_current_change); if (retval) { dev_dbg(hsotg->dev, "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", hsotg->flags.b.port_connect_status_change); dev_dbg(hsotg->dev, " port_reset_change: %d\n", hsotg->flags.b.port_reset_change); dev_dbg(hsotg->dev, " port_enable_change: %d\n", hsotg->flags.b.port_enable_change); dev_dbg(hsotg->dev, " port_suspend_change: %d\n", hsotg->flags.b.port_suspend_change); dev_dbg(hsotg->dev, " port_over_current_change: %d\n", hsotg->flags.b.port_over_current_change); } return retval; } int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) { u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); #endif return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; } int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) { return hsotg->op_state == OTG_STATE_B_HOST; } static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, int iso_desc_count, gfp_t mem_flags) { struct dwc2_hcd_urb *urb; u32 size = sizeof(*urb) + iso_desc_count * sizeof(struct dwc2_hcd_iso_packet_desc); urb = kzalloc(size, mem_flags); if (urb) urb->packet_count = iso_desc_count; return urb; } static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, u8 dev_addr, u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) { if (dbg_perio() || ep_type == USB_ENDPOINT_XFER_BULK || ep_type == USB_ENDPOINT_XFER_CONTROL) dev_vdbg(hsotg->dev, "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", dev_addr, ep_num, ep_dir, ep_type, mps); urb->pipe_info.dev_addr = dev_addr; urb->pipe_info.ep_num = ep_num; urb->pipe_info.pipe_type = ep_type; urb->pipe_info.pipe_dir = ep_dir; urb->pipe_info.mps = mps; } /* * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) { #ifdef DEBUG struct dwc2_host_chan *chan; struct dwc2_hcd_urb *urb; struct dwc2_qtd *qtd; int num_channels; u32 np_tx_status; u32 p_tx_status; int i; num_channels = hsotg->core_params->host_channels; dev_dbg(hsotg->dev, "\n"); dev_dbg(hsotg->dev, "************************************************************\n"); dev_dbg(hsotg->dev, "HCD State:\n"); dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); for (i = 0; i < num_channels; i++) { chan = hsotg->hc_ptr_array[i]; dev_dbg(hsotg->dev, " Channel %d:\n", i); dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", chan->dev_addr, chan->ep_num, chan->ep_is_in); dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", (unsigned long)chan->xfer_dma); dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); dev_dbg(hsotg->dev, " halt_on_queue: %d\n", chan->halt_on_queue); dev_dbg(hsotg->dev, " halt_pending: %d\n", chan->halt_pending); dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); dev_dbg(hsotg->dev, " complete_split: %d\n", chan->complete_split); dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); if (chan->xfer_started) { u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; hfnum = dwc2_readl(hsotg->regs + HFNUM); hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i)); hcint = dwc2_readl(hsotg->regs + HCINT(i)); hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i)); dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); } if (!(chan->xfer_started && chan->qh)) continue; list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { if (!qtd->in_process) break; urb = qtd->urb; dev_dbg(hsotg->dev, " URB Info:\n"); dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", qtd, urb); if (urb) { dev_dbg(hsotg->dev, " Dev: %d, EP: %d %s\n", dwc2_hcd_get_dev_addr(&urb->pipe_info), dwc2_hcd_get_ep_num(&urb->pipe_info), dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT"); dev_dbg(hsotg->dev, " Max packet size: %d\n", dwc2_hcd_get_mps(&urb->pipe_info)); dev_dbg(hsotg->dev, " transfer_buffer: %p\n", urb->buf); dev_dbg(hsotg->dev, " transfer_dma: %08lx\n", (unsigned long)urb->dma); dev_dbg(hsotg->dev, " transfer_buffer_length: %d\n", urb->length); dev_dbg(hsotg->dev, " actual_length: %d\n", urb->actual_length); } } } dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", hsotg->non_periodic_channels); dev_dbg(hsotg->dev, " periodic_channels: %d\n", hsotg->periodic_channels); dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS); dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); dwc2_hcd_dump_frrem(hsotg); dwc2_dump_global_registers(hsotg); dwc2_dump_host_registers(hsotg); dev_dbg(hsotg->dev, "************************************************************\n"); dev_dbg(hsotg->dev, "\n"); #endif } /* * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg) { #ifdef DWC2_DUMP_FRREM dev_dbg(hsotg->dev, "Frame remaining at SOF:\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->frrem_samples, hsotg->frrem_accum, hsotg->frrem_samples > 0 ? hsotg->frrem_accum / hsotg->frrem_samples : 0); dev_dbg(hsotg->dev, "\n"); dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_7_samples, hsotg->hfnum_7_frrem_accum, hsotg->hfnum_7_samples > 0 ? hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0); dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_0_samples, hsotg->hfnum_0_frrem_accum, hsotg->hfnum_0_samples > 0 ? hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0); dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_other_samples, hsotg->hfnum_other_frrem_accum, hsotg->hfnum_other_samples > 0 ? hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples : 0); dev_dbg(hsotg->dev, "\n"); dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a, hsotg->hfnum_7_samples_a > 0 ? hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0); dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a, hsotg->hfnum_0_samples_a > 0 ? hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0); dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a, hsotg->hfnum_other_samples_a > 0 ? hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a : 0); dev_dbg(hsotg->dev, "\n"); dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b, hsotg->hfnum_7_samples_b > 0 ? hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0); dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b, (hsotg->hfnum_0_samples_b > 0) ? hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0); dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n"); dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b, (hsotg->hfnum_other_samples_b > 0) ? hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b : 0); #endif } struct wrapper_priv_data { struct dwc2_hsotg *hsotg; }; /* Gets the dwc2_hsotg from a usb_hcd */ static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) { struct wrapper_priv_data *p; p = (struct wrapper_priv_data *) &hcd->hcd_priv; return p->hsotg; } static int _dwc2_hcd_start(struct usb_hcd *hcd); void dwc2_host_start(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); _dwc2_hcd_start(hcd); } void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); hcd->self.is_b_host = 0; } void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr, int *hub_port) { struct urb *urb = context; if (urb->dev->tt) *hub_addr = urb->dev->tt->hub->devnum; else *hub_addr = 0; *hub_port = urb->dev->ttport; } int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) { struct urb *urb = context; return urb->dev->speed; } static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, struct urb *urb) { struct usb_bus *bus = hcd_to_bus(hcd); if (urb->interval) bus->bandwidth_allocated += bw / urb->interval; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) bus->bandwidth_isoc_reqs++; else bus->bandwidth_int_reqs++; } static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, struct urb *urb) { struct usb_bus *bus = hcd_to_bus(hcd); if (urb->interval) bus->bandwidth_allocated -= bw / urb->interval; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) bus->bandwidth_isoc_reqs--; else bus->bandwidth_int_reqs--; } /* * Sets the final status of an URB and returns it to the upper layer. Any * required cleanup of the URB is performed. * * Must be called with interrupt disabled and spinlock held */ void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, int status) { struct urb *urb; int i; if (!qtd) { dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); return; } if (!qtd->urb) { dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); return; } urb = qtd->urb->priv; if (!urb) { dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); return; } urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); if (dbg_urb(urb)) dev_vdbg(hsotg->dev, "%s: urb %p device %d ep %d-%s status %d actual %d\n", __func__, urb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "IN" : "OUT", status, urb->actual_length); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); for (i = 0; i < urb->number_of_packets; ++i) { urb->iso_frame_desc[i].actual_length = dwc2_hcd_urb_get_iso_desc_actual_length( qtd->urb, i); urb->iso_frame_desc[i].status = dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); } } if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { for (i = 0; i < urb->number_of_packets; i++) dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", i, urb->iso_frame_desc[i].status); } urb->status = status; if (!status) { if ((urb->transfer_flags & URB_SHORT_NOT_OK) && urb->actual_length < urb->transfer_buffer_length) urb->status = -EREMOTEIO; } if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { struct usb_host_endpoint *ep = urb->ep; if (ep) dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), dwc2_hcd_get_ep_bandwidth(hsotg, ep), urb); } usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); urb->hcpriv = NULL; kfree(qtd->urb); qtd->urb = NULL; spin_unlock(&hsotg->lock); usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); spin_lock(&hsotg->lock); } /* * Work queue function for starting the HCD when A-Cable is connected */ static void dwc2_hcd_start_func(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, start_work.work); dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); dwc2_host_start(hsotg); } /* * Reset work queue function */ static void dwc2_hcd_reset_func(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, reset_work.work); unsigned long flags; u32 hprt0; dev_dbg(hsotg->dev, "USB RESET function called\n"); spin_lock_irqsave(&hsotg->lock, flags); hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~HPRT0_RST; dwc2_writel(hprt0, hsotg->regs + HPRT0); hsotg->flags.b.port_reset_change = 1; spin_unlock_irqrestore(&hsotg->lock, flags); } /* * ========================================================================= * Linux HC Driver Functions * ========================================================================= */ /* * Initializes the DWC_otg controller and its root hub and prepares it for host * mode operation. Activates the root port. Returns 0 on success and a negative * error code on failure. */ static int _dwc2_hcd_start(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct usb_bus *bus = hcd_to_bus(hcd); unsigned long flags; dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); spin_lock_irqsave(&hsotg->lock, flags); hsotg->lx_state = DWC2_L0; hcd->state = HC_STATE_RUNNING; set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); if (dwc2_is_device_mode(hsotg)) { spin_unlock_irqrestore(&hsotg->lock, flags); return 0; /* why 0 ?? */ } dwc2_hcd_reinit(hsotg); /* Initialize and connect root hub if one is not already attached */ if (bus->root_hub) { dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); /* Inform the HUB driver to resume */ usb_hcd_resume_root_hub(hcd); } spin_unlock_irqrestore(&hsotg->lock, flags); return 0; } /* * Halts the DWC_otg host mode operations in a clean manner. USB transfers are * stopped. */ static void _dwc2_hcd_stop(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); /* Wait for interrupt processing to finish */ synchronize_irq(hcd->irq); spin_lock_irqsave(&hsotg->lock, flags); /* Ensure hcd is disconnected */ dwc2_hcd_disconnect(hsotg, true); dwc2_hcd_stop(hsotg); hsotg->lx_state = DWC2_L3; hcd->state = HC_STATE_HALT; clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); spin_unlock_irqrestore(&hsotg->lock, flags); usleep_range(1000, 3000); } static int _dwc2_hcd_suspend(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; int ret = 0; u32 hprt0; spin_lock_irqsave(&hsotg->lock, flags); if (hsotg->lx_state != DWC2_L0) goto unlock; if (!HCD_HW_ACCESSIBLE(hcd)) goto unlock; if (!hsotg->core_params->hibernation) goto skip_power_saving; /* * Drive USB suspend and disable port Power * if usb bus is not suspended. */ if (!hsotg->bus_suspended) { hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_SUSP; hprt0 &= ~HPRT0_PWR; dwc2_writel(hprt0, hsotg->regs + HPRT0); } /* Enter hibernation */ ret = dwc2_enter_hibernation(hsotg); if (ret) { if (ret != -ENOTSUPP) dev_err(hsotg->dev, "enter hibernation failed\n"); goto skip_power_saving; } /* Ask phy to be suspended */ if (!IS_ERR_OR_NULL(hsotg->uphy)) { spin_unlock_irqrestore(&hsotg->lock, flags); usb_phy_set_suspend(hsotg->uphy, true); spin_lock_irqsave(&hsotg->lock, flags); } /* After entering hibernation, hardware is no more accessible */ clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); skip_power_saving: hsotg->lx_state = DWC2_L2; unlock: spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } static int _dwc2_hcd_resume(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; int ret = 0; spin_lock_irqsave(&hsotg->lock, flags); if (hsotg->lx_state != DWC2_L2) goto unlock; if (!hsotg->core_params->hibernation) { hsotg->lx_state = DWC2_L0; goto unlock; } /* * Set HW accessible bit before powering on the controller * since an interrupt may rise. */ set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); /* * Enable power if not already done. * This must not be spinlocked since duration * of this call is unknown. */ if (!IS_ERR_OR_NULL(hsotg->uphy)) { spin_unlock_irqrestore(&hsotg->lock, flags); usb_phy_set_suspend(hsotg->uphy, false); spin_lock_irqsave(&hsotg->lock, flags); } /* Exit hibernation */ ret = dwc2_exit_hibernation(hsotg, true); if (ret && (ret != -ENOTSUPP)) dev_err(hsotg->dev, "exit hibernation failed\n"); hsotg->lx_state = DWC2_L0; spin_unlock_irqrestore(&hsotg->lock, flags); if (hsotg->bus_suspended) { spin_lock_irqsave(&hsotg->lock, flags); hsotg->flags.b.port_suspend_change = 1; spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_port_resume(hsotg); } else { /* Wait for controller to correctly update D+/D- level */ usleep_range(3000, 5000); /* * Clear Port Enable and Port Status changes. * Enable Port Power. */ dwc2_writel(HPRT0_PWR | HPRT0_CONNDET | HPRT0_ENACHG, hsotg->regs + HPRT0); /* Wait for controller to detect Port Connect */ usleep_range(5000, 7000); } return ret; unlock: spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } /* Returns the current frame number */ static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); return dwc2_hcd_get_frame_number(hsotg); } static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, char *fn_name) { #ifdef VERBOSE_DEBUG struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); char *pipetype; char *speed; dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); dev_vdbg(hsotg->dev, " Device address: %d\n", usb_pipedevice(urb->pipe)); dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "IN" : "OUT"); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: pipetype = "CONTROL"; break; case PIPE_BULK: pipetype = "BULK"; break; case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; default: pipetype = "UNKNOWN"; break; } dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? "IN" : "OUT"); switch (urb->dev->speed) { case USB_SPEED_HIGH: speed = "HIGH"; break; case USB_SPEED_FULL: speed = "FULL"; break; case USB_SPEED_LOW: speed = "LOW"; break; default: speed = "UNKNOWN"; break; } dev_vdbg(hsotg->dev, " Speed: %s\n", speed); dev_vdbg(hsotg->dev, " Max packet size: %d\n", usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); dev_vdbg(hsotg->dev, " Data buffer length: %d\n", urb->transfer_buffer_length); dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", urb->transfer_buffer, (unsigned long)urb->transfer_dma); dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", urb->setup_packet, (unsigned long)urb->setup_dma); dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { int i; for (i = 0; i < urb->number_of_packets; i++) { dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); dev_vdbg(hsotg->dev, " offset: %d, length %d\n", urb->iso_frame_desc[i].offset, urb->iso_frame_desc[i].length); } } #endif } /* * Starts processing a USB transfer request specified by a USB Request Block * (URB). mem_flags indicates the type of memory allocation to use while * processing this URB. */ static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct usb_host_endpoint *ep = urb->ep; struct dwc2_hcd_urb *dwc2_urb; int i; int retval; int alloc_bandwidth = 0; u8 ep_type = 0; u32 tflags = 0; void *buf; unsigned long flags; struct dwc2_qh *qh; bool qh_allocated = false; struct dwc2_qtd *qtd; if (dbg_urb(urb)) { dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); } if (ep == NULL) return -EINVAL; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { spin_lock_irqsave(&hsotg->lock, flags); if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) alloc_bandwidth = 1; spin_unlock_irqrestore(&hsotg->lock, flags); } switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ep_type = USB_ENDPOINT_XFER_CONTROL; break; case PIPE_ISOCHRONOUS: ep_type = USB_ENDPOINT_XFER_ISOC; break; case PIPE_BULK: ep_type = USB_ENDPOINT_XFER_BULK; break; case PIPE_INTERRUPT: ep_type = USB_ENDPOINT_XFER_INT; break; default: dev_warn(hsotg->dev, "Wrong ep type\n"); } dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, mem_flags); if (!dwc2_urb) return -ENOMEM; dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ep_type, usb_pipein(urb->pipe), usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)))); buf = urb->transfer_buffer; if (hcd->self.uses_dma) { if (!buf && (urb->transfer_dma & 3)) { dev_err(hsotg->dev, "%s: unaligned transfer with no transfer_buffer", __func__); retval = -EINVAL; goto fail0; } } if (!(urb->transfer_flags & URB_NO_INTERRUPT)) tflags |= URB_GIVEBACK_ASAP; if (urb->transfer_flags & URB_ZERO_PACKET) tflags |= URB_SEND_ZERO_PACKET; dwc2_urb->priv = urb; dwc2_urb->buf = buf; dwc2_urb->dma = urb->transfer_dma; dwc2_urb->length = urb->transfer_buffer_length; dwc2_urb->setup_packet = urb->setup_packet; dwc2_urb->setup_dma = urb->setup_dma; dwc2_urb->flags = tflags; dwc2_urb->interval = urb->interval; dwc2_urb->status = -EINPROGRESS; for (i = 0; i < urb->number_of_packets; ++i) dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, urb->iso_frame_desc[i].offset, urb->iso_frame_desc[i].length); urb->hcpriv = dwc2_urb; qh = (struct dwc2_qh *) ep->hcpriv; /* Create QH for the endpoint if it doesn't exist */ if (!qh) { qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); if (!qh) { retval = -ENOMEM; goto fail0; } ep->hcpriv = qh; qh_allocated = true; } qtd = kzalloc(sizeof(*qtd), mem_flags); if (!qtd) { retval = -ENOMEM; goto fail1; } spin_lock_irqsave(&hsotg->lock, flags); retval = usb_hcd_link_urb_to_ep(hcd, urb); if (retval) goto fail2; retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); if (retval) goto fail3; if (alloc_bandwidth) { dwc2_allocate_bus_bandwidth(hcd, dwc2_hcd_get_ep_bandwidth(hsotg, ep), urb); } spin_unlock_irqrestore(&hsotg->lock, flags); return 0; fail3: dwc2_urb->priv = NULL; usb_hcd_unlink_urb_from_ep(hcd, urb); fail2: spin_unlock_irqrestore(&hsotg->lock, flags); urb->hcpriv = NULL; kfree(qtd); fail1: if (qh_allocated) { struct dwc2_qtd *qtd2, *qtd2_tmp; ep->hcpriv = NULL; dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); dwc2_hcd_qh_free(hsotg, qh); } fail0: kfree(dwc2_urb); return retval; } /* * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. */ static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); int rc; unsigned long flags; dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); spin_lock_irqsave(&hsotg->lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto out; if (!urb->hcpriv) { dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); goto out; } rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); usb_hcd_unlink_urb_from_ep(hcd, urb); kfree(urb->hcpriv); urb->hcpriv = NULL; /* Higher layer software sets URB status */ spin_unlock(&hsotg->lock); usb_hcd_giveback_urb(hcd, urb, status); spin_lock(&hsotg->lock); dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); out: spin_unlock_irqrestore(&hsotg->lock, flags); return rc; } /* * Frees resources in the DWC_otg controller related to a given endpoint. Also * clears state in the HCD related to the endpoint. Any URBs for the endpoint * must already be dequeued. */ static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); dev_dbg(hsotg->dev, "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", ep->desc.bEndpointAddress, ep->hcpriv); dwc2_hcd_endpoint_disable(hsotg, ep, 250); } /* * Resets endpoint specific parameter values, in current version used to reset * the data toggle (as a WA). This function can be called from usb_clear_halt * routine. */ static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; dev_dbg(hsotg->dev, "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", ep->desc.bEndpointAddress); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hcd_endpoint_reset(hsotg, ep); spin_unlock_irqrestore(&hsotg->lock, flags); } /* * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid * interrupt. * * This function is called by the USB core when an interrupt occurs */ static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); return dwc2_handle_hcd_intr(hsotg); } /* * Creates Status Change bitmap for the root hub and root port. The bitmap is * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 * is the status change indicator for the single root port. Returns 1 if either * change indicator is 1, otherwise returns 0. */ static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; return buf[0] != 0; } /* Handles hub class-specific requests */ static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, u16 windex, char *buf, u16 wlength) { int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, wvalue, windex, buf, wlength); return retval; } /* Handles hub TT buffer clear completions */ static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct dwc2_qh *qh; unsigned long flags; qh = ep->hcpriv; if (!qh) return; spin_lock_irqsave(&hsotg->lock, flags); qh->tt_buffer_dirty = 0; if (hsotg->flags.b.port_connect_status) dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); spin_unlock_irqrestore(&hsotg->lock, flags); } static struct hc_driver dwc2_hc_driver = { .description = "dwc2_hsotg", .product_desc = "DWC OTG Controller", .hcd_priv_size = sizeof(struct wrapper_priv_data), .irq = _dwc2_hcd_irq, .flags = HCD_MEMORY | HCD_USB2, .start = _dwc2_hcd_start, .stop = _dwc2_hcd_stop, .urb_enqueue = _dwc2_hcd_urb_enqueue, .urb_dequeue = _dwc2_hcd_urb_dequeue, .endpoint_disable = _dwc2_hcd_endpoint_disable, .endpoint_reset = _dwc2_hcd_endpoint_reset, .get_frame_number = _dwc2_hcd_get_frame_number, .hub_status_data = _dwc2_hcd_hub_status_data, .hub_control = _dwc2_hcd_hub_control, .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, .bus_suspend = _dwc2_hcd_suspend, .bus_resume = _dwc2_hcd_resume, .map_urb_for_dma = dwc2_map_urb_for_dma, .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, }; /* * Frees secondary storage associated with the dwc2_hsotg structure contained * in the struct usb_hcd field */ static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) { u32 ahbcfg; u32 dctl; int i; dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); /* Free memory for QH/QTD lists */ dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); /* Free memory for the host channels */ for (i = 0; i < MAX_EPS_CHANNELS; i++) { struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; if (chan != NULL) { dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", i, chan); hsotg->hc_ptr_array[i] = NULL; kfree(chan); } } if (hsotg->core_params->dma_enable > 0) { if (hsotg->status_buf) { dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, hsotg->status_buf, hsotg->status_buf_dma); hsotg->status_buf = NULL; } } else { kfree(hsotg->status_buf); hsotg->status_buf = NULL; } ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); /* Disable all interrupts */ ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); dwc2_writel(0, hsotg->regs + GINTMSK); if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { dctl = dwc2_readl(hsotg->regs + DCTL); dctl |= DCTL_SFTDISCON; dwc2_writel(dctl, hsotg->regs + DCTL); } if (hsotg->wq_otg) { if (!cancel_work_sync(&hsotg->wf_otg)) flush_workqueue(hsotg->wq_otg); destroy_workqueue(hsotg->wq_otg); } del_timer(&hsotg->wkp_timer); } static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) { /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); dwc2_hcd_free(hsotg); } /* * Initializes the HCD. This function allocates memory for and initializes the * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the * USB bus with the core and calls the hc_driver->start() function. It returns * a negative error on failure. */ int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq) { struct usb_hcd *hcd; struct dwc2_host_chan *channel; u32 hcfg; int i, num_channels; int retval; if (usb_disabled()) return -ENODEV; dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); retval = -ENOMEM; hcfg = dwc2_readl(hsotg->regs + HCFG); dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) * FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); if (!hsotg->frame_num_array) goto error1; hsotg->last_frame_num_array = kzalloc( sizeof(*hsotg->last_frame_num_array) * FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); if (!hsotg->last_frame_num_array) goto error1; hsotg->last_frame_num = HFNUM_MAX_FRNUM; #endif /* Check if the bus driver or platform code has setup a dma_mask */ if (hsotg->core_params->dma_enable > 0 && hsotg->dev->dma_mask == NULL) { dev_warn(hsotg->dev, "dma_mask not set, disabling DMA\n"); hsotg->core_params->dma_enable = 0; hsotg->core_params->dma_desc_enable = 0; } /* Set device flags indicating whether the HCD supports DMA */ if (hsotg->core_params->dma_enable > 0) { if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) dev_warn(hsotg->dev, "can't set DMA mask\n"); if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); } hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); if (!hcd) goto error1; if (hsotg->core_params->dma_enable <= 0) hcd->self.uses_dma = 0; hcd->has_tt = 1; ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg; hsotg->priv = hcd; /* * Disable the global interrupt until all the interrupt handlers are * installed */ dwc2_disable_global_interrupts(hsotg); /* Initialize the DWC_otg core, and select the Phy type */ retval = dwc2_core_init(hsotg, true); if (retval) goto error2; /* Create new workqueue and init work */ retval = -ENOMEM; hsotg->wq_otg = create_singlethread_workqueue("dwc2"); if (!hsotg->wq_otg) { dev_err(hsotg->dev, "Failed to create workqueue\n"); goto error2; } INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected, (unsigned long)hsotg); /* Initialize the non-periodic schedule */ INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); /* Initialize the periodic schedule */ INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); INIT_LIST_HEAD(&hsotg->periodic_sched_ready); INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); INIT_LIST_HEAD(&hsotg->periodic_sched_queued); /* * Create a host channel descriptor for each host channel implemented * in the controller. Initialize the channel descriptor array. */ INIT_LIST_HEAD(&hsotg->free_hc_list); num_channels = hsotg->core_params->host_channels; memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); for (i = 0; i < num_channels; i++) { channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (channel == NULL) goto error3; channel->hc_num = i; hsotg->hc_ptr_array[i] = channel; } if (hsotg->core_params->uframe_sched > 0) dwc2_hcd_init_usecs(hsotg); /* Initialize hsotg start work */ INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); /* Initialize port reset work */ INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); /* * Allocate space for storing data on status transactions. Normally no * data is sent, but this space acts as a bit bucket. This must be * done after usb_add_hcd since that function allocates the DMA buffer * pool. */ if (hsotg->core_params->dma_enable > 0) hsotg->status_buf = dma_alloc_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, &hsotg->status_buf_dma, GFP_KERNEL); else hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, GFP_KERNEL); if (!hsotg->status_buf) goto error3; /* * Create kmem caches to handle descriptor buffers in descriptor * DMA mode. * Alignment must be set to 512 bytes. */ if (hsotg->core_params->dma_desc_enable || hsotg->core_params->dma_desc_fs_enable) { hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", sizeof(struct dwc2_hcd_dma_desc) * MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, NULL); if (!hsotg->desc_gen_cache) { dev_err(hsotg->dev, "unable to create dwc2 generic desc cache\n"); /* * Disable descriptor dma mode since it will not be * usable. */ hsotg->core_params->dma_desc_enable = 0; hsotg->core_params->dma_desc_fs_enable = 0; } hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", sizeof(struct dwc2_hcd_dma_desc) * MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); if (!hsotg->desc_hsisoc_cache) { dev_err(hsotg->dev, "unable to create dwc2 hs isoc desc cache\n"); kmem_cache_destroy(hsotg->desc_gen_cache); /* * Disable descriptor dma mode since it will not be * usable. */ hsotg->core_params->dma_desc_enable = 0; hsotg->core_params->dma_desc_fs_enable = 0; } } hsotg->otg_port = 1; hsotg->frame_list = NULL; hsotg->frame_list_dma = 0; hsotg->periodic_qh_count = 0; /* Initiate lx_state to L3 disconnected state */ hsotg->lx_state = DWC2_L3; hcd->self.otg_port = hsotg->otg_port; /* Don't support SG list at this point */ hcd->self.sg_tablesize = 0; if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_host(hsotg->uphy->otg, &hcd->self); /* * Finish generic HCD initialization and start the HCD. This function * allocates the DMA buffer pool, registers the USB bus, requests the * IRQ line, and calls hcd_start method. */ retval = usb_add_hcd(hcd, irq, IRQF_SHARED); if (retval < 0) goto error4; device_wakeup_enable(hcd->self.controller); dwc2_hcd_dump_state(hsotg); dwc2_enable_global_interrupts(hsotg); return 0; error4: kmem_cache_destroy(hsotg->desc_gen_cache); kmem_cache_destroy(hsotg->desc_hsisoc_cache); error3: dwc2_hcd_release(hsotg); error2: usb_put_hcd(hcd); error1: kfree(hsotg->core_params); #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS kfree(hsotg->last_frame_num_array); kfree(hsotg->frame_num_array); #endif dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); return retval; } /* * Removes the HCD. * Frees memory and resources associated with the HCD and deregisters the bus. */ void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd; dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); hcd = dwc2_hsotg_to_hcd(hsotg); dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); if (!hcd) { dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", __func__); return; } if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_host(hsotg->uphy->otg, NULL); usb_remove_hcd(hcd); hsotg->priv = NULL; kmem_cache_destroy(hsotg->desc_gen_cache); kmem_cache_destroy(hsotg->desc_hsisoc_cache); dwc2_hcd_release(hsotg); usb_put_hcd(hcd); #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS kfree(hsotg->last_frame_num_array); kfree(hsotg->frame_num_array); #endif }