/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "iscsi_iser.h" #define ISCSI_ISER_MAX_CONN 8 #define ISER_MAX_RX_CQ_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) #define ISER_MAX_TX_CQ_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) static int iser_cq_poll_limit = 512; static void iser_cq_tasklet_fn(unsigned long data); static void iser_cq_callback(struct ib_cq *cq, void *cq_context); static int iser_drain_tx_cq(struct iser_comp *comp); static void iser_cq_event_callback(struct ib_event *cause, void *context) { iser_err("got cq event %d \n", cause->event); } static void iser_qp_event_callback(struct ib_event *cause, void *context) { iser_err("got qp event %d\n",cause->event); } static void iser_event_handler(struct ib_event_handler *handler, struct ib_event *event) { iser_err("async event %d on device %s port %d\n", event->event, event->device->name, event->element.port_num); } /** * iser_create_device_ib_res - creates Protection Domain (PD), Completion * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with * the adapator. * * returns 0 on success, -1 on failure */ static int iser_create_device_ib_res(struct iser_device *device) { struct ib_device_attr *dev_attr = &device->dev_attr; int ret, i; ret = ib_query_device(device->ib_device, dev_attr); if (ret) { pr_warn("Query device failed for %s\n", device->ib_device->name); return ret; } /* Assign function handles - based on FMR support */ if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr && device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) { iser_info("FMR supported, using FMR for registration\n"); device->iser_alloc_rdma_reg_res = iser_create_fmr_pool; device->iser_free_rdma_reg_res = iser_free_fmr_pool; device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr; device->iser_unreg_rdma_mem = iser_unreg_mem_fmr; } else if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { iser_info("FastReg supported, using FastReg for registration\n"); device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool; device->iser_free_rdma_reg_res = iser_free_fastreg_pool; device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg; device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg; } else { iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n"); return -1; } device->comps_used = min(ISER_MAX_CQ, device->ib_device->num_comp_vectors); iser_info("using %d CQs, device %s supports %d vectors\n", device->comps_used, device->ib_device->name, device->ib_device->num_comp_vectors); device->pd = ib_alloc_pd(device->ib_device); if (IS_ERR(device->pd)) goto pd_err; for (i = 0; i < device->comps_used; i++) { struct iser_comp *comp = &device->comps[i]; comp->device = device; comp->rx_cq = ib_create_cq(device->ib_device, iser_cq_callback, iser_cq_event_callback, (void *)comp, ISER_MAX_RX_CQ_LEN, i); if (IS_ERR(comp->rx_cq)) { comp->rx_cq = NULL; goto cq_err; } comp->tx_cq = ib_create_cq(device->ib_device, NULL, iser_cq_event_callback, (void *)comp, ISER_MAX_TX_CQ_LEN, i); if (IS_ERR(comp->tx_cq)) { comp->tx_cq = NULL; goto cq_err; } if (ib_req_notify_cq(comp->rx_cq, IB_CQ_NEXT_COMP)) goto cq_err; tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, (unsigned long)comp); } device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); if (IS_ERR(device->mr)) goto dma_mr_err; INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, iser_event_handler); if (ib_register_event_handler(&device->event_handler)) goto handler_err; return 0; handler_err: ib_dereg_mr(device->mr); dma_mr_err: for (i = 0; i < device->comps_used; i++) tasklet_kill(&device->comps[i].tasklet); cq_err: for (i = 0; i < device->comps_used; i++) { struct iser_comp *comp = &device->comps[i]; if (comp->tx_cq) ib_destroy_cq(comp->tx_cq); if (comp->rx_cq) ib_destroy_cq(comp->rx_cq); } ib_dealloc_pd(device->pd); pd_err: iser_err("failed to allocate an IB resource\n"); return -1; } /** * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, * CQ and PD created with the device associated with the adapator. */ static void iser_free_device_ib_res(struct iser_device *device) { int i; BUG_ON(device->mr == NULL); for (i = 0; i < device->comps_used; i++) { struct iser_comp *comp = &device->comps[i]; tasklet_kill(&comp->tasklet); ib_destroy_cq(comp->tx_cq); ib_destroy_cq(comp->rx_cq); comp->tx_cq = NULL; comp->rx_cq = NULL; } (void)ib_unregister_event_handler(&device->event_handler); (void)ib_dereg_mr(device->mr); (void)ib_dealloc_pd(device->pd); device->mr = NULL; device->pd = NULL; } /** * iser_create_fmr_pool - Creates FMR pool and page_vector * * returns 0 on success, or errno code on failure */ int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max) { struct iser_device *device = ib_conn->device; struct ib_fmr_pool_param params; int ret = -ENOMEM; ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) + (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)), GFP_KERNEL); if (!ib_conn->fmr.page_vec) return ret; ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1); params.page_shift = SHIFT_4K; /* when the first/last SG element are not start/end * * page aligned, the map whould be of N+1 pages */ params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1; /* make the pool size twice the max number of SCSI commands * * the ML is expected to queue, watermark for unmap at 50% */ params.pool_size = cmds_max * 2; params.dirty_watermark = cmds_max; params.cache = 0; params.flush_function = NULL; params.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms); if (!IS_ERR(ib_conn->fmr.pool)) return 0; /* no FMR => no need for page_vec */ kfree(ib_conn->fmr.page_vec); ib_conn->fmr.page_vec = NULL; ret = PTR_ERR(ib_conn->fmr.pool); ib_conn->fmr.pool = NULL; if (ret != -ENOSYS) { iser_err("FMR allocation failed, err %d\n", ret); return ret; } else { iser_warn("FMRs are not supported, using unaligned mode\n"); return 0; } } /** * iser_free_fmr_pool - releases the FMR pool and page vec */ void iser_free_fmr_pool(struct ib_conn *ib_conn) { iser_info("freeing conn %p fmr pool %p\n", ib_conn, ib_conn->fmr.pool); if (ib_conn->fmr.pool != NULL) ib_destroy_fmr_pool(ib_conn->fmr.pool); ib_conn->fmr.pool = NULL; kfree(ib_conn->fmr.page_vec); ib_conn->fmr.page_vec = NULL; } static int iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd, bool pi_enable, struct fast_reg_descriptor *desc) { int ret; desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device, ISCSI_ISER_SG_TABLESIZE + 1); if (IS_ERR(desc->data_frpl)) { ret = PTR_ERR(desc->data_frpl); iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", ret); return PTR_ERR(desc->data_frpl); } desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1); if (IS_ERR(desc->data_mr)) { ret = PTR_ERR(desc->data_mr); iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); goto fast_reg_mr_failure; } desc->reg_indicators |= ISER_DATA_KEY_VALID; if (pi_enable) { struct ib_mr_init_attr mr_init_attr = {0}; struct iser_pi_context *pi_ctx = NULL; desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); if (!desc->pi_ctx) { iser_err("Failed to allocate pi context\n"); ret = -ENOMEM; goto pi_ctx_alloc_failure; } pi_ctx = desc->pi_ctx; pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device, ISCSI_ISER_SG_TABLESIZE); if (IS_ERR(pi_ctx->prot_frpl)) { ret = PTR_ERR(pi_ctx->prot_frpl); iser_err("Failed to allocate prot frpl ret=%d\n", ret); goto prot_frpl_failure; } pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1); if (IS_ERR(pi_ctx->prot_mr)) { ret = PTR_ERR(pi_ctx->prot_mr); iser_err("Failed to allocate prot frmr ret=%d\n", ret); goto prot_mr_failure; } desc->reg_indicators |= ISER_PROT_KEY_VALID; mr_init_attr.max_reg_descriptors = 2; mr_init_attr.flags |= IB_MR_SIGNATURE_EN; pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr); if (IS_ERR(pi_ctx->sig_mr)) { ret = PTR_ERR(pi_ctx->sig_mr); iser_err("Failed to allocate signature enabled mr err=%d\n", ret); goto sig_mr_failure; } desc->reg_indicators |= ISER_SIG_KEY_VALID; } desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; iser_dbg("Create fr_desc %p page_list %p\n", desc, desc->data_frpl->page_list); return 0; sig_mr_failure: ib_dereg_mr(desc->pi_ctx->prot_mr); prot_mr_failure: ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); prot_frpl_failure: kfree(desc->pi_ctx); pi_ctx_alloc_failure: ib_dereg_mr(desc->data_mr); fast_reg_mr_failure: ib_free_fast_reg_page_list(desc->data_frpl); return ret; } /** * iser_create_fastreg_pool - Creates pool of fast_reg descriptors * for fast registration work requests. * returns 0 on success, or errno code on failure */ int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max) { struct iser_device *device = ib_conn->device; struct fast_reg_descriptor *desc; int i, ret; INIT_LIST_HEAD(&ib_conn->fastreg.pool); ib_conn->fastreg.pool_size = 0; for (i = 0; i < cmds_max; i++) { desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) { iser_err("Failed to allocate a new fast_reg descriptor\n"); ret = -ENOMEM; goto err; } ret = iser_create_fastreg_desc(device->ib_device, device->pd, ib_conn->pi_support, desc); if (ret) { iser_err("Failed to create fastreg descriptor err=%d\n", ret); kfree(desc); goto err; } list_add_tail(&desc->list, &ib_conn->fastreg.pool); ib_conn->fastreg.pool_size++; } return 0; err: iser_free_fastreg_pool(ib_conn); return ret; } /** * iser_free_fastreg_pool - releases the pool of fast_reg descriptors */ void iser_free_fastreg_pool(struct ib_conn *ib_conn) { struct fast_reg_descriptor *desc, *tmp; int i = 0; if (list_empty(&ib_conn->fastreg.pool)) return; iser_info("freeing conn %p fr pool\n", ib_conn); list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) { list_del(&desc->list); ib_free_fast_reg_page_list(desc->data_frpl); ib_dereg_mr(desc->data_mr); if (desc->pi_ctx) { ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); ib_dereg_mr(desc->pi_ctx->prot_mr); ib_destroy_mr(desc->pi_ctx->sig_mr); kfree(desc->pi_ctx); } kfree(desc); ++i; } if (i < ib_conn->fastreg.pool_size) iser_warn("pool still has %d regions registered\n", ib_conn->fastreg.pool_size - i); } /** * iser_create_ib_conn_res - Queue-Pair (QP) * * returns 0 on success, -1 on failure */ static int iser_create_ib_conn_res(struct ib_conn *ib_conn) { struct iser_device *device; struct ib_qp_init_attr init_attr; int ret = -ENOMEM; int index, min_index = 0; BUG_ON(ib_conn->device == NULL); device = ib_conn->device; memset(&init_attr, 0, sizeof init_attr); mutex_lock(&ig.connlist_mutex); /* select the CQ with the minimal number of usages */ for (index = 0; index < device->comps_used; index++) { if (device->comps[index].active_qps < device->comps[min_index].active_qps) min_index = index; } ib_conn->comp = &device->comps[min_index]; ib_conn->comp->active_qps++; mutex_unlock(&ig.connlist_mutex); iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); init_attr.event_handler = iser_qp_event_callback; init_attr.qp_context = (void *)ib_conn; init_attr.send_cq = ib_conn->comp->tx_cq; init_attr.recv_cq = ib_conn->comp->rx_cq; init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; init_attr.cap.max_send_sge = 2; init_attr.cap.max_recv_sge = 1; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; init_attr.qp_type = IB_QPT_RC; if (ib_conn->pi_support) { init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS; init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; } else { init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS; } ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); if (ret) goto out_err; ib_conn->qp = ib_conn->cma_id->qp; iser_info("setting conn %p cma_id %p qp %p\n", ib_conn, ib_conn->cma_id, ib_conn->cma_id->qp); return ret; out_err: iser_err("unable to alloc mem or create resource, err %d\n", ret); return ret; } /** * based on the resolved device node GUID see if there already allocated * device for this device. If there's no such, create one. */ static struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) { struct iser_device *device; mutex_lock(&ig.device_list_mutex); list_for_each_entry(device, &ig.device_list, ig_list) /* find if there's a match using the node GUID */ if (device->ib_device->node_guid == cma_id->device->node_guid) goto inc_refcnt; device = kzalloc(sizeof *device, GFP_KERNEL); if (device == NULL) goto out; /* assign this device to the device */ device->ib_device = cma_id->device; /* init the device and link it into ig device list */ if (iser_create_device_ib_res(device)) { kfree(device); device = NULL; goto out; } list_add(&device->ig_list, &ig.device_list); inc_refcnt: device->refcount++; out: mutex_unlock(&ig.device_list_mutex); return device; } /* if there's no demand for this device, release it */ static void iser_device_try_release(struct iser_device *device) { mutex_lock(&ig.device_list_mutex); device->refcount--; iser_info("device %p refcount %d\n", device, device->refcount); if (!device->refcount) { iser_free_device_ib_res(device); list_del(&device->ig_list); kfree(device); } mutex_unlock(&ig.device_list_mutex); } /** * Called with state mutex held **/ static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, enum iser_conn_state comp, enum iser_conn_state exch) { int ret; ret = (iser_conn->state == comp); if (ret) iser_conn->state = exch; return ret; } void iser_release_work(struct work_struct *work) { struct iser_conn *iser_conn; iser_conn = container_of(work, struct iser_conn, release_work); /* Wait for conn_stop to complete */ wait_for_completion(&iser_conn->stop_completion); /* Wait for IB resouces cleanup to complete */ wait_for_completion(&iser_conn->ib_completion); mutex_lock(&iser_conn->state_mutex); iser_conn->state = ISER_CONN_DOWN; mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); } /** * iser_free_ib_conn_res - release IB related resources * @iser_conn: iser connection struct * @destroy_device: indicator if we need to try to release * the iser device (only iscsi shutdown and DEVICE_REMOVAL * will use this. * * This routine is called with the iser state mutex held * so the cm_id removal is out of here. It is Safe to * be invoked multiple times. */ static void iser_free_ib_conn_res(struct iser_conn *iser_conn, bool destroy_device) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_device *device = ib_conn->device; iser_info("freeing conn %p cma_id %p qp %p\n", iser_conn, ib_conn->cma_id, ib_conn->qp); iser_free_rx_descriptors(iser_conn); if (ib_conn->qp != NULL) { ib_conn->comp->active_qps--; rdma_destroy_qp(ib_conn->cma_id); ib_conn->qp = NULL; } if (destroy_device && device != NULL) { iser_device_try_release(device); ib_conn->device = NULL; } } /** * Frees all conn objects and deallocs conn descriptor */ void iser_conn_release(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; mutex_lock(&ig.connlist_mutex); list_del(&iser_conn->conn_list); mutex_unlock(&ig.connlist_mutex); mutex_lock(&iser_conn->state_mutex); if (iser_conn->state != ISER_CONN_DOWN) iser_warn("iser conn %p state %d, expected state down.\n", iser_conn, iser_conn->state); /* * In case we never got to bind stage, we still need to * release IB resources (which is safe to call more than once). */ iser_free_ib_conn_res(iser_conn, true); mutex_unlock(&iser_conn->state_mutex); if (ib_conn->cma_id != NULL) { rdma_destroy_id(ib_conn->cma_id); ib_conn->cma_id = NULL; } kfree(iser_conn); } /** * iser_poll_for_flush_errors - Don't settle for less than all. * @struct ib_conn: IB context of the connection * * This routine is called when the QP is in error state * It polls the send CQ until all flush errors are consumed and * returns when all flush errors were processed. */ static void iser_poll_for_flush_errors(struct ib_conn *ib_conn) { int count = 0; while (ib_conn->post_recv_buf_count > 0 || atomic_read(&ib_conn->post_send_buf_count) > 0) { msleep(100); if (atomic_read(&ib_conn->post_send_buf_count) > 0) iser_drain_tx_cq(ib_conn->comp); count++; /* Don't flood with prints */ if (count % 30 == 0) iser_dbg("post_recv %d post_send %d", ib_conn->post_recv_buf_count, atomic_read(&ib_conn->post_send_buf_count)); } } /** * triggers start of the disconnect procedures and wait for them to be done * Called with state mutex held */ int iser_conn_terminate(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; int err = 0; /* terminate the iser conn only if the conn state is UP */ if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, ISER_CONN_TERMINATING)) return 0; iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); /* suspend queuing of new iscsi commands */ if (iser_conn->iscsi_conn) iscsi_suspend_queue(iser_conn->iscsi_conn); /* * In case we didn't already clean up the cma_id (peer initiated * a disconnection), we need to Cause the CMA to change the QP * state to ERROR. */ if (ib_conn->cma_id) { err = rdma_disconnect(ib_conn->cma_id); if (err) iser_err("Failed to disconnect, conn: 0x%p err %d\n", iser_conn, err); iser_poll_for_flush_errors(ib_conn); } return 1; } /** * Called with state mutex held **/ static void iser_connect_error(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn; iser_conn = (struct iser_conn *)cma_id->context; iser_conn->state = ISER_CONN_DOWN; } /** * Called with state mutex held **/ static void iser_addr_handler(struct rdma_cm_id *cma_id) { struct iser_device *device; struct iser_conn *iser_conn; struct ib_conn *ib_conn; int ret; iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ib_conn = &iser_conn->ib_conn; device = iser_device_find_by_ib_device(cma_id); if (!device) { iser_err("device lookup/creation failed\n"); iser_connect_error(cma_id); return; } ib_conn->device = device; /* connection T10-PI support */ if (iser_pi_enable) { if (!(device->dev_attr.device_cap_flags & IB_DEVICE_SIGNATURE_HANDOVER)) { iser_warn("T10-PI requested but not supported on %s, " "continue without T10-PI\n", ib_conn->device->ib_device->name); ib_conn->pi_support = false; } else { ib_conn->pi_support = true; } } ret = rdma_resolve_route(cma_id, 1000); if (ret) { iser_err("resolve route failed: %d\n", ret); iser_connect_error(cma_id); return; } } /** * Called with state mutex held **/ static void iser_route_handler(struct rdma_cm_id *cma_id) { struct rdma_conn_param conn_param; int ret; struct iser_cm_hdr req_hdr; struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_device *device = ib_conn->device; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ret = iser_create_ib_conn_res(ib_conn); if (ret) goto failure; memset(&conn_param, 0, sizeof conn_param); conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; conn_param.initiator_depth = 1; conn_param.retry_count = 7; conn_param.rnr_retry_count = 6; memset(&req_hdr, 0, sizeof(req_hdr)); req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | ISER_SEND_W_INV_NOT_SUPPORTED); conn_param.private_data = (void *)&req_hdr; conn_param.private_data_len = sizeof(struct iser_cm_hdr); ret = rdma_connect(cma_id, &conn_param); if (ret) { iser_err("failure connecting: %d\n", ret); goto failure; } return; failure: iser_connect_error(cma_id); } static void iser_connected_handler(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn; struct ib_qp_attr attr; struct ib_qp_init_attr init_attr; iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); iser_conn->state = ISER_CONN_UP; complete(&iser_conn->up_completion); } static void iser_disconnected_handler(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn_terminate(iser_conn)) { if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); else iser_err("iscsi_iser connection isn't bound\n"); } } static void iser_cleanup_handler(struct rdma_cm_id *cma_id, bool destroy_device) { struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; /* * We are not guaranteed that we visited disconnected_handler * by now, call it here to be safe that we handle CM drep * and flush errors. */ iser_disconnected_handler(cma_id); iser_free_ib_conn_res(iser_conn, destroy_device); complete(&iser_conn->ib_completion); }; static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) { struct iser_conn *iser_conn; int ret = 0; iser_conn = (struct iser_conn *)cma_id->context; iser_info("event %d status %d conn %p id %p\n", event->event, event->status, cma_id->context, cma_id); mutex_lock(&iser_conn->state_mutex); switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: iser_addr_handler(cma_id); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: iser_route_handler(cma_id); break; case RDMA_CM_EVENT_ESTABLISHED: iser_connected_handler(cma_id); break; case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_REJECTED: iser_connect_error(cma_id); break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: iser_disconnected_handler(cma_id); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* * we *must* destroy the device as we cannot rely * on iscsid to be around to initiate error handling. * also implicitly destroy the cma_id. */ iser_cleanup_handler(cma_id, true); iser_conn->ib_conn.cma_id = NULL; ret = 1; break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: iser_cleanup_handler(cma_id, false); break; default: iser_err("Unexpected RDMA CM event (%d)\n", event->event); break; } mutex_unlock(&iser_conn->state_mutex); return ret; } void iser_conn_init(struct iser_conn *iser_conn) { iser_conn->state = ISER_CONN_INIT; iser_conn->ib_conn.post_recv_buf_count = 0; atomic_set(&iser_conn->ib_conn.post_send_buf_count, 0); init_completion(&iser_conn->stop_completion); init_completion(&iser_conn->ib_completion); init_completion(&iser_conn->up_completion); INIT_LIST_HEAD(&iser_conn->conn_list); spin_lock_init(&iser_conn->ib_conn.lock); mutex_init(&iser_conn->state_mutex); } /** * starts the process of connecting to the target * sleeps until the connection is established or rejected */ int iser_connect(struct iser_conn *iser_conn, struct sockaddr *src_addr, struct sockaddr *dst_addr, int non_blocking) { struct ib_conn *ib_conn = &iser_conn->ib_conn; int err = 0; mutex_lock(&iser_conn->state_mutex); sprintf(iser_conn->name, "%pISp", dst_addr); iser_info("connecting to: %s\n", iser_conn->name); /* the device is known only --after-- address resolution */ ib_conn->device = NULL; iser_conn->state = ISER_CONN_PENDING; ib_conn->cma_id = rdma_create_id(iser_cma_handler, (void *)iser_conn, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(ib_conn->cma_id)) { err = PTR_ERR(ib_conn->cma_id); iser_err("rdma_create_id failed: %d\n", err); goto id_failure; } err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); if (err) { iser_err("rdma_resolve_addr failed: %d\n", err); goto addr_failure; } if (!non_blocking) { wait_for_completion_interruptible(&iser_conn->up_completion); if (iser_conn->state != ISER_CONN_UP) { err = -EIO; goto connect_failure; } } mutex_unlock(&iser_conn->state_mutex); mutex_lock(&ig.connlist_mutex); list_add(&iser_conn->conn_list, &ig.connlist); mutex_unlock(&ig.connlist_mutex); return 0; id_failure: ib_conn->cma_id = NULL; addr_failure: iser_conn->state = ISER_CONN_DOWN; connect_failure: mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); return err; } /** * iser_reg_page_vec - Register physical memory * * returns: 0 on success, errno code on failure */ int iser_reg_page_vec(struct ib_conn *ib_conn, struct iser_page_vec *page_vec, struct iser_mem_reg *mem_reg) { struct ib_pool_fmr *mem; u64 io_addr; u64 *page_list; int status; page_list = page_vec->pages; io_addr = page_list[0]; mem = ib_fmr_pool_map_phys(ib_conn->fmr.pool, page_list, page_vec->length, io_addr); if (IS_ERR(mem)) { status = (int)PTR_ERR(mem); iser_err("ib_fmr_pool_map_phys failed: %d\n", status); return status; } mem_reg->lkey = mem->fmr->lkey; mem_reg->rkey = mem->fmr->rkey; mem_reg->len = page_vec->length * SIZE_4K; mem_reg->va = io_addr; mem_reg->is_mr = 1; mem_reg->mem_h = (void *)mem; mem_reg->va += page_vec->offset; mem_reg->len = page_vec->data_size; iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, " "entry[0]: (0x%08lx,%ld)] -> " "[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n", page_vec, page_vec->length, (unsigned long)page_vec->pages[0], (unsigned long)page_vec->data_size, (unsigned int)mem_reg->lkey, mem_reg->mem_h, (unsigned long)mem_reg->va, (unsigned long)mem_reg->len); return 0; } /** * Unregister (previosuly registered using FMR) memory. * If memory is non-FMR does nothing. */ void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; int ret; if (!reg->is_mr) return; iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h); ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h); if (ret) iser_err("ib_fmr_pool_unmap failed %d\n", ret); reg->mem_h = NULL; } void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; struct iser_conn *iser_conn = iser_task->iser_conn; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct fast_reg_descriptor *desc = reg->mem_h; if (!reg->is_mr) return; reg->mem_h = NULL; reg->is_mr = 0; spin_lock_bh(&ib_conn->lock); list_add_tail(&desc->list, &ib_conn->fastreg.pool); spin_unlock_bh(&ib_conn->lock); } int iser_post_recvl(struct iser_conn *iser_conn) { struct ib_recv_wr rx_wr, *rx_wr_failed; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct ib_sge sge; int ib_ret; sge.addr = iser_conn->login_resp_dma; sge.length = ISER_RX_LOGIN_SIZE; sge.lkey = ib_conn->device->mr->lkey; rx_wr.wr_id = (unsigned long)iser_conn->login_resp_buf; rx_wr.sg_list = &sge; rx_wr.num_sge = 1; rx_wr.next = NULL; ib_conn->post_recv_buf_count++; ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); if (ib_ret) { iser_err("ib_post_recv failed ret=%d\n", ib_ret); ib_conn->post_recv_buf_count--; } return ib_ret; } int iser_post_recvm(struct iser_conn *iser_conn, int count) { struct ib_recv_wr *rx_wr, *rx_wr_failed; int i, ib_ret; struct ib_conn *ib_conn = &iser_conn->ib_conn; unsigned int my_rx_head = iser_conn->rx_desc_head; struct iser_rx_desc *rx_desc; for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { rx_desc = &iser_conn->rx_descs[my_rx_head]; rx_wr->wr_id = (unsigned long)rx_desc; rx_wr->sg_list = &rx_desc->rx_sg; rx_wr->num_sge = 1; rx_wr->next = rx_wr + 1; my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; } rx_wr--; rx_wr->next = NULL; /* mark end of work requests list */ ib_conn->post_recv_buf_count += count; ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); if (ib_ret) { iser_err("ib_post_recv failed ret=%d\n", ib_ret); ib_conn->post_recv_buf_count -= count; } else iser_conn->rx_desc_head = my_rx_head; return ib_ret; } /** * iser_start_send - Initiate a Send DTO operation * * returns 0 on success, -1 on failure */ int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc) { int ib_ret; struct ib_send_wr send_wr, *send_wr_failed; ib_dma_sync_single_for_device(ib_conn->device->ib_device, tx_desc->dma_addr, ISER_HEADERS_LEN, DMA_TO_DEVICE); send_wr.next = NULL; send_wr.wr_id = (unsigned long)tx_desc; send_wr.sg_list = tx_desc->tx_sg; send_wr.num_sge = tx_desc->num_sge; send_wr.opcode = IB_WR_SEND; send_wr.send_flags = IB_SEND_SIGNALED; atomic_inc(&ib_conn->post_send_buf_count); ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed); if (ib_ret) { iser_err("ib_post_send failed, ret:%d\n", ib_ret); atomic_dec(&ib_conn->post_send_buf_count); } return ib_ret; } /** * iser_handle_comp_error() - Handle error completion * @desc: iser TX descriptor * @ib_conn: connection RDMA resources * @wc: work completion * * Notes: We may handle a FLUSH error completion and in this case * we only cleanup in case TX type was DATAOUT. For non-FLUSH * error completion we should also notify iscsi layer that * connection is failed (in case we passed bind stage). */ static void iser_handle_comp_error(struct iser_tx_desc *desc, struct ib_conn *ib_conn, struct ib_wc *wc) { struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, ib_conn); if (wc->status != IB_WC_WR_FLUSH_ERR) if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); if (desc && desc->type == ISCSI_TX_DATAOUT) kmem_cache_free(ig.desc_cache, desc); } static int iser_drain_tx_cq(struct iser_comp *comp) { struct ib_cq *cq = comp->tx_cq; struct ib_wc wc; struct iser_tx_desc *tx_desc; struct ib_conn *ib_conn; int completed_tx = 0; while (ib_poll_cq(cq, 1, &wc) == 1) { tx_desc = (struct iser_tx_desc *) (unsigned long) wc.wr_id; ib_conn = wc.qp->qp_context; if (wc.status == IB_WC_SUCCESS) { if (wc.opcode == IB_WC_SEND) iser_snd_completion(tx_desc, ib_conn); else iser_err("expected opcode %d got %d\n", IB_WC_SEND, wc.opcode); } else { iser_err("tx id %llx status %d vend_err %x\n", wc.wr_id, wc.status, wc.vendor_err); if (wc.wr_id != ISER_FASTREG_LI_WRID) { atomic_dec(&ib_conn->post_send_buf_count); iser_handle_comp_error(tx_desc, ib_conn, &wc); } } completed_tx++; } return completed_tx; } static void iser_cq_tasklet_fn(unsigned long data) { struct iser_comp *comp = (struct iser_comp *)data; struct ib_cq *cq = comp->rx_cq; struct ib_wc wc; struct iser_rx_desc *desc; unsigned long xfer_len; struct ib_conn *ib_conn; int completed_tx, completed_rx = 0; /* First do tx drain, so in a case where we have rx flushes and a successful * tx completion we will still go through completion error handling. */ completed_tx = iser_drain_tx_cq(comp); while (ib_poll_cq(cq, 1, &wc) == 1) { desc = (struct iser_rx_desc *) (unsigned long) wc.wr_id; BUG_ON(desc == NULL); ib_conn = wc.qp->qp_context; if (wc.status == IB_WC_SUCCESS) { if (wc.opcode == IB_WC_RECV) { xfer_len = (unsigned long)wc.byte_len; iser_rcv_completion(desc, xfer_len, ib_conn); } else iser_err("expected opcode %d got %d\n", IB_WC_RECV, wc.opcode); } else { if (wc.status != IB_WC_WR_FLUSH_ERR) iser_err("rx id %llx status %d vend_err %x\n", wc.wr_id, wc.status, wc.vendor_err); ib_conn->post_recv_buf_count--; iser_handle_comp_error(NULL, ib_conn, &wc); } completed_rx++; if (!(completed_rx & 63)) completed_tx += iser_drain_tx_cq(comp); if (completed_rx >= iser_cq_poll_limit) break; } /* #warning "it is assumed here that arming CQ only once its empty" * * " would not cause interrupts to be missed" */ ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); iser_dbg("got %d rx %d tx completions\n", completed_rx, completed_tx); } static void iser_cq_callback(struct ib_cq *cq, void *cq_context) { struct iser_comp *comp = cq_context; tasklet_schedule(&comp->tasklet); } u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir, sector_t *sector) { struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; struct fast_reg_descriptor *desc = reg->mem_h; unsigned long sector_size = iser_task->sc->device->sector_size; struct ib_mr_status mr_status; int ret; if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) { desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; ret = ib_check_mr_status(desc->pi_ctx->sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); if (ret) { pr_err("ib_check_mr_status failed, ret %d\n", ret); goto err; } if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { sector_t sector_off = mr_status.sig_err.sig_err_offset; do_div(sector_off, sector_size + 8); *sector = scsi_get_lba(iser_task->sc) + sector_off; pr_err("PI error found type %d at sector %llx " "expected %x vs actual %x\n", mr_status.sig_err.err_type, (unsigned long long)*sector, mr_status.sig_err.expected, mr_status.sig_err.actual); switch (mr_status.sig_err.err_type) { case IB_SIG_BAD_GUARD: return 0x1; case IB_SIG_BAD_REFTAG: return 0x3; case IB_SIG_BAD_APPTAG: return 0x2; } } } return 0; err: /* Not alot we can do here, return ambiguous guard error */ return 0x1; }