/* * MMU context allocation for 64-bit kernels. * * Copyright (C) 2004 Anton Blanchard, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(mmu_context_lock); static DEFINE_IDA(mmu_context_ida); static int alloc_context_id(int min_id, int max_id) { int index, err; again: if (!ida_pre_get(&mmu_context_ida, GFP_KERNEL)) return -ENOMEM; spin_lock(&mmu_context_lock); err = ida_get_new_above(&mmu_context_ida, min_id, &index); spin_unlock(&mmu_context_lock); if (err == -EAGAIN) goto again; else if (err) return err; if (index > max_id) { spin_lock(&mmu_context_lock); ida_remove(&mmu_context_ida, index); spin_unlock(&mmu_context_lock); return -ENOMEM; } return index; } void hash__reserve_context_id(int id) { int rc, result = 0; do { if (!ida_pre_get(&mmu_context_ida, GFP_KERNEL)) break; spin_lock(&mmu_context_lock); rc = ida_get_new_above(&mmu_context_ida, id, &result); spin_unlock(&mmu_context_lock); } while (rc == -EAGAIN); WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result); } int hash__alloc_context_id(void) { unsigned long max; if (mmu_has_feature(MMU_FTR_68_BIT_VA)) max = MAX_USER_CONTEXT; else max = MAX_USER_CONTEXT_65BIT_VA; return alloc_context_id(MIN_USER_CONTEXT, max); } EXPORT_SYMBOL_GPL(hash__alloc_context_id); static int hash__init_new_context(struct mm_struct *mm) { int index; index = hash__alloc_context_id(); if (index < 0) return index; /* * The old code would re-promote on fork, we don't do that when using * slices as it could cause problem promoting slices that have been * forced down to 4K. * * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check * explicitly against context.id == 0. This ensures that we properly * initialize context slice details for newly allocated mm's (which will * have id == 0) and don't alter context slice inherited via fork (which * will have id != 0). * * We should not be calling init_new_context() on init_mm. Hence a * check against 0 is OK. */ if (mm->context.id == 0) slice_init_new_context_exec(mm); subpage_prot_init_new_context(mm); pkey_mm_init(mm); return index; } static int radix__init_new_context(struct mm_struct *mm) { unsigned long rts_field; int index, max_id; max_id = (1 << mmu_pid_bits) - 1; index = alloc_context_id(mmu_base_pid, max_id); if (index < 0) return index; /* * set the process table entry, */ rts_field = radix__get_tree_size(); process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE); /* * Order the above store with subsequent update of the PID * register (at which point HW can start loading/caching * the entry) and the corresponding load by the MMU from * the L2 cache. */ asm volatile("ptesync;isync" : : : "memory"); mm->context.npu_context = NULL; return index; } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int index; if (radix_enabled()) index = radix__init_new_context(mm); else index = hash__init_new_context(mm); if (index < 0) return index; mm->context.id = index; mm->context.pte_frag = NULL; #ifdef CONFIG_SPAPR_TCE_IOMMU mm_iommu_init(mm); #endif atomic_set(&mm->context.active_cpus, 0); atomic_set(&mm->context.copros, 0); return 0; } void __destroy_context(int context_id) { spin_lock(&mmu_context_lock); ida_remove(&mmu_context_ida, context_id); spin_unlock(&mmu_context_lock); } EXPORT_SYMBOL_GPL(__destroy_context); static void destroy_contexts(mm_context_t *ctx) { int index, context_id; spin_lock(&mmu_context_lock); for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) { context_id = ctx->extended_id[index]; if (context_id) ida_remove(&mmu_context_ida, context_id); } spin_unlock(&mmu_context_lock); } static void destroy_pagetable_page(struct mm_struct *mm) { int count; void *pte_frag; struct page *page; pte_frag = mm->context.pte_frag; if (!pte_frag) return; page = virt_to_page(pte_frag); /* drop all the pending references */ count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT; /* We allow PTE_FRAG_NR fragments from a PTE page */ if (page_ref_sub_and_test(page, PTE_FRAG_NR - count)) { pgtable_page_dtor(page); free_unref_page(page); } } void destroy_context(struct mm_struct *mm) { #ifdef CONFIG_SPAPR_TCE_IOMMU WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list)); #endif if (radix_enabled()) WARN_ON(process_tb[mm->context.id].prtb0 != 0); else subpage_prot_free(mm); destroy_pagetable_page(mm); destroy_contexts(&mm->context); mm->context.id = MMU_NO_CONTEXT; } void arch_exit_mmap(struct mm_struct *mm) { if (radix_enabled()) { /* * Radix doesn't have a valid bit in the process table * entries. However we know that at least P9 implementation * will avoid caching an entry with an invalid RTS field, * and 0 is invalid. So this will do. * * This runs before the "fullmm" tlb flush in exit_mmap, * which does a RIC=2 tlbie to clear the process table * entry. See the "fullmm" comments in tlb-radix.c. * * No barrier required here after the store because * this process will do the invalidate, which starts with * ptesync. */ process_tb[mm->context.id].prtb0 = 0; } } #ifdef CONFIG_PPC_RADIX_MMU void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next) { if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { isync(); mtspr(SPRN_PID, next->context.id); isync(); asm volatile(PPC_INVALIDATE_ERAT : : :"memory"); } else { mtspr(SPRN_PID, next->context.id); isync(); } } #endif