/* * Driver for the Micron P320 SSD * Copyright (C) 2011 Micron Technology, Inc. * * Portions of this code were derived from works subjected to the * following copyright: * Copyright (C) 2009 Integrated Device Technology, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include <../drivers/ata/ahci.h> #include "mtip32xx.h" #define HW_CMD_SLOT_SZ (MTIP_MAX_COMMAND_SLOTS * 32) #define HW_CMD_TBL_SZ (AHCI_CMD_TBL_HDR_SZ + (MTIP_MAX_SG * 16)) #define HW_CMD_TBL_AR_SZ (HW_CMD_TBL_SZ * MTIP_MAX_COMMAND_SLOTS) #define HW_PORT_PRIV_DMA_SZ \ (HW_CMD_SLOT_SZ + HW_CMD_TBL_AR_SZ + AHCI_RX_FIS_SZ) #define HOST_HSORG 0xFC #define HSORG_DISABLE_SLOTGRP_INTR (1<<24) #define HSORG_DISABLE_SLOTGRP_PXIS (1<<16) #define HSORG_HWREV 0xFF00 #define HSORG_STYLE 0x8 #define HSORG_SLOTGROUPS 0x7 #define PORT_COMMAND_ISSUE 0x38 #define PORT_SDBV 0x7C #define PORT_OFFSET 0x100 #define PORT_MEM_SIZE 0x80 #define PORT_IRQ_ERR \ (PORT_IRQ_HBUS_ERR | PORT_IRQ_IF_ERR | PORT_IRQ_CONNECT | \ PORT_IRQ_PHYRDY | PORT_IRQ_UNK_FIS | PORT_IRQ_BAD_PMP | \ PORT_IRQ_TF_ERR | PORT_IRQ_HBUS_DATA_ERR | PORT_IRQ_IF_NONFATAL | \ PORT_IRQ_OVERFLOW) #define PORT_IRQ_LEGACY \ (PORT_IRQ_PIOS_FIS | PORT_IRQ_D2H_REG_FIS) #define PORT_IRQ_HANDLED \ (PORT_IRQ_SDB_FIS | PORT_IRQ_LEGACY | \ PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR | \ PORT_IRQ_CONNECT | PORT_IRQ_PHYRDY) #define DEF_PORT_IRQ \ (PORT_IRQ_ERR | PORT_IRQ_LEGACY | PORT_IRQ_SDB_FIS) /* product numbers */ #define MTIP_PRODUCT_UNKNOWN 0x00 #define MTIP_PRODUCT_ASICFPGA 0x11 /* Device instance number, incremented each time a device is probed. */ static int instance; /* * Global variable used to hold the major block device number * allocated in mtip_init(). */ static int mtip_major; static DEFINE_SPINLOCK(rssd_index_lock); static DEFINE_IDA(rssd_index_ida); #ifdef CONFIG_COMPAT struct mtip_compat_ide_task_request_s { __u8 io_ports[8]; __u8 hob_ports[8]; ide_reg_valid_t out_flags; ide_reg_valid_t in_flags; int data_phase; int req_cmd; compat_ulong_t out_size; compat_ulong_t in_size; }; #endif static int mtip_exec_internal_command(struct mtip_port *port, void *fis, int fisLen, dma_addr_t buffer, int bufLen, u32 opts, gfp_t atomic, unsigned long timeout); /* * This function check_for_surprise_removal is called * while card is removed from the system and it will * read the vendor id from the configration space * * @pdev Pointer to the pci_dev structure. * * return value * true if device removed, else false */ static bool mtip_check_surprise_removal(struct pci_dev *pdev) { u16 vendor_id = 0; /* Read the vendorID from the configuration space */ pci_read_config_word(pdev, 0x00, &vendor_id); if (vendor_id == 0xFFFF) return true; /* device removed */ return false; /* device present */ } /* * This function is called for clean the pending command in the * command slot during the surprise removal of device and return * error to the upper layer. * * @dd Pointer to the DRIVER_DATA structure. * * return value * None */ static void mtip_command_cleanup(struct driver_data *dd) { int group = 0, commandslot = 0, commandindex = 0; struct mtip_cmd *command; struct mtip_port *port = dd->port; for (group = 0; group < 4; group++) { for (commandslot = 0; commandslot < 32; commandslot++) { if (!(port->allocated[group] & (1 << commandslot))) continue; commandindex = group << 5 | commandslot; command = &port->commands[commandindex]; if (atomic_read(&command->active) && (command->async_callback)) { command->async_callback(command->async_data, -ENODEV); command->async_callback = NULL; command->async_data = NULL; } dma_unmap_sg(&port->dd->pdev->dev, command->sg, command->scatter_ents, command->direction); } } up(&port->cmd_slot); atomic_set(&dd->drv_cleanup_done, true); } /* * Obtain an empty command slot. * * This function needs to be reentrant since it could be called * at the same time on multiple CPUs. The allocation of the * command slot must be atomic. * * @port Pointer to the port data structure. * * return value * >= 0 Index of command slot obtained. * -1 No command slots available. */ static int get_slot(struct mtip_port *port) { int slot, i; unsigned int num_command_slots = port->dd->slot_groups * 32; /* * Try 10 times, because there is a small race here. * that's ok, because it's still cheaper than a lock. * * Race: Since this section is not protected by lock, same bit * could be chosen by different process contexts running in * different processor. So instead of costly lock, we are going * with loop. */ for (i = 0; i < 10; i++) { slot = find_next_zero_bit(port->allocated, num_command_slots, 1); if ((slot < num_command_slots) && (!test_and_set_bit(slot, port->allocated))) return slot; } dev_warn(&port->dd->pdev->dev, "Failed to get a tag.\n"); if (mtip_check_surprise_removal(port->dd->pdev)) { /* Device not present, clean outstanding commands */ mtip_command_cleanup(port->dd); } return -1; } /* * Release a command slot. * * @port Pointer to the port data structure. * @tag Tag of command to release * * return value * None */ static inline void release_slot(struct mtip_port *port, int tag) { smp_mb__before_clear_bit(); clear_bit(tag, port->allocated); smp_mb__after_clear_bit(); } /* * Reset the HBA (without sleeping) * * Just like hba_reset, except does not call sleep, so can be * run from interrupt/tasklet context. * * @dd Pointer to the driver data structure. * * return value * 0 The reset was successful. * -1 The HBA Reset bit did not clear. */ static int hba_reset_nosleep(struct driver_data *dd) { unsigned long timeout; /* Chip quirk: quiesce any chip function */ mdelay(10); /* Set the reset bit */ writel(HOST_RESET, dd->mmio + HOST_CTL); /* Flush */ readl(dd->mmio + HOST_CTL); /* * Wait 10ms then spin for up to 1 second * waiting for reset acknowledgement */ timeout = jiffies + msecs_to_jiffies(1000); mdelay(10); while ((readl(dd->mmio + HOST_CTL) & HOST_RESET) && time_before(jiffies, timeout)) mdelay(1); if (readl(dd->mmio + HOST_CTL) & HOST_RESET) return -1; return 0; } /* * Issue a command to the hardware. * * Set the appropriate bit in the s_active and Command Issue hardware * registers, causing hardware command processing to begin. * * @port Pointer to the port structure. * @tag The tag of the command to be issued. * * return value * None */ static inline void mtip_issue_ncq_command(struct mtip_port *port, int tag) { unsigned long flags = 0; atomic_set(&port->commands[tag].active, 1); spin_lock_irqsave(&port->cmd_issue_lock, flags); writel((1 << MTIP_TAG_BIT(tag)), port->s_active[MTIP_TAG_INDEX(tag)]); writel((1 << MTIP_TAG_BIT(tag)), port->cmd_issue[MTIP_TAG_INDEX(tag)]); spin_unlock_irqrestore(&port->cmd_issue_lock, flags); } /* * Enable/disable the reception of FIS * * @port Pointer to the port data structure * @enable 1 to enable, 0 to disable * * return value * Previous state: 1 enabled, 0 disabled */ static int mtip_enable_fis(struct mtip_port *port, int enable) { u32 tmp; /* enable FIS reception */ tmp = readl(port->mmio + PORT_CMD); if (enable) writel(tmp | PORT_CMD_FIS_RX, port->mmio + PORT_CMD); else writel(tmp & ~PORT_CMD_FIS_RX, port->mmio + PORT_CMD); /* Flush */ readl(port->mmio + PORT_CMD); return (((tmp & PORT_CMD_FIS_RX) == PORT_CMD_FIS_RX)); } /* * Enable/disable the DMA engine * * @port Pointer to the port data structure * @enable 1 to enable, 0 to disable * * return value * Previous state: 1 enabled, 0 disabled. */ static int mtip_enable_engine(struct mtip_port *port, int enable) { u32 tmp; /* enable FIS reception */ tmp = readl(port->mmio + PORT_CMD); if (enable) writel(tmp | PORT_CMD_START, port->mmio + PORT_CMD); else writel(tmp & ~PORT_CMD_START, port->mmio + PORT_CMD); readl(port->mmio + PORT_CMD); return (((tmp & PORT_CMD_START) == PORT_CMD_START)); } /* * Enables the port DMA engine and FIS reception. * * return value * None */ static inline void mtip_start_port(struct mtip_port *port) { /* Enable FIS reception */ mtip_enable_fis(port, 1); /* Enable the DMA engine */ mtip_enable_engine(port, 1); } /* * Deinitialize a port by disabling port interrupts, the DMA engine, * and FIS reception. * * @port Pointer to the port structure * * return value * None */ static inline void mtip_deinit_port(struct mtip_port *port) { /* Disable interrupts on this port */ writel(0, port->mmio + PORT_IRQ_MASK); /* Disable the DMA engine */ mtip_enable_engine(port, 0); /* Disable FIS reception */ mtip_enable_fis(port, 0); } /* * Initialize a port. * * This function deinitializes the port by calling mtip_deinit_port() and * then initializes it by setting the command header and RX FIS addresses, * clearing the SError register and any pending port interrupts before * re-enabling the default set of port interrupts. * * @port Pointer to the port structure. * * return value * None */ static void mtip_init_port(struct mtip_port *port) { int i; mtip_deinit_port(port); /* Program the command list base and FIS base addresses */ if (readl(port->dd->mmio + HOST_CAP) & HOST_CAP_64) { writel((port->command_list_dma >> 16) >> 16, port->mmio + PORT_LST_ADDR_HI); writel((port->rxfis_dma >> 16) >> 16, port->mmio + PORT_FIS_ADDR_HI); } writel(port->command_list_dma & 0xffffffff, port->mmio + PORT_LST_ADDR); writel(port->rxfis_dma & 0xffffffff, port->mmio + PORT_FIS_ADDR); /* Clear SError */ writel(readl(port->mmio + PORT_SCR_ERR), port->mmio + PORT_SCR_ERR); /* reset the completed registers.*/ for (i = 0; i < port->dd->slot_groups; i++) writel(0xFFFFFFFF, port->completed[i]); /* Clear any pending interrupts for this port */ writel(readl(port->mmio + PORT_IRQ_STAT), port->mmio + PORT_IRQ_STAT); /* Enable port interrupts */ writel(DEF_PORT_IRQ, port->mmio + PORT_IRQ_MASK); } /* * Restart a port * * @port Pointer to the port data structure. * * return value * None */ static void mtip_restart_port(struct mtip_port *port) { unsigned long timeout; /* Disable the DMA engine */ mtip_enable_engine(port, 0); /* Chip quirk: wait up to 500ms for PxCMD.CR == 0 */ timeout = jiffies + msecs_to_jiffies(500); while ((readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON) && time_before(jiffies, timeout)) ; /* * Chip quirk: escalate to hba reset if * PxCMD.CR not clear after 500 ms */ if (readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON) { dev_warn(&port->dd->pdev->dev, "PxCMD.CR not clear, escalating reset\n"); if (hba_reset_nosleep(port->dd)) dev_err(&port->dd->pdev->dev, "HBA reset escalation failed.\n"); /* 30 ms delay before com reset to quiesce chip */ mdelay(30); } dev_warn(&port->dd->pdev->dev, "Issuing COM reset\n"); /* Set PxSCTL.DET */ writel(readl(port->mmio + PORT_SCR_CTL) | 1, port->mmio + PORT_SCR_CTL); readl(port->mmio + PORT_SCR_CTL); /* Wait 1 ms to quiesce chip function */ timeout = jiffies + msecs_to_jiffies(1); while (time_before(jiffies, timeout)) ; /* Clear PxSCTL.DET */ writel(readl(port->mmio + PORT_SCR_CTL) & ~1, port->mmio + PORT_SCR_CTL); readl(port->mmio + PORT_SCR_CTL); /* Wait 500 ms for bit 0 of PORT_SCR_STS to be set */ timeout = jiffies + msecs_to_jiffies(500); while (((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0) && time_before(jiffies, timeout)) ; if ((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0) dev_warn(&port->dd->pdev->dev, "COM reset failed\n"); /* Clear SError, the PxSERR.DIAG.x should be set so clear it */ writel(readl(port->mmio + PORT_SCR_ERR), port->mmio + PORT_SCR_ERR); /* Enable the DMA engine */ mtip_enable_engine(port, 1); } /* * Called periodically to see if any read/write commands are * taking too long to complete. * * @data Pointer to the PORT data structure. * * return value * None */ static void mtip_timeout_function(unsigned long int data) { struct mtip_port *port = (struct mtip_port *) data; struct host_to_dev_fis *fis; struct mtip_cmd *command; int tag, cmdto_cnt = 0; unsigned int bit, group; unsigned int num_command_slots = port->dd->slot_groups * 32; if (unlikely(!port)) return; if (atomic_read(&port->dd->resumeflag) == true) { mod_timer(&port->cmd_timer, jiffies + msecs_to_jiffies(30000)); return; } for (tag = 0; tag < num_command_slots; tag++) { /* * Skip internal command slot as it has * its own timeout mechanism */ if (tag == MTIP_TAG_INTERNAL) continue; if (atomic_read(&port->commands[tag].active) && (time_after(jiffies, port->commands[tag].comp_time))) { group = tag >> 5; bit = tag & 0x1f; command = &port->commands[tag]; fis = (struct host_to_dev_fis *) command->command; dev_warn(&port->dd->pdev->dev, "Timeout for command tag %d\n", tag); cmdto_cnt++; if (cmdto_cnt == 1) atomic_inc(&port->dd->eh_active); /* * Clear the completed bit. This should prevent * any interrupt handlers from trying to retire * the command. */ writel(1 << bit, port->completed[group]); /* Call the async completion callback. */ if (likely(command->async_callback)) command->async_callback(command->async_data, -EIO); command->async_callback = NULL; command->comp_func = NULL; /* Unmap the DMA scatter list entries */ dma_unmap_sg(&port->dd->pdev->dev, command->sg, command->scatter_ents, command->direction); /* * Clear the allocated bit and active tag for the * command. */ atomic_set(&port->commands[tag].active, 0); release_slot(port, tag); up(&port->cmd_slot); } } if (cmdto_cnt) { dev_warn(&port->dd->pdev->dev, "%d commands timed out: restarting port", cmdto_cnt); mtip_restart_port(port); atomic_dec(&port->dd->eh_active); } /* Restart the timer */ mod_timer(&port->cmd_timer, jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD)); } /* * IO completion function. * * This completion function is called by the driver ISR when a * command that was issued by the kernel completes. It first calls the * asynchronous completion function which normally calls back into the block * layer passing the asynchronous callback data, then unmaps the * scatter list associated with the completed command, and finally * clears the allocated bit associated with the completed command. * * @port Pointer to the port data structure. * @tag Tag of the command. * @data Pointer to driver_data. * @status Completion status. * * return value * None */ static void mtip_async_complete(struct mtip_port *port, int tag, void *data, int status) { struct mtip_cmd *command; struct driver_data *dd = data; int cb_status = status ? -EIO : 0; if (unlikely(!dd) || unlikely(!port)) return; command = &port->commands[tag]; if (unlikely(status == PORT_IRQ_TF_ERR)) { dev_warn(&port->dd->pdev->dev, "Command tag %d failed due to TFE\n", tag); } /* Upper layer callback */ if (likely(command->async_callback)) command->async_callback(command->async_data, cb_status); command->async_callback = NULL; command->comp_func = NULL; /* Unmap the DMA scatter list entries */ dma_unmap_sg(&dd->pdev->dev, command->sg, command->scatter_ents, command->direction); /* Clear the allocated and active bits for the command */ atomic_set(&port->commands[tag].active, 0); release_slot(port, tag); up(&port->cmd_slot); } /* * Internal command completion callback function. * * This function is normally called by the driver ISR when an internal * command completed. This function signals the command completion by * calling complete(). * * @port Pointer to the port data structure. * @tag Tag of the command that has completed. * @data Pointer to a completion structure. * @status Completion status. * * return value * None */ static void mtip_completion(struct mtip_port *port, int tag, void *data, int status) { struct mtip_cmd *command = &port->commands[tag]; struct completion *waiting = data; if (unlikely(status == PORT_IRQ_TF_ERR)) dev_warn(&port->dd->pdev->dev, "Internal command %d completed with TFE\n", tag); command->async_callback = NULL; command->comp_func = NULL; complete(waiting); } /* * Helper function for tag logging */ static void print_tags(struct driver_data *dd, char *msg, unsigned long *tagbits) { unsigned int tag, count = 0; for (tag = 0; tag < (dd->slot_groups) * 32; tag++) { if (test_bit(tag, tagbits)) count++; } if (count) dev_info(&dd->pdev->dev, "%s [%i tags]\n", msg, count); } /* * Handle an error. * * @dd Pointer to the DRIVER_DATA structure. * * return value * None */ static void mtip_handle_tfe(struct driver_data *dd) { int group, tag, bit, reissue; struct mtip_port *port; struct mtip_cmd *command; u32 completed; struct host_to_dev_fis *fis; unsigned long tagaccum[SLOTBITS_IN_LONGS]; dev_warn(&dd->pdev->dev, "Taskfile error\n"); port = dd->port; /* Stop the timer to prevent command timeouts. */ del_timer(&port->cmd_timer); /* Set eh_active */ atomic_inc(&dd->eh_active); /* Loop through all the groups */ for (group = 0; group < dd->slot_groups; group++) { completed = readl(port->completed[group]); /* clear completed status register in the hardware.*/ writel(completed, port->completed[group]); /* clear the tag accumulator */ memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long)); /* Process successfully completed commands */ for (bit = 0; bit < 32 && completed; bit++) { if (!(completed & (1<commands[tag]; if (likely(command->comp_func)) { set_bit(tag, tagaccum); atomic_set(&port->commands[tag].active, 0); command->comp_func(port, tag, command->comp_data, 0); } else { dev_err(&port->dd->pdev->dev, "Missing completion func for tag %d", tag); if (mtip_check_surprise_removal(dd->pdev)) { mtip_command_cleanup(dd); /* don't proceed further */ return; } } } } print_tags(dd, "TFE tags completed:", tagaccum); /* Restart the port */ mdelay(20); mtip_restart_port(port); /* clear the tag accumulator */ memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long)); /* Loop through all the groups */ for (group = 0; group < dd->slot_groups; group++) { for (bit = 0; bit < 32; bit++) { reissue = 1; tag = (group << 5) + bit; /* If the active bit is set re-issue the command */ if (atomic_read(&port->commands[tag].active) == 0) continue; fis = (struct host_to_dev_fis *) port->commands[tag].command; /* Should re-issue? */ if (tag == MTIP_TAG_INTERNAL || fis->command == ATA_CMD_SET_FEATURES) reissue = 0; /* * First check if this command has * exceeded its retries. */ if (reissue && (port->commands[tag].retries-- > 0)) { set_bit(tag, tagaccum); /* Update the timeout value. */ port->commands[tag].comp_time = jiffies + msecs_to_jiffies( MTIP_NCQ_COMMAND_TIMEOUT_MS); /* Re-issue the command. */ mtip_issue_ncq_command(port, tag); continue; } /* Retire a command that will not be reissued */ dev_warn(&port->dd->pdev->dev, "retiring tag %d\n", tag); atomic_set(&port->commands[tag].active, 0); if (port->commands[tag].comp_func) port->commands[tag].comp_func( port, tag, port->commands[tag].comp_data, PORT_IRQ_TF_ERR); else dev_warn(&port->dd->pdev->dev, "Bad completion for tag %d\n", tag); } } print_tags(dd, "TFE tags reissued:", tagaccum); /* Decrement eh_active */ atomic_dec(&dd->eh_active); mod_timer(&port->cmd_timer, jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD)); } /* * Handle a set device bits interrupt */ static inline void mtip_process_sdbf(struct driver_data *dd) { struct mtip_port *port = dd->port; int group, tag, bit; u32 completed; struct mtip_cmd *command; /* walk all bits in all slot groups */ for (group = 0; group < dd->slot_groups; group++) { completed = readl(port->completed[group]); /* clear completed status register in the hardware.*/ writel(completed, port->completed[group]); /* Process completed commands. */ for (bit = 0; (bit < 32) && completed; bit++, completed >>= 1) { if (completed & 0x01) { tag = (group << 5) | bit; /* skip internal command slot. */ if (unlikely(tag == MTIP_TAG_INTERNAL)) continue; command = &port->commands[tag]; /* make internal callback */ if (likely(command->comp_func)) { command->comp_func( port, tag, command->comp_data, 0); } else { dev_warn(&dd->pdev->dev, "Null completion " "for tag %d", tag); if (mtip_check_surprise_removal( dd->pdev)) { mtip_command_cleanup(dd); return; } } } } } } /* * Process legacy pio and d2h interrupts */ static inline void mtip_process_legacy(struct driver_data *dd, u32 port_stat) { struct mtip_port *port = dd->port; struct mtip_cmd *cmd = &port->commands[MTIP_TAG_INTERNAL]; if (port->internal_cmd_in_progress && cmd != NULL && !(readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL))) { if (cmd->comp_func) { cmd->comp_func(port, MTIP_TAG_INTERNAL, cmd->comp_data, 0); return; } } dev_warn(&dd->pdev->dev, "IRQ status 0x%x ignored.\n", port_stat); return; } /* * Demux and handle errors */ static inline void mtip_process_errors(struct driver_data *dd, u32 port_stat) { if (likely(port_stat & (PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR))) mtip_handle_tfe(dd); if (unlikely(port_stat & PORT_IRQ_CONNECT)) { dev_warn(&dd->pdev->dev, "Clearing PxSERR.DIAG.x\n"); writel((1 << 26), dd->port->mmio + PORT_SCR_ERR); } if (unlikely(port_stat & PORT_IRQ_PHYRDY)) { dev_warn(&dd->pdev->dev, "Clearing PxSERR.DIAG.n\n"); writel((1 << 16), dd->port->mmio + PORT_SCR_ERR); } if (unlikely(port_stat & ~PORT_IRQ_HANDLED)) { dev_warn(&dd->pdev->dev, "Port stat errors %x unhandled\n", (port_stat & ~PORT_IRQ_HANDLED)); } } static inline irqreturn_t mtip_handle_irq(struct driver_data *data) { struct driver_data *dd = (struct driver_data *) data; struct mtip_port *port = dd->port; u32 hba_stat, port_stat; int rv = IRQ_NONE; hba_stat = readl(dd->mmio + HOST_IRQ_STAT); if (hba_stat) { rv = IRQ_HANDLED; /* Acknowledge the interrupt status on the port.*/ port_stat = readl(port->mmio + PORT_IRQ_STAT); writel(port_stat, port->mmio + PORT_IRQ_STAT); /* Demux port status */ if (likely(port_stat & PORT_IRQ_SDB_FIS)) mtip_process_sdbf(dd); if (unlikely(port_stat & PORT_IRQ_ERR)) { if (unlikely(mtip_check_surprise_removal(dd->pdev))) { mtip_command_cleanup(dd); /* don't proceed further */ return IRQ_HANDLED; } mtip_process_errors(dd, port_stat & PORT_IRQ_ERR); } if (unlikely(port_stat & PORT_IRQ_LEGACY)) mtip_process_legacy(dd, port_stat & PORT_IRQ_LEGACY); } /* acknowledge interrupt */ writel(hba_stat, dd->mmio + HOST_IRQ_STAT); return rv; } /* * Wrapper for mtip_handle_irq * (ignores return code) */ static void mtip_tasklet(unsigned long data) { mtip_handle_irq((struct driver_data *) data); } /* * HBA interrupt subroutine. * * @irq IRQ number. * @instance Pointer to the driver data structure. * * return value * IRQ_HANDLED A HBA interrupt was pending and handled. * IRQ_NONE This interrupt was not for the HBA. */ static irqreturn_t mtip_irq_handler(int irq, void *instance) { struct driver_data *dd = instance; tasklet_schedule(&dd->tasklet); return IRQ_HANDLED; } static void mtip_issue_non_ncq_command(struct mtip_port *port, int tag) { atomic_set(&port->commands[tag].active, 1); writel(1 << MTIP_TAG_BIT(tag), port->cmd_issue[MTIP_TAG_INDEX(tag)]); } /* * Wait for port to quiesce * * @port Pointer to port data structure * @timeout Max duration to wait (ms) * * return value * 0 Success * -EBUSY Commands still active */ static int mtip_quiesce_io(struct mtip_port *port, unsigned long timeout) { unsigned long to; unsigned int n, active; to = jiffies + msecs_to_jiffies(timeout); do { /* * Ignore s_active bit 0 of array element 0. * This bit will always be set */ active = readl(port->s_active[0]) & 0xfffffffe; for (n = 1; n < port->dd->slot_groups; n++) active |= readl(port->s_active[n]); if (!active) break; msleep(20); } while (time_before(jiffies, to)); return active ? -EBUSY : 0; } /* * Execute an internal command and wait for the completion. * * @port Pointer to the port data structure. * @fis Pointer to the FIS that describes the command. * @fisLen Length in WORDS of the FIS. * @buffer DMA accessible for command data. * @bufLen Length, in bytes, of the data buffer. * @opts Command header options, excluding the FIS length * and the number of PRD entries. * @timeout Time in ms to wait for the command to complete. * * return value * 0 Command completed successfully. * -EFAULT The buffer address is not correctly aligned. * -EBUSY Internal command or other IO in progress. * -EAGAIN Time out waiting for command to complete. */ static int mtip_exec_internal_command(struct mtip_port *port, void *fis, int fisLen, dma_addr_t buffer, int bufLen, u32 opts, gfp_t atomic, unsigned long timeout) { struct mtip_cmd_sg *command_sg; DECLARE_COMPLETION_ONSTACK(wait); int rv = 0; struct mtip_cmd *int_cmd = &port->commands[MTIP_TAG_INTERNAL]; /* Make sure the buffer is 8 byte aligned. This is asic specific. */ if (buffer & 0x00000007) { dev_err(&port->dd->pdev->dev, "SG buffer is not 8 byte aligned\n"); return -EFAULT; } /* Only one internal command should be running at a time */ if (test_and_set_bit(MTIP_TAG_INTERNAL, port->allocated)) { dev_warn(&port->dd->pdev->dev, "Internal command already active\n"); return -EBUSY; } port->internal_cmd_in_progress = 1; if (atomic == GFP_KERNEL) { /* wait for io to complete if non atomic */ if (mtip_quiesce_io(port, 5000) < 0) { dev_warn(&port->dd->pdev->dev, "Failed to quiesce IO\n"); release_slot(port, MTIP_TAG_INTERNAL); port->internal_cmd_in_progress = 0; return -EBUSY; } /* Set the completion function and data for the command. */ int_cmd->comp_data = &wait; int_cmd->comp_func = mtip_completion; } else { /* Clear completion - we're going to poll */ int_cmd->comp_data = NULL; int_cmd->comp_func = NULL; } /* Copy the command to the command table */ memcpy(int_cmd->command, fis, fisLen*4); /* Populate the SG list */ int_cmd->command_header->opts = cpu_to_le32(opts | fisLen); if (bufLen) { command_sg = int_cmd->command + AHCI_CMD_TBL_HDR_SZ; command_sg->info = cpu_to_le32((bufLen-1) & 0x3fffff); command_sg->dba = cpu_to_le32(buffer & 0xffffffff); command_sg->dba_upper = cpu_to_le32((buffer >> 16) >> 16); int_cmd->command_header->opts |= cpu_to_le32((1 << 16)); } /* Populate the command header */ int_cmd->command_header->byte_count = 0; /* Issue the command to the hardware */ mtip_issue_non_ncq_command(port, MTIP_TAG_INTERNAL); /* Poll if atomic, wait_for_completion otherwise */ if (atomic == GFP_KERNEL) { /* Wait for the command to complete or timeout. */ if (wait_for_completion_timeout( &wait, msecs_to_jiffies(timeout)) == 0) { dev_err(&port->dd->pdev->dev, "Internal command did not complete [%d]\n", atomic); rv = -EAGAIN; } if (readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL)) { dev_warn(&port->dd->pdev->dev, "Retiring internal command but CI is 1.\n"); } } else { /* Spin for checking if command still outstanding */ timeout = jiffies + msecs_to_jiffies(timeout); while ((readl( port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL)) && time_before(jiffies, timeout)) ; if (readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL)) { dev_err(&port->dd->pdev->dev, "Internal command did not complete [%d]\n", atomic); rv = -EAGAIN; } } /* Clear the allocated and active bits for the internal command. */ atomic_set(&int_cmd->active, 0); release_slot(port, MTIP_TAG_INTERNAL); port->internal_cmd_in_progress = 0; return rv; } /* * Byte-swap ATA ID strings. * * ATA identify data contains strings in byte-swapped 16-bit words. * They must be swapped (on all architectures) to be usable as C strings. * This function swaps bytes in-place. * * @buf The buffer location of the string * @len The number of bytes to swap * * return value * None */ static inline void ata_swap_string(u16 *buf, unsigned int len) { int i; for (i = 0; i < (len/2); i++) be16_to_cpus(&buf[i]); } /* * Request the device identity information. * * If a user space buffer is not specified, i.e. is NULL, the * identify information is still read from the drive and placed * into the identify data buffer (@e port->identify) in the * port data structure. * When the identify buffer contains valid identify information @e * port->identify_valid is non-zero. * * @port Pointer to the port structure. * @user_buffer A user space buffer where the identify data should be * copied. * * return value * 0 Command completed successfully. * -EFAULT An error occurred while coping data to the user buffer. * -1 Command failed. */ static int mtip_get_identify(struct mtip_port *port, void __user *user_buffer) { int rv = 0; struct host_to_dev_fis fis; down_write(&port->dd->internal_sem); /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_ID_ATA; /* Set the identify information as invalid. */ port->identify_valid = 0; /* Clear the identify information. */ memset(port->identify, 0, sizeof(u16) * ATA_ID_WORDS); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, port->identify_dma, sizeof(u16) * ATA_ID_WORDS, 0, GFP_KERNEL, MTIP_INTERNAL_COMMAND_TIMEOUT_MS) < 0) { rv = -1; goto out; } /* * Perform any necessary byte-swapping. Yes, the kernel does in fact * perform field-sensitive swapping on the string fields. * See the kernel use of ata_id_string() for proof of this. */ #ifdef __LITTLE_ENDIAN ata_swap_string(port->identify + 27, 40); /* model string*/ ata_swap_string(port->identify + 23, 8); /* firmware string*/ ata_swap_string(port->identify + 10, 20); /* serial# string*/ #else { int i; for (i = 0; i < ATA_ID_WORDS; i++) port->identify[i] = le16_to_cpu(port->identify[i]); } #endif /* Set the identify buffer as valid. */ port->identify_valid = 1; if (user_buffer) { if (copy_to_user( user_buffer, port->identify, ATA_ID_WORDS * sizeof(u16))) { rv = -EFAULT; goto out; } } out: up_write(&port->dd->internal_sem); return rv; } /* * Issue a standby immediate command to the device. * * @port Pointer to the port structure. * * return value * 0 Command was executed successfully. * -1 An error occurred while executing the command. */ static int mtip_standby_immediate(struct mtip_port *port) { int rv; struct host_to_dev_fis fis; down_write(&port->dd->internal_sem); /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_STANDBYNOW1; /* Execute the command. Use a 15-second timeout for large drives. */ rv = mtip_exec_internal_command(port, &fis, 5, 0, 0, 0, GFP_KERNEL, 15000); up_write(&port->dd->internal_sem); return rv; } /* * Get the drive capacity. * * @dd Pointer to the device data structure. * @sectors Pointer to the variable that will receive the sector count. * * return value * 1 Capacity was returned successfully. * 0 The identify information is invalid. */ static bool mtip_hw_get_capacity(struct driver_data *dd, sector_t *sectors) { struct mtip_port *port = dd->port; u64 total, raw0, raw1, raw2, raw3; raw0 = port->identify[100]; raw1 = port->identify[101]; raw2 = port->identify[102]; raw3 = port->identify[103]; total = raw0 | raw1<<16 | raw2<<32 | raw3<<48; *sectors = total; return (bool) !!port->identify_valid; } /* * Reset the HBA. * * Resets the HBA by setting the HBA Reset bit in the Global * HBA Control register. After setting the HBA Reset bit the * function waits for 1 second before reading the HBA Reset * bit to make sure it has cleared. If HBA Reset is not clear * an error is returned. Cannot be used in non-blockable * context. * * @dd Pointer to the driver data structure. * * return value * 0 The reset was successful. * -1 The HBA Reset bit did not clear. */ static int mtip_hba_reset(struct driver_data *dd) { mtip_deinit_port(dd->port); /* Set the reset bit */ writel(HOST_RESET, dd->mmio + HOST_CTL); /* Flush */ readl(dd->mmio + HOST_CTL); /* Wait for reset to clear */ ssleep(1); /* Check the bit has cleared */ if (readl(dd->mmio + HOST_CTL) & HOST_RESET) { dev_err(&dd->pdev->dev, "Reset bit did not clear.\n"); return -1; } return 0; } /* * Display the identify command data. * * @port Pointer to the port data structure. * * return value * None */ static void mtip_dump_identify(struct mtip_port *port) { sector_t sectors; unsigned short revid; char cbuf[42]; if (!port->identify_valid) return; strlcpy(cbuf, (char *)(port->identify+10), 21); dev_info(&port->dd->pdev->dev, "Serial No.: %s\n", cbuf); strlcpy(cbuf, (char *)(port->identify+23), 9); dev_info(&port->dd->pdev->dev, "Firmware Ver.: %s\n", cbuf); strlcpy(cbuf, (char *)(port->identify+27), 41); dev_info(&port->dd->pdev->dev, "Model: %s\n", cbuf); if (mtip_hw_get_capacity(port->dd, §ors)) dev_info(&port->dd->pdev->dev, "Capacity: %llu sectors (%llu MB)\n", (u64)sectors, ((u64)sectors) * ATA_SECT_SIZE >> 20); pci_read_config_word(port->dd->pdev, PCI_REVISION_ID, &revid); switch (revid & 0xff) { case 0x1: strlcpy(cbuf, "A0", 3); break; case 0x3: strlcpy(cbuf, "A2", 3); break; default: strlcpy(cbuf, "?", 2); break; } dev_info(&port->dd->pdev->dev, "Card Type: %s\n", cbuf); } /* * Map the commands scatter list into the command table. * * @command Pointer to the command. * @nents Number of scatter list entries. * * return value * None */ static inline void fill_command_sg(struct driver_data *dd, struct mtip_cmd *command, int nents) { int n; unsigned int dma_len; struct mtip_cmd_sg *command_sg; struct scatterlist *sg = command->sg; command_sg = command->command + AHCI_CMD_TBL_HDR_SZ; for (n = 0; n < nents; n++) { dma_len = sg_dma_len(sg); if (dma_len > 0x400000) dev_err(&dd->pdev->dev, "DMA segment length truncated\n"); command_sg->info = cpu_to_le32((dma_len-1) & 0x3fffff); #if (BITS_PER_LONG == 64) *((unsigned long *) &command_sg->dba) = cpu_to_le64(sg_dma_address(sg)); #else command_sg->dba = cpu_to_le32(sg_dma_address(sg)); command_sg->dba_upper = cpu_to_le32((sg_dma_address(sg) >> 16) >> 16); #endif command_sg++; sg++; } } /* * @brief Execute a drive command. * * return value 0 The command completed successfully. * return value -1 An error occurred while executing the command. */ static int exec_drive_task(struct mtip_port *port, u8 *command) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply = (port->rxfis + RX_FIS_D2H_REG); /* Lock the internal command semaphore. */ down_write(&port->dd->internal_sem); /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = command[0]; fis.features = command[1]; fis.sect_count = command[2]; fis.sector = command[3]; fis.cyl_low = command[4]; fis.cyl_hi = command[5]; fis.device = command[6] & ~0x10; /* Clear the dev bit*/ dbg_printk(MTIP_DRV_NAME "%s: User Command: cmd %x, feat %x, " "nsect %x, sect %x, lcyl %x, " "hcyl %x, sel %x\n", __func__, command[0], command[1], command[2], command[3], command[4], command[5], command[6]); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, 0, 0, 0, GFP_KERNEL, MTIP_IOCTL_COMMAND_TIMEOUT_MS) < 0) { up_write(&port->dd->internal_sem); return -1; } command[0] = reply->command; /* Status*/ command[1] = reply->features; /* Error*/ command[4] = reply->cyl_low; command[5] = reply->cyl_hi; dbg_printk(MTIP_DRV_NAME "%s: Completion Status: stat %x, " "err %x , cyl_lo %x cyl_hi %x\n", __func__, command[0], command[1], command[4], command[5]); up_write(&port->dd->internal_sem); return 0; } /* * @brief Execute a drive command. * * @param port Pointer to the port data structure. * @param command Pointer to the user specified command parameters. * @param user_buffer Pointer to the user space buffer where read sector * data should be copied. * * return value 0 The command completed successfully. * return value -EFAULT An error occurred while copying the completion * data to the user space buffer. * return value -1 An error occurred while executing the command. */ static int exec_drive_command(struct mtip_port *port, u8 *command, void __user *user_buffer) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply = (port->rxfis + RX_FIS_D2H_REG); /* Lock the internal command semaphore. */ down_write(&port->dd->internal_sem); /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = command[0]; fis.features = command[2]; fis.sect_count = command[3]; if (fis.command == ATA_CMD_SMART) { fis.sector = command[1]; fis.cyl_low = 0x4f; fis.cyl_hi = 0xc2; } dbg_printk(MTIP_DRV_NAME "%s: User Command: cmd %x, sect %x, " "feat %x, sectcnt %x\n", __func__, command[0], command[1], command[2], command[3]); memset(port->sector_buffer, 0x00, ATA_SECT_SIZE); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, port->sector_buffer_dma, (command[3] != 0) ? ATA_SECT_SIZE : 0, 0, GFP_KERNEL, MTIP_IOCTL_COMMAND_TIMEOUT_MS) < 0) { up_write(&port->dd->internal_sem); return -1; } /* Collect the completion status. */ command[0] = reply->command; /* Status*/ command[1] = reply->features; /* Error*/ command[2] = command[3]; dbg_printk(MTIP_DRV_NAME "%s: Completion Status: stat %x, " "err %x, cmd %x\n", __func__, command[0], command[1], command[2]); if (user_buffer && command[3]) { if (copy_to_user(user_buffer, port->sector_buffer, ATA_SECT_SIZE * command[3])) { up_write(&port->dd->internal_sem); return -EFAULT; } } up_write(&port->dd->internal_sem); return 0; } /* * Indicates whether a command has a single sector payload. * * @command passed to the device to perform the certain event. * @features passed to the device to perform the certain event. * * return value * 1 command is one that always has a single sector payload, * regardless of the value in the Sector Count field. * 0 otherwise * */ static unsigned int implicit_sector(unsigned char command, unsigned char features) { unsigned int rv = 0; /* list of commands that have an implicit sector count of 1 */ switch (command) { case 0xF1: case 0xF2: case 0xF3: case 0xF4: case 0xF5: case 0xF6: case 0xE4: case 0xE8: rv = 1; break; case 0xF9: if (features == 0x03) rv = 1; break; case 0xB0: if ((features == 0xD0) || (features == 0xD1)) rv = 1; break; case 0xB1: if ((features == 0xC2) || (features == 0xC3)) rv = 1; break; } return rv; } /* * Executes a taskfile * See ide_taskfile_ioctl() for derivation */ static int exec_drive_taskfile(struct driver_data *dd, void __user *buf, ide_task_request_t *req_task, int outtotal) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply; u8 *outbuf = NULL; u8 *inbuf = NULL; dma_addr_t outbuf_dma = 0; dma_addr_t inbuf_dma = 0; dma_addr_t dma_buffer = 0; int err = 0; unsigned int taskin = 0; unsigned int taskout = 0; u8 nsect = 0; unsigned int timeout = MTIP_IOCTL_COMMAND_TIMEOUT_MS; unsigned int force_single_sector; unsigned int transfer_size; unsigned long task_file_data; int intotal = outtotal + req_task->out_size; taskout = req_task->out_size; taskin = req_task->in_size; /* 130560 = 512 * 0xFF*/ if (taskin > 130560 || taskout > 130560) { err = -EINVAL; goto abort; } if (taskout) { outbuf = kzalloc(taskout, GFP_KERNEL); if (outbuf == NULL) { err = -ENOMEM; goto abort; } if (copy_from_user(outbuf, buf + outtotal, taskout)) { err = -EFAULT; goto abort; } outbuf_dma = pci_map_single(dd->pdev, outbuf, taskout, DMA_TO_DEVICE); if (outbuf_dma == 0) { err = -ENOMEM; goto abort; } dma_buffer = outbuf_dma; } if (taskin) { inbuf = kzalloc(taskin, GFP_KERNEL); if (inbuf == NULL) { err = -ENOMEM; goto abort; } if (copy_from_user(inbuf, buf + intotal, taskin)) { err = -EFAULT; goto abort; } inbuf_dma = pci_map_single(dd->pdev, inbuf, taskin, DMA_FROM_DEVICE); if (inbuf_dma == 0) { err = -ENOMEM; goto abort; } dma_buffer = inbuf_dma; } /* only supports PIO and non-data commands from this ioctl. */ switch (req_task->data_phase) { case TASKFILE_OUT: nsect = taskout / ATA_SECT_SIZE; reply = (dd->port->rxfis + RX_FIS_PIO_SETUP); break; case TASKFILE_IN: reply = (dd->port->rxfis + RX_FIS_PIO_SETUP); break; case TASKFILE_NO_DATA: reply = (dd->port->rxfis + RX_FIS_D2H_REG); break; default: err = -EINVAL; goto abort; } /* Lock the internal command semaphore. */ down_write(&dd->internal_sem); /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = req_task->io_ports[7]; fis.features = req_task->io_ports[1]; fis.sect_count = req_task->io_ports[2]; fis.lba_low = req_task->io_ports[3]; fis.lba_mid = req_task->io_ports[4]; fis.lba_hi = req_task->io_ports[5]; /* Clear the dev bit*/ fis.device = req_task->io_ports[6] & ~0x10; if ((req_task->in_flags.all == 0) && (req_task->out_flags.all & 1)) { req_task->in_flags.all = IDE_TASKFILE_STD_IN_FLAGS | (IDE_HOB_STD_IN_FLAGS << 8); fis.lba_low_ex = req_task->hob_ports[3]; fis.lba_mid_ex = req_task->hob_ports[4]; fis.lba_hi_ex = req_task->hob_ports[5]; fis.features_ex = req_task->hob_ports[1]; fis.sect_cnt_ex = req_task->hob_ports[2]; } else { req_task->in_flags.all = IDE_TASKFILE_STD_IN_FLAGS; } force_single_sector = implicit_sector(fis.command, fis.features); if ((taskin || taskout) && (!fis.sect_count)) { if (nsect) fis.sect_count = nsect; else { if (!force_single_sector) { dev_warn(&dd->pdev->dev, "data movement but " "sect_count is 0\n"); up_write(&dd->internal_sem); err = -EINVAL; goto abort; } } } dbg_printk(MTIP_DRV_NAME "taskfile: cmd %x, feat %x, nsect %x," " sect/lbal %x, lcyl/lbam %x, hcyl/lbah %x," " head/dev %x\n", fis.command, fis.features, fis.sect_count, fis.lba_low, fis.lba_mid, fis.lba_hi, fis.device); switch (fis.command) { case 0x92: /* Change timeout for Download Microcode to 60 seconds.*/ timeout = 60000; break; case 0xf4: /* Change timeout for Security Erase Unit to 4 minutes.*/ timeout = 240000; break; case 0xe0: /* Change timeout for standby immediate to 10 seconds.*/ timeout = 10000; break; case 0xf7: /* Change timeout for vendor unique command to 10 secs */ timeout = 10000; break; case 0xfa: /* Change timeout for vendor unique command to 10 secs */ timeout = 10000; break; default: timeout = MTIP_IOCTL_COMMAND_TIMEOUT_MS; break; } /* Determine the correct transfer size.*/ if (force_single_sector) transfer_size = ATA_SECT_SIZE; else transfer_size = ATA_SECT_SIZE * fis.sect_count; /* Execute the command.*/ if (mtip_exec_internal_command(dd->port, &fis, 5, dma_buffer, transfer_size, 0, GFP_KERNEL, timeout) < 0) { up_write(&dd->internal_sem); err = -EIO; goto abort; } task_file_data = readl(dd->port->mmio+PORT_TFDATA); if ((req_task->data_phase == TASKFILE_IN) && !(task_file_data & 1)) { reply = dd->port->rxfis + RX_FIS_PIO_SETUP; req_task->io_ports[7] = reply->control; } else { reply = dd->port->rxfis + RX_FIS_D2H_REG; req_task->io_ports[7] = reply->command; } /* reclaim the DMA buffers.*/ if (inbuf_dma) pci_unmap_single(dd->pdev, inbuf_dma, taskin, DMA_FROM_DEVICE); if (outbuf_dma) pci_unmap_single(dd->pdev, outbuf_dma, taskout, DMA_TO_DEVICE); inbuf_dma = 0; outbuf_dma = 0; /* return the ATA registers to the caller.*/ req_task->io_ports[1] = reply->features; req_task->io_ports[2] = reply->sect_count; req_task->io_ports[3] = reply->lba_low; req_task->io_ports[4] = reply->lba_mid; req_task->io_ports[5] = reply->lba_hi; req_task->io_ports[6] = reply->device; if (req_task->out_flags.all & 1) { req_task->hob_ports[3] = reply->lba_low_ex; req_task->hob_ports[4] = reply->lba_mid_ex; req_task->hob_ports[5] = reply->lba_hi_ex; req_task->hob_ports[1] = reply->features_ex; req_task->hob_ports[2] = reply->sect_cnt_ex; } /* Com rest after secure erase or lowlevel format */ if (((fis.command == 0xF4) || ((fis.command == 0xFC) && (fis.features == 0x27 || fis.features == 0x72 || fis.features == 0x62 || fis.features == 0x26))) && !(reply->command & 1)) { mtip_restart_port(dd->port); } dbg_printk(MTIP_DRV_NAME "%s: Completion: stat %x," "err %x, sect_cnt %x, lbalo %x," "lbamid %x, lbahi %x, dev %x\n", __func__, req_task->io_ports[7], req_task->io_ports[1], req_task->io_ports[2], req_task->io_ports[3], req_task->io_ports[4], req_task->io_ports[5], req_task->io_ports[6]); up_write(&dd->internal_sem); if (taskout) { if (copy_to_user(buf + outtotal, outbuf, taskout)) { err = -EFAULT; goto abort; } } if (taskin) { if (copy_to_user(buf + intotal, inbuf, taskin)) { err = -EFAULT; goto abort; } } abort: if (inbuf_dma) pci_unmap_single(dd->pdev, inbuf_dma, taskin, DMA_FROM_DEVICE); if (outbuf_dma) pci_unmap_single(dd->pdev, outbuf_dma, taskout, DMA_TO_DEVICE); kfree(outbuf); kfree(inbuf); return err; } /* * Handle IOCTL calls from the Block Layer. * * This function is called by the Block Layer when it receives an IOCTL * command that it does not understand. If the IOCTL command is not supported * this function returns -ENOTTY. * * @dd Pointer to the driver data structure. * @cmd IOCTL command passed from the Block Layer. * @arg IOCTL argument passed from the Block Layer. * * return value * 0 The IOCTL completed successfully. * -ENOTTY The specified command is not supported. * -EFAULT An error occurred copying data to a user space buffer. * -EIO An error occurred while executing the command. */ static int mtip_hw_ioctl(struct driver_data *dd, unsigned int cmd, unsigned long arg) { switch (cmd) { case HDIO_GET_IDENTITY: if (mtip_get_identify(dd->port, (void __user *) arg) < 0) { dev_warn(&dd->pdev->dev, "Unable to read identity\n"); return -EIO; } break; case HDIO_DRIVE_CMD: { u8 drive_command[4]; /* Copy the user command info to our buffer. */ if (copy_from_user(drive_command, (void __user *) arg, sizeof(drive_command))) return -EFAULT; /* Execute the drive command. */ if (exec_drive_command(dd->port, drive_command, (void __user *) (arg+4))) return -EIO; /* Copy the status back to the users buffer. */ if (copy_to_user((void __user *) arg, drive_command, sizeof(drive_command))) return -EFAULT; break; } case HDIO_DRIVE_TASK: { u8 drive_command[7]; /* Copy the user command info to our buffer. */ if (copy_from_user(drive_command, (void __user *) arg, sizeof(drive_command))) return -EFAULT; /* Execute the drive command. */ if (exec_drive_task(dd->port, drive_command)) return -EIO; /* Copy the status back to the users buffer. */ if (copy_to_user((void __user *) arg, drive_command, sizeof(drive_command))) return -EFAULT; break; } case HDIO_DRIVE_TASKFILE: { ide_task_request_t req_task; int ret, outtotal; if (copy_from_user(&req_task, (void __user *) arg, sizeof(req_task))) return -EFAULT; outtotal = sizeof(req_task); ret = exec_drive_taskfile(dd, (void __user *) arg, &req_task, outtotal); if (copy_to_user((void __user *) arg, &req_task, sizeof(req_task))) return -EFAULT; return ret; } default: return -EINVAL; } return 0; } /* * Submit an IO to the hw * * This function is called by the block layer to issue an io * to the device. Upon completion, the callback function will * be called with the data parameter passed as the callback data. * * @dd Pointer to the driver data structure. * @start First sector to read. * @nsect Number of sectors to read. * @nents Number of entries in scatter list for the read command. * @tag The tag of this read command. * @callback Pointer to the function that should be called * when the read completes. * @data Callback data passed to the callback function * when the read completes. * @barrier If non-zero, this command must be completed before * issuing any other commands. * @dir Direction (read or write) * * return value * None */ static void mtip_hw_submit_io(struct driver_data *dd, sector_t start, int nsect, int nents, int tag, void *callback, void *data, int barrier, int dir) { struct host_to_dev_fis *fis; struct mtip_port *port = dd->port; struct mtip_cmd *command = &port->commands[tag]; /* Map the scatter list for DMA access */ if (dir == READ) nents = dma_map_sg(&dd->pdev->dev, command->sg, nents, DMA_FROM_DEVICE); else nents = dma_map_sg(&dd->pdev->dev, command->sg, nents, DMA_TO_DEVICE); command->scatter_ents = nents; /* * The number of retries for this command before it is * reported as a failure to the upper layers. */ command->retries = MTIP_MAX_RETRIES; /* Fill out fis */ fis = command->command; fis->type = 0x27; fis->opts = 1 << 7; fis->command = (dir == READ ? ATA_CMD_FPDMA_READ : ATA_CMD_FPDMA_WRITE); *((unsigned int *) &fis->lba_low) = (start & 0xffffff); *((unsigned int *) &fis->lba_low_ex) = ((start >> 24) & 0xffffff); fis->device = 1 << 6; if (barrier) fis->device |= FUA_BIT; fis->features = nsect & 0xff; fis->features_ex = (nsect >> 8) & 0xff; fis->sect_count = ((tag << 3) | (tag >> 5)); fis->sect_cnt_ex = 0; fis->control = 0; fis->res2 = 0; fis->res3 = 0; fill_command_sg(dd, command, nents); /* Populate the command header */ command->command_header->opts = cpu_to_le32( (nents << 16) | 5 | AHCI_CMD_PREFETCH); command->command_header->byte_count = 0; /* * Set the completion function and data for the command * within this layer. */ command->comp_data = dd; command->comp_func = mtip_async_complete; command->direction = (dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE); /* * Set the completion function and data for the command passed * from the upper layer. */ command->async_data = data; command->async_callback = callback; /* * Lock used to prevent this command from being issued * if an internal command is in progress. */ down_read(&port->dd->internal_sem); /* Issue the command to the hardware */ mtip_issue_ncq_command(port, tag); /* Set the command's timeout value.*/ port->commands[tag].comp_time = jiffies + msecs_to_jiffies( MTIP_NCQ_COMMAND_TIMEOUT_MS); up_read(&port->dd->internal_sem); } /* * Release a command slot. * * @dd Pointer to the driver data structure. * @tag Slot tag * * return value * None */ static void mtip_hw_release_scatterlist(struct driver_data *dd, int tag) { release_slot(dd->port, tag); } /* * Obtain a command slot and return its associated scatter list. * * @dd Pointer to the driver data structure. * @tag Pointer to an int that will receive the allocated command * slot tag. * * return value * Pointer to the scatter list for the allocated command slot * or NULL if no command slots are available. */ static struct scatterlist *mtip_hw_get_scatterlist(struct driver_data *dd, int *tag) { /* * It is possible that, even with this semaphore, a thread * may think that no command slots are available. Therefore, we * need to make an attempt to get_slot(). */ down(&dd->port->cmd_slot); *tag = get_slot(dd->port); if (unlikely(*tag < 0)) return NULL; return dd->port->commands[*tag].sg; } /* * Sysfs register/status dump. * * @dev Pointer to the device structure, passed by the kernrel. * @attr Pointer to the device_attribute structure passed by the kernel. * @buf Pointer to the char buffer that will receive the stats info. * * return value * The size, in bytes, of the data copied into buf. */ static ssize_t hw_show_registers(struct device *dev, struct device_attribute *attr, char *buf) { u32 group_allocated; struct driver_data *dd = dev_to_disk(dev)->private_data; int size = 0; int n; size += sprintf(&buf[size], "%s:\ns_active:\n", __func__); for (n = 0; n < dd->slot_groups; n++) size += sprintf(&buf[size], "0x%08x\n", readl(dd->port->s_active[n])); size += sprintf(&buf[size], "Command Issue:\n"); for (n = 0; n < dd->slot_groups; n++) size += sprintf(&buf[size], "0x%08x\n", readl(dd->port->cmd_issue[n])); size += sprintf(&buf[size], "Allocated:\n"); for (n = 0; n < dd->slot_groups; n++) { if (sizeof(long) > sizeof(u32)) group_allocated = dd->port->allocated[n/2] >> (32*(n&1)); else group_allocated = dd->port->allocated[n]; size += sprintf(&buf[size], "0x%08x\n", group_allocated); } size += sprintf(&buf[size], "completed:\n"); for (n = 0; n < dd->slot_groups; n++) size += sprintf(&buf[size], "0x%08x\n", readl(dd->port->completed[n])); size += sprintf(&buf[size], "PORT_IRQ_STAT 0x%08x\n", readl(dd->port->mmio + PORT_IRQ_STAT)); size += sprintf(&buf[size], "HOST_IRQ_STAT 0x%08x\n", readl(dd->mmio + HOST_IRQ_STAT)); return size; } static DEVICE_ATTR(registers, S_IRUGO, hw_show_registers, NULL); /* * Create the sysfs related attributes. * * @dd Pointer to the driver data structure. * @kobj Pointer to the kobj for the block device. * * return value * 0 Operation completed successfully. * -EINVAL Invalid parameter. */ static int mtip_hw_sysfs_init(struct driver_data *dd, struct kobject *kobj) { if (!kobj || !dd) return -EINVAL; if (sysfs_create_file(kobj, &dev_attr_registers.attr)) dev_warn(&dd->pdev->dev, "Error creating registers sysfs entry\n"); return 0; } /* * Remove the sysfs related attributes. * * @dd Pointer to the driver data structure. * @kobj Pointer to the kobj for the block device. * * return value * 0 Operation completed successfully. * -EINVAL Invalid parameter. */ static int mtip_hw_sysfs_exit(struct driver_data *dd, struct kobject *kobj) { if (!kobj || !dd) return -EINVAL; sysfs_remove_file(kobj, &dev_attr_registers.attr); return 0; } /* * Perform any init/resume time hardware setup * * @dd Pointer to the driver data structure. * * return value * None */ static inline void hba_setup(struct driver_data *dd) { u32 hwdata; hwdata = readl(dd->mmio + HOST_HSORG); /* interrupt bug workaround: use only 1 IS bit.*/ writel(hwdata | HSORG_DISABLE_SLOTGRP_INTR | HSORG_DISABLE_SLOTGRP_PXIS, dd->mmio + HOST_HSORG); } /* * Detect the details of the product, and store anything needed * into the driver data structure. This includes product type and * version and number of slot groups. * * @dd Pointer to the driver data structure. * * return value * None */ static void mtip_detect_product(struct driver_data *dd) { u32 hwdata; unsigned int rev, slotgroups; /* * HBA base + 0xFC [15:0] - vendor-specific hardware interface * info register: * [15:8] hardware/software interface rev# * [ 3] asic-style interface * [ 2:0] number of slot groups, minus 1 (only valid for asic-style). */ hwdata = readl(dd->mmio + HOST_HSORG); dd->product_type = MTIP_PRODUCT_UNKNOWN; dd->slot_groups = 1; if (hwdata & 0x8) { dd->product_type = MTIP_PRODUCT_ASICFPGA; rev = (hwdata & HSORG_HWREV) >> 8; slotgroups = (hwdata & HSORG_SLOTGROUPS) + 1; dev_info(&dd->pdev->dev, "ASIC-FPGA design, HS rev 0x%x, " "%i slot groups [%i slots]\n", rev, slotgroups, slotgroups * 32); if (slotgroups > MTIP_MAX_SLOT_GROUPS) { dev_warn(&dd->pdev->dev, "Warning: driver only supports " "%i slot groups.\n", MTIP_MAX_SLOT_GROUPS); slotgroups = MTIP_MAX_SLOT_GROUPS; } dd->slot_groups = slotgroups; return; } dev_warn(&dd->pdev->dev, "Unrecognized product id\n"); } /* * Blocking wait for FTL rebuild to complete * * @dd Pointer to the DRIVER_DATA structure. * * return value * 0 FTL rebuild completed successfully * -EFAULT FTL rebuild error/timeout/interruption */ static int mtip_ftl_rebuild_poll(struct driver_data *dd) { unsigned long timeout, cnt = 0, start; dev_warn(&dd->pdev->dev, "FTL rebuild in progress. Polling for completion.\n"); start = jiffies; dd->ftlrebuildflag = 1; timeout = jiffies + msecs_to_jiffies(MTIP_FTL_REBUILD_TIMEOUT_MS); do { #ifdef CONFIG_HOTPLUG if (mtip_check_surprise_removal(dd->pdev)) return -EFAULT; #endif if (mtip_get_identify(dd->port, NULL) < 0) return -EFAULT; if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) == MTIP_FTL_REBUILD_MAGIC) { ssleep(1); /* Print message every 3 minutes */ if (cnt++ >= 180) { dev_warn(&dd->pdev->dev, "FTL rebuild in progress (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); cnt = 0; } } else { dev_warn(&dd->pdev->dev, "FTL rebuild complete (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); dd->ftlrebuildflag = 0; break; } ssleep(10); } while (time_before(jiffies, timeout)); /* Check for timeout */ if (dd->ftlrebuildflag) { dev_err(&dd->pdev->dev, "Timed out waiting for FTL rebuild to complete (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); return -EFAULT; } return 0; } /* * Called once for each card. * * @dd Pointer to the driver data structure. * * return value * 0 on success, else an error code. */ static int mtip_hw_init(struct driver_data *dd) { int i; int rv; unsigned int num_command_slots; dd->mmio = pcim_iomap_table(dd->pdev)[MTIP_ABAR]; mtip_detect_product(dd); if (dd->product_type == MTIP_PRODUCT_UNKNOWN) { rv = -EIO; goto out1; } num_command_slots = dd->slot_groups * 32; hba_setup(dd); /* * Initialize the internal semaphore * Use a rw semaphore to enable prioritization of * mgmnt ioctl traffic during heavy IO load */ init_rwsem(&dd->internal_sem); tasklet_init(&dd->tasklet, mtip_tasklet, (unsigned long)dd); dd->port = kzalloc(sizeof(struct mtip_port), GFP_KERNEL); if (!dd->port) { dev_err(&dd->pdev->dev, "Memory allocation: port structure\n"); return -ENOMEM; } /* Counting semaphore to track command slot usage */ sema_init(&dd->port->cmd_slot, num_command_slots - 1); /* Spinlock to prevent concurrent issue */ spin_lock_init(&dd->port->cmd_issue_lock); /* Set the port mmio base address. */ dd->port->mmio = dd->mmio + PORT_OFFSET; dd->port->dd = dd; /* Allocate memory for the command list. */ dd->port->command_list = dmam_alloc_coherent(&dd->pdev->dev, HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2), &dd->port->command_list_dma, GFP_KERNEL); if (!dd->port->command_list) { dev_err(&dd->pdev->dev, "Memory allocation: command list\n"); rv = -ENOMEM; goto out1; } /* Clear the memory we have allocated. */ memset(dd->port->command_list, 0, HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2)); /* Setup the addresse of the RX FIS. */ dd->port->rxfis = dd->port->command_list + HW_CMD_SLOT_SZ; dd->port->rxfis_dma = dd->port->command_list_dma + HW_CMD_SLOT_SZ; /* Setup the address of the command tables. */ dd->port->command_table = dd->port->rxfis + AHCI_RX_FIS_SZ; dd->port->command_tbl_dma = dd->port->rxfis_dma + AHCI_RX_FIS_SZ; /* Setup the address of the identify data. */ dd->port->identify = dd->port->command_table + HW_CMD_TBL_AR_SZ; dd->port->identify_dma = dd->port->command_tbl_dma + HW_CMD_TBL_AR_SZ; /* Setup the address of the sector buffer. */ dd->port->sector_buffer = (void *) dd->port->identify + ATA_SECT_SIZE; dd->port->sector_buffer_dma = dd->port->identify_dma + ATA_SECT_SIZE; /* Point the command headers at the command tables. */ for (i = 0; i < num_command_slots; i++) { dd->port->commands[i].command_header = dd->port->command_list + (sizeof(struct mtip_cmd_hdr) * i); dd->port->commands[i].command_header_dma = dd->port->command_list_dma + (sizeof(struct mtip_cmd_hdr) * i); dd->port->commands[i].command = dd->port->command_table + (HW_CMD_TBL_SZ * i); dd->port->commands[i].command_dma = dd->port->command_tbl_dma + (HW_CMD_TBL_SZ * i); if (readl(dd->mmio + HOST_CAP) & HOST_CAP_64) dd->port->commands[i].command_header->ctbau = cpu_to_le32( (dd->port->commands[i].command_dma >> 16) >> 16); dd->port->commands[i].command_header->ctba = cpu_to_le32( dd->port->commands[i].command_dma & 0xffffffff); /* * If this is not done, a bug is reported by the stock * FC11 i386. Due to the fact that it has lots of kernel * debugging enabled. */ sg_init_table(dd->port->commands[i].sg, MTIP_MAX_SG); /* Mark all commands as currently inactive.*/ atomic_set(&dd->port->commands[i].active, 0); } /* Setup the pointers to the extended s_active and CI registers. */ for (i = 0; i < dd->slot_groups; i++) { dd->port->s_active[i] = dd->port->mmio + i*0x80 + PORT_SCR_ACT; dd->port->cmd_issue[i] = dd->port->mmio + i*0x80 + PORT_COMMAND_ISSUE; dd->port->completed[i] = dd->port->mmio + i*0x80 + PORT_SDBV; } /* Reset the HBA. */ if (mtip_hba_reset(dd) < 0) { dev_err(&dd->pdev->dev, "Card did not reset within timeout\n"); rv = -EIO; goto out2; } mtip_init_port(dd->port); mtip_start_port(dd->port); /* Setup the ISR and enable interrupts. */ rv = devm_request_irq(&dd->pdev->dev, dd->pdev->irq, mtip_irq_handler, IRQF_SHARED, dev_driver_string(&dd->pdev->dev), dd); if (rv) { dev_err(&dd->pdev->dev, "Unable to allocate IRQ %d\n", dd->pdev->irq); goto out2; } /* Enable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN, dd->mmio + HOST_CTL); init_timer(&dd->port->cmd_timer); dd->port->cmd_timer.data = (unsigned long int) dd->port; dd->port->cmd_timer.function = mtip_timeout_function; mod_timer(&dd->port->cmd_timer, jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD)); if (mtip_get_identify(dd->port, NULL) < 0) { rv = -EFAULT; goto out3; } mtip_dump_identify(dd->port); if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) == MTIP_FTL_REBUILD_MAGIC) { return mtip_ftl_rebuild_poll(dd); } return rv; out3: del_timer_sync(&dd->port->cmd_timer); /* Disable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); /*Release the IRQ. */ devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd); out2: mtip_deinit_port(dd->port); /* Free the command/command header memory. */ dmam_free_coherent(&dd->pdev->dev, HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2), dd->port->command_list, dd->port->command_list_dma); out1: /* Free the memory allocated for the for structure. */ kfree(dd->port); return rv; } /* * Called to deinitialize an interface. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_hw_exit(struct driver_data *dd) { /* * Send standby immediate (E0h) to the drive so that it * saves its state. */ if (atomic_read(&dd->drv_cleanup_done) != true) { mtip_standby_immediate(dd->port); /* de-initialize the port. */ mtip_deinit_port(dd->port); /* Disable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); } del_timer_sync(&dd->port->cmd_timer); /* Stop the bottom half tasklet. */ tasklet_kill(&dd->tasklet); /* Release the IRQ. */ devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd); /* Free the command/command header memory. */ dmam_free_coherent(&dd->pdev->dev, HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2), dd->port->command_list, dd->port->command_list_dma); /* Free the memory allocated for the for structure. */ kfree(dd->port); return 0; } /* * Issue a Standby Immediate command to the device. * * This function is called by the Block Layer just before the * system powers off during a shutdown. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_hw_shutdown(struct driver_data *dd) { /* * Send standby immediate (E0h) to the drive so that it * saves its state. */ mtip_standby_immediate(dd->port); return 0; } /* * Suspend function * * This function is called by the Block Layer just before the * system hibernates. * * @dd Pointer to the driver data structure. * * return value * 0 Suspend was successful * -EFAULT Suspend was not successful */ static int mtip_hw_suspend(struct driver_data *dd) { /* * Send standby immediate (E0h) to the drive * so that it saves its state. */ if (mtip_standby_immediate(dd->port) != 0) { dev_err(&dd->pdev->dev, "Failed standby-immediate command\n"); return -EFAULT; } /* Disable interrupts on the HBA.*/ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); mtip_deinit_port(dd->port); return 0; } /* * Resume function * * This function is called by the Block Layer as the * system resumes. * * @dd Pointer to the driver data structure. * * return value * 0 Resume was successful * -EFAULT Resume was not successful */ static int mtip_hw_resume(struct driver_data *dd) { /* Perform any needed hardware setup steps */ hba_setup(dd); /* Reset the HBA */ if (mtip_hba_reset(dd) != 0) { dev_err(&dd->pdev->dev, "Unable to reset the HBA\n"); return -EFAULT; } /* * Enable the port, DMA engine, and FIS reception specific * h/w in controller. */ mtip_init_port(dd->port); mtip_start_port(dd->port); /* Enable interrupts on the HBA.*/ writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN, dd->mmio + HOST_CTL); return 0; } /* * Helper function for reusing disk name * upon hot insertion. */ static int rssd_disk_name_format(char *prefix, int index, char *buf, int buflen) { const int base = 'z' - 'a' + 1; char *begin = buf + strlen(prefix); char *end = buf + buflen; char *p; int unit; p = end - 1; *p = '\0'; unit = base; do { if (p == begin) return -EINVAL; *--p = 'a' + (index % unit); index = (index / unit) - 1; } while (index >= 0); memmove(begin, p, end - p); memcpy(buf, prefix, strlen(prefix)); return 0; } /* * Block layer IOCTL handler. * * @dev Pointer to the block_device structure. * @mode ignored * @cmd IOCTL command passed from the user application. * @arg Argument passed from the user application. * * return value * 0 IOCTL completed successfully. * -ENOTTY IOCTL not supported or invalid driver data * structure pointer. */ static int mtip_block_ioctl(struct block_device *dev, fmode_t mode, unsigned cmd, unsigned long arg) { struct driver_data *dd = dev->bd_disk->private_data; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!dd) return -ENOTTY; switch (cmd) { case BLKFLSBUF: return 0; default: return mtip_hw_ioctl(dd, cmd, arg); } } #ifdef CONFIG_COMPAT /* * Block layer compat IOCTL handler. * * @dev Pointer to the block_device structure. * @mode ignored * @cmd IOCTL command passed from the user application. * @arg Argument passed from the user application. * * return value * 0 IOCTL completed successfully. * -ENOTTY IOCTL not supported or invalid driver data * structure pointer. */ static int mtip_block_compat_ioctl(struct block_device *dev, fmode_t mode, unsigned cmd, unsigned long arg) { struct driver_data *dd = dev->bd_disk->private_data; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!dd) return -ENOTTY; switch (cmd) { case BLKFLSBUF: return 0; case HDIO_DRIVE_TASKFILE: { struct mtip_compat_ide_task_request_s *compat_req_task; ide_task_request_t req_task; int compat_tasksize, outtotal, ret; compat_tasksize = sizeof(struct mtip_compat_ide_task_request_s); compat_req_task = (struct mtip_compat_ide_task_request_s __user *) arg; if (copy_from_user(&req_task, (void __user *) arg, compat_tasksize - (2 * sizeof(compat_long_t)))) return -EFAULT; if (get_user(req_task.out_size, &compat_req_task->out_size)) return -EFAULT; if (get_user(req_task.in_size, &compat_req_task->in_size)) return -EFAULT; outtotal = sizeof(struct mtip_compat_ide_task_request_s); ret = exec_drive_taskfile(dd, (void __user *) arg, &req_task, outtotal); if (copy_to_user((void __user *) arg, &req_task, compat_tasksize - (2 * sizeof(compat_long_t)))) return -EFAULT; if (put_user(req_task.out_size, &compat_req_task->out_size)) return -EFAULT; if (put_user(req_task.in_size, &compat_req_task->in_size)) return -EFAULT; return ret; } default: return mtip_hw_ioctl(dd, cmd, arg); } } #endif /* * Obtain the geometry of the device. * * You may think that this function is obsolete, but some applications, * fdisk for example still used CHS values. This function describes the * device as having 224 heads and 56 sectors per cylinder. These values are * chosen so that each cylinder is aligned on a 4KB boundary. Since a * partition is described in terms of a start and end cylinder this means * that each partition is also 4KB aligned. Non-aligned partitions adversely * affects performance. * * @dev Pointer to the block_device strucutre. * @geo Pointer to a hd_geometry structure. * * return value * 0 Operation completed successfully. * -ENOTTY An error occurred while reading the drive capacity. */ static int mtip_block_getgeo(struct block_device *dev, struct hd_geometry *geo) { struct driver_data *dd = dev->bd_disk->private_data; sector_t capacity; if (!dd) return -ENOTTY; if (!(mtip_hw_get_capacity(dd, &capacity))) { dev_warn(&dd->pdev->dev, "Could not get drive capacity.\n"); return -ENOTTY; } geo->heads = 224; geo->sectors = 56; #if BITS_PER_LONG == 64 geo->cylinders = capacity / (geo->heads * geo->sectors); #else do_div(capacity, (geo->heads * geo->sectors)); geo->cylinders = capacity; #endif return 0; } /* * Block device operation function. * * This structure contains pointers to the functions required by the block * layer. */ static const struct block_device_operations mtip_block_ops = { .ioctl = mtip_block_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mtip_block_compat_ioctl, #endif .getgeo = mtip_block_getgeo, .owner = THIS_MODULE }; /* * Block layer make request function. * * This function is called by the kernel to process a BIO for * the P320 device. * * @queue Pointer to the request queue. Unused other than to obtain * the driver data structure. * @bio Pointer to the BIO. * * return value * 0 */ static int mtip_make_request(struct request_queue *queue, struct bio *bio) { struct driver_data *dd = queue->queuedata; struct scatterlist *sg; struct bio_vec *bvec; int nents = 0; int tag = 0; if (unlikely(!bio_has_data(bio))) { blk_queue_flush(queue, 0); bio_endio(bio, 0); return 0; } if (unlikely(atomic_read(&dd->eh_active))) { bio_endio(bio, -EBUSY); return 0; } sg = mtip_hw_get_scatterlist(dd, &tag); if (likely(sg != NULL)) { blk_queue_bounce(queue, &bio); if (unlikely((bio)->bi_vcnt > MTIP_MAX_SG)) { dev_warn(&dd->pdev->dev, "Maximum number of SGL entries exceeded"); bio_io_error(bio); mtip_hw_release_scatterlist(dd, tag); return 0; } /* Create the scatter list for this bio. */ bio_for_each_segment(bvec, bio, nents) { sg_set_page(&sg[nents], bvec->bv_page, bvec->bv_len, bvec->bv_offset); } /* Issue the read/write. */ mtip_hw_submit_io(dd, bio->bi_sector, bio_sectors(bio), nents, tag, bio_endio, bio, bio->bi_rw & REQ_FLUSH, bio_data_dir(bio)); } else { bio_io_error(bio); } return 0; } /* * Block layer initialization function. * * This function is called once by the PCI layer for each P320 * device that is connected to the system. * * @dd Pointer to the driver data structure. * * return value * 0 on success else an error code. */ static int mtip_block_initialize(struct driver_data *dd) { int rv = 0; sector_t capacity; unsigned int index = 0; struct kobject *kobj; /* Initialize the protocol layer. */ rv = mtip_hw_init(dd); if (rv < 0) { dev_err(&dd->pdev->dev, "Protocol layer initialization failed\n"); rv = -EINVAL; goto protocol_init_error; } /* Allocate the request queue. */ dd->queue = blk_alloc_queue(GFP_KERNEL); if (dd->queue == NULL) { dev_err(&dd->pdev->dev, "Unable to allocate request queue\n"); rv = -ENOMEM; goto block_queue_alloc_init_error; } /* Attach our request function to the request queue. */ blk_queue_make_request(dd->queue, mtip_make_request); /* Set device limits. */ set_bit(QUEUE_FLAG_NONROT, &dd->queue->queue_flags); blk_queue_max_segments(dd->queue, MTIP_MAX_SG); blk_queue_physical_block_size(dd->queue, 4096); blk_queue_io_min(dd->queue, 4096); dd->disk = alloc_disk(MTIP_MAX_MINORS); if (dd->disk == NULL) { dev_err(&dd->pdev->dev, "Unable to allocate gendisk structure\n"); rv = -EINVAL; goto alloc_disk_error; } /* Generate the disk name, implemented same as in sd.c */ do { if (!ida_pre_get(&rssd_index_ida, GFP_KERNEL)) goto ida_get_error; spin_lock(&rssd_index_lock); rv = ida_get_new(&rssd_index_ida, &index); spin_unlock(&rssd_index_lock); } while (rv == -EAGAIN); if (rv) goto ida_get_error; rv = rssd_disk_name_format("rssd", index, dd->disk->disk_name, DISK_NAME_LEN); if (rv) goto disk_index_error; dd->disk->driverfs_dev = &dd->pdev->dev; dd->disk->major = dd->major; dd->disk->first_minor = dd->instance * MTIP_MAX_MINORS; dd->disk->fops = &mtip_block_ops; dd->disk->queue = dd->queue; dd->disk->private_data = dd; dd->queue->queuedata = dd; dd->index = index; /* Set the capacity of the device in 512 byte sectors. */ if (!(mtip_hw_get_capacity(dd, &capacity))) { dev_warn(&dd->pdev->dev, "Could not read drive capacity\n"); rv = -EIO; goto read_capacity_error; } set_capacity(dd->disk, capacity); /* Enable the block device and add it to /dev */ add_disk(dd->disk); /* * Now that the disk is active, initialize any sysfs attributes * managed by the protocol layer. */ kobj = kobject_get(&disk_to_dev(dd->disk)->kobj); if (kobj) { mtip_hw_sysfs_init(dd, kobj); kobject_put(kobj); } return rv; read_capacity_error: /* * Delete our gendisk structure. This also removes the device * from /dev */ del_gendisk(dd->disk); disk_index_error: spin_lock(&rssd_index_lock); ida_remove(&rssd_index_ida, index); spin_unlock(&rssd_index_lock); ida_get_error: put_disk(dd->disk); alloc_disk_error: blk_cleanup_queue(dd->queue); block_queue_alloc_init_error: /* De-initialize the protocol layer. */ mtip_hw_exit(dd); protocol_init_error: return rv; } /* * Block layer deinitialization function. * * Called by the PCI layer as each P320 device is removed. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_block_remove(struct driver_data *dd) { struct kobject *kobj; /* Clean up the sysfs attributes managed by the protocol layer. */ kobj = kobject_get(&disk_to_dev(dd->disk)->kobj); if (kobj) { mtip_hw_sysfs_exit(dd, kobj); kobject_put(kobj); } /* * Delete our gendisk structure. This also removes the device * from /dev */ del_gendisk(dd->disk); blk_cleanup_queue(dd->queue); dd->disk = NULL; dd->queue = NULL; /* De-initialize the protocol layer. */ mtip_hw_exit(dd); return 0; } /* * Function called by the PCI layer when just before the * machine shuts down. * * If a protocol layer shutdown function is present it will be called * by this function. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_block_shutdown(struct driver_data *dd) { dev_info(&dd->pdev->dev, "Shutting down %s ...\n", dd->disk->disk_name); /* Delete our gendisk structure, and cleanup the blk queue. */ del_gendisk(dd->disk); blk_cleanup_queue(dd->queue); dd->disk = NULL; dd->queue = NULL; mtip_hw_shutdown(dd); return 0; } static int mtip_block_suspend(struct driver_data *dd) { dev_info(&dd->pdev->dev, "Suspending %s ...\n", dd->disk->disk_name); mtip_hw_suspend(dd); return 0; } static int mtip_block_resume(struct driver_data *dd) { dev_info(&dd->pdev->dev, "Resuming %s ...\n", dd->disk->disk_name); mtip_hw_resume(dd); return 0; } /* * Called for each supported PCI device detected. * * This function allocates the private data structure, enables the * PCI device and then calls the block layer initialization function. * * return value * 0 on success else an error code. */ static int mtip_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int rv = 0; struct driver_data *dd = NULL; /* Allocate memory for this devices private data. */ dd = kzalloc(sizeof(struct driver_data), GFP_KERNEL); if (dd == NULL) { dev_err(&pdev->dev, "Unable to allocate memory for driver data\n"); return -ENOMEM; } /* Set the atomic variable as 1 in case of SRSI */ atomic_set(&dd->drv_cleanup_done, true); atomic_set(&dd->resumeflag, false); atomic_set(&dd->eh_active, 0); /* Attach the private data to this PCI device. */ pci_set_drvdata(pdev, dd); rv = pcim_enable_device(pdev); if (rv < 0) { dev_err(&pdev->dev, "Unable to enable device\n"); goto iomap_err; } /* Map BAR5 to memory. */ rv = pcim_iomap_regions(pdev, 1 << MTIP_ABAR, MTIP_DRV_NAME); if (rv < 0) { dev_err(&pdev->dev, "Unable to map regions\n"); goto iomap_err; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { rv = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (rv) { rv = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rv) { dev_warn(&pdev->dev, "64-bit DMA enable failed\n"); goto setmask_err; } } } pci_set_master(pdev); if (pci_enable_msi(pdev)) { dev_warn(&pdev->dev, "Unable to enable MSI interrupt.\n"); goto block_initialize_err; } /* Copy the info we may need later into the private data structure. */ dd->major = mtip_major; dd->protocol = ent->driver_data; dd->instance = instance; dd->pdev = pdev; /* Initialize the block layer. */ rv = mtip_block_initialize(dd); if (rv < 0) { dev_err(&pdev->dev, "Unable to initialize block layer\n"); goto block_initialize_err; } /* * Increment the instance count so that each device has a unique * instance number. */ instance++; goto done; block_initialize_err: pci_disable_msi(pdev); setmask_err: pcim_iounmap_regions(pdev, 1 << MTIP_ABAR); iomap_err: kfree(dd); pci_set_drvdata(pdev, NULL); return rv; done: /* Set the atomic variable as 0 in case of SRSI */ atomic_set(&dd->drv_cleanup_done, true); return rv; } /* * Called for each probed device when the device is removed or the * driver is unloaded. * * return value * None */ static void mtip_pci_remove(struct pci_dev *pdev) { struct driver_data *dd = pci_get_drvdata(pdev); int counter = 0; if (mtip_check_surprise_removal(pdev)) { while (atomic_read(&dd->drv_cleanup_done) == false) { counter++; msleep(20); if (counter == 10) { /* Cleanup the outstanding commands */ mtip_command_cleanup(dd); break; } } } /* Set the atomic variable as 1 in case of SRSI */ atomic_set(&dd->drv_cleanup_done, true); /* Clean up the block layer. */ mtip_block_remove(dd); pci_disable_msi(pdev); kfree(dd); pcim_iounmap_regions(pdev, 1 << MTIP_ABAR); } /* * Called for each probed device when the device is suspended. * * return value * 0 Success * <0 Error */ static int mtip_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) { int rv = 0; struct driver_data *dd = pci_get_drvdata(pdev); if (!dd) { dev_err(&pdev->dev, "Driver private datastructure is NULL\n"); return -EFAULT; } atomic_set(&dd->resumeflag, true); /* Disable ports & interrupts then send standby immediate */ rv = mtip_block_suspend(dd); if (rv < 0) { dev_err(&pdev->dev, "Failed to suspend controller\n"); return rv; } /* * Save the pci config space to pdev structure & * disable the device */ pci_save_state(pdev); pci_disable_device(pdev); /* Move to Low power state*/ pci_set_power_state(pdev, PCI_D3hot); return rv; } /* * Called for each probed device when the device is resumed. * * return value * 0 Success * <0 Error */ static int mtip_pci_resume(struct pci_dev *pdev) { int rv = 0; struct driver_data *dd; dd = pci_get_drvdata(pdev); if (!dd) { dev_err(&pdev->dev, "Driver private datastructure is NULL\n"); return -EFAULT; } /* Move the device to active State */ pci_set_power_state(pdev, PCI_D0); /* Restore PCI configuration space */ pci_restore_state(pdev); /* Enable the PCI device*/ rv = pcim_enable_device(pdev); if (rv < 0) { dev_err(&pdev->dev, "Failed to enable card during resume\n"); goto err; } pci_set_master(pdev); /* * Calls hbaReset, initPort, & startPort function * then enables interrupts */ rv = mtip_block_resume(dd); if (rv < 0) dev_err(&pdev->dev, "Unable to resume\n"); err: atomic_set(&dd->resumeflag, false); return rv; } /* * Shutdown routine * * return value * None */ static void mtip_pci_shutdown(struct pci_dev *pdev) { struct driver_data *dd = pci_get_drvdata(pdev); if (dd) mtip_block_shutdown(dd); } /* Table of device ids supported by this driver. */ static DEFINE_PCI_DEVICE_TABLE(mtip_pci_tbl) = { { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P320_DEVICE_ID) }, { 0 } }; /* Structure that describes the PCI driver functions. */ static struct pci_driver mtip_pci_driver = { .name = MTIP_DRV_NAME, .id_table = mtip_pci_tbl, .probe = mtip_pci_probe, .remove = mtip_pci_remove, .suspend = mtip_pci_suspend, .resume = mtip_pci_resume, .shutdown = mtip_pci_shutdown, }; MODULE_DEVICE_TABLE(pci, mtip_pci_tbl); /* * Module initialization function. * * Called once when the module is loaded. This function allocates a major * block device number to the Cyclone devices and registers the PCI layer * of the driver. * * Return value * 0 on success else error code. */ static int __init mtip_init(void) { printk(KERN_INFO MTIP_DRV_NAME " Version " MTIP_DRV_VERSION "\n"); /* Allocate a major block device number to use with this driver. */ mtip_major = register_blkdev(0, MTIP_DRV_NAME); if (mtip_major < 0) { printk(KERN_ERR "Unable to register block device (%d)\n", mtip_major); return -EBUSY; } /* Register our PCI operations. */ return pci_register_driver(&mtip_pci_driver); } /* * Module de-initialization function. * * Called once when the module is unloaded. This function deallocates * the major block device number allocated by mtip_init() and * unregisters the PCI layer of the driver. * * Return value * none */ static void __exit mtip_exit(void) { /* Release the allocated major block device number. */ unregister_blkdev(mtip_major, MTIP_DRV_NAME); /* Unregister the PCI driver. */ pci_unregister_driver(&mtip_pci_driver); } MODULE_AUTHOR("Micron Technology, Inc"); MODULE_DESCRIPTION("Micron RealSSD PCIe Block Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(MTIP_DRV_VERSION); module_init(mtip_init); module_exit(mtip_exit);