/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include "cxgb4.h" #include "t4_regs.h" #include "t4_values.h" #include "t4fw_api.h" #include "cxgb4_debugfs.h" #include "clip_tbl.h" #include "l2t.h" #include "cudbg_if.h" #include "cudbg_lib_common.h" #include "cudbg_entity.h" #include "cudbg_lib.h" #include "cxgb4_tc_mqprio.h" /* generic seq_file support for showing a table of size rows x width. */ static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos) { pos -= tb->skip_first; return pos >= tb->rows ? NULL : &tb->data[pos * tb->width]; } static void *seq_tab_start(struct seq_file *seq, loff_t *pos) { struct seq_tab *tb = seq->private; if (tb->skip_first && *pos == 0) return SEQ_START_TOKEN; return seq_tab_get_idx(tb, *pos); } static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos) { v = seq_tab_get_idx(seq->private, *pos + 1); ++(*pos); return v; } static void seq_tab_stop(struct seq_file *seq, void *v) { } static int seq_tab_show(struct seq_file *seq, void *v) { const struct seq_tab *tb = seq->private; return tb->show(seq, v, ((char *)v - tb->data) / tb->width); } static const struct seq_operations seq_tab_ops = { .start = seq_tab_start, .next = seq_tab_next, .stop = seq_tab_stop, .show = seq_tab_show }; struct seq_tab *seq_open_tab(struct file *f, unsigned int rows, unsigned int width, unsigned int have_header, int (*show)(struct seq_file *seq, void *v, int i)) { struct seq_tab *p; p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width); if (p) { p->show = show; p->rows = rows; p->width = width; p->skip_first = have_header != 0; } return p; } /* Trim the size of a seq_tab to the supplied number of rows. The operation is * irreversible. */ static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows) { if (new_rows > p->rows) return -EINVAL; p->rows = new_rows; return 0; } static int cim_la_show(struct seq_file *seq, void *v, int idx) { if (v == SEQ_START_TOKEN) seq_puts(seq, "Status Data PC LS0Stat LS0Addr " " LS0Data\n"); else { const u32 *p = v; seq_printf(seq, " %02x %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], p[6], p[7]); } return 0; } static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "Status Data PC\n"); } else { const u32 *p = v; seq_printf(seq, " %02x %08x %08x\n", p[5] & 0xff, p[6], p[7]); seq_printf(seq, " %02x %02x%06x %02x%06x\n", (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, p[4] & 0xff, p[5] >> 8); seq_printf(seq, " %02x %x%07x %x%07x\n", (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); } return 0; } static int cim_la_show_t6(struct seq_file *seq, void *v, int idx) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "Status Inst Data PC LS0Stat " "LS0Addr LS0Data LS1Stat LS1Addr LS1Data\n"); } else { const u32 *p = v; seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n", (p[9] >> 16) & 0xff, /* Status */ p[9] & 0xffff, p[8] >> 16, /* Inst */ p[8] & 0xffff, p[7] >> 16, /* Data */ p[7] & 0xffff, p[6] >> 16, /* PC */ p[2], p[1], p[0], /* LS0 Stat, Addr and Data */ p[5], p[4], p[3]); /* LS1 Stat, Addr and Data */ } return 0; } static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "Status Inst Data PC\n"); } else { const u32 *p = v; seq_printf(seq, " %02x %08x %08x %08x\n", p[3] & 0xff, p[2], p[1], p[0]); seq_printf(seq, " %02x %02x%06x %02x%06x %02x%06x\n", (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x\n", (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, p[6] >> 16); } return 0; } static int cim_la_open(struct inode *inode, struct file *file) { int ret; unsigned int cfg; struct seq_tab *p; struct adapter *adap = inode->i_private; ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); if (ret) return ret; if (is_t6(adap->params.chip)) { /* +1 to account for integer division of CIMLA_SIZE/10 */ p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1, 10 * sizeof(u32), 1, cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_pc_t6 : cim_la_show_t6); } else { p = seq_open_tab(file, adap->params.cim_la_size / 8, 8 * sizeof(u32), 1, cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 : cim_la_show); } if (!p) return -ENOMEM; ret = t4_cim_read_la(adap, (u32 *)p->data, NULL); if (ret) seq_release_private(inode, file); return ret; } static const struct file_operations cim_la_fops = { .owner = THIS_MODULE, .open = cim_la_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; static int cim_pif_la_show(struct seq_file *seq, void *v, int idx) { const u32 *p = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Cntl ID DataBE Addr Data\n"); } else if (idx < CIM_PIFLA_SIZE) { seq_printf(seq, " %02x %02x %04x %08x %08x%08x%08x%08x\n", (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); } else { if (idx == CIM_PIFLA_SIZE) seq_puts(seq, "\nCntl ID Data\n"); seq_printf(seq, " %02x %02x %08x%08x%08x%08x\n", (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); } return 0; } static int cim_pif_la_open(struct inode *inode, struct file *file) { struct seq_tab *p; struct adapter *adap = inode->i_private; p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1, cim_pif_la_show); if (!p) return -ENOMEM; t4_cim_read_pif_la(adap, (u32 *)p->data, (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL); return 0; } static const struct file_operations cim_pif_la_fops = { .owner = THIS_MODULE, .open = cim_pif_la_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; static int cim_ma_la_show(struct seq_file *seq, void *v, int idx) { const u32 *p = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, "\n"); } else if (idx < CIM_MALA_SIZE) { seq_printf(seq, "%02x%08x%08x%08x%08x\n", p[4], p[3], p[2], p[1], p[0]); } else { if (idx == CIM_MALA_SIZE) seq_puts(seq, "\nCnt ID Tag UE Data RDY VLD\n"); seq_printf(seq, "%3u %2u %x %u %08x%08x %u %u\n", (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, (p[1] >> 2) | ((p[2] & 3) << 30), (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, p[0] & 1); } return 0; } static int cim_ma_la_open(struct inode *inode, struct file *file) { struct seq_tab *p; struct adapter *adap = inode->i_private; p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1, cim_ma_la_show); if (!p) return -ENOMEM; t4_cim_read_ma_la(adap, (u32 *)p->data, (u32 *)p->data + 5 * CIM_MALA_SIZE); return 0; } static const struct file_operations cim_ma_la_fops = { .owner = THIS_MODULE, .open = cim_ma_la_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; static int cim_qcfg_show(struct seq_file *seq, void *v) { static const char * const qname[] = { "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", "SGE1-RX" }; int i; struct adapter *adap = seq->private; u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))]; u16 thres[CIM_NUM_IBQ]; u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr; u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5]; u32 *p = stat; int cim_num_obq = is_t4(adap->params.chip) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5; i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A : UP_IBQ_0_SHADOW_RDADDR_A, ARRAY_SIZE(stat), stat); if (!i) { if (is_t4(adap->params.chip)) { i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A, ARRAY_SIZE(obq_wr_t4), obq_wr_t4); wr = obq_wr_t4; } else { i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A, ARRAY_SIZE(obq_wr_t5), obq_wr_t5); wr = obq_wr_t5; } } if (i) return i; t4_read_cimq_cfg(adap, base, size, thres); seq_printf(seq, " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail\n"); for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) seq_printf(seq, "%7s %5x %5u %5u %6x %4x %4u %4u %5u\n", qname[i], base[i], size[i], thres[i], IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]), QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), QUEREMFLITS_G(p[2]) * 16); for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2) seq_printf(seq, "%7s %5x %5u %12x %4x %4u %4u %5u\n", qname[i], base[i], size[i], QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i], QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), QUEREMFLITS_G(p[2]) * 16); return 0; } DEFINE_SHOW_ATTRIBUTE(cim_qcfg); static int cimq_show(struct seq_file *seq, void *v, int idx) { const u32 *p = v; seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1], p[2], p[3]); return 0; } static int cim_ibq_open(struct inode *inode, struct file *file) { int ret; struct seq_tab *p; unsigned int qid = (uintptr_t)inode->i_private & 7; struct adapter *adap = inode->i_private - qid; p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); if (!p) return -ENOMEM; ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4); if (ret < 0) seq_release_private(inode, file); else ret = 0; return ret; } static const struct file_operations cim_ibq_fops = { .owner = THIS_MODULE, .open = cim_ibq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; static int cim_obq_open(struct inode *inode, struct file *file) { int ret; struct seq_tab *p; unsigned int qid = (uintptr_t)inode->i_private & 7; struct adapter *adap = inode->i_private - qid; p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); if (!p) return -ENOMEM; ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4); if (ret < 0) { seq_release_private(inode, file); } else { seq_tab_trim(p, ret / 4); ret = 0; } return ret; } static const struct file_operations cim_obq_fops = { .owner = THIS_MODULE, .open = cim_obq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; struct field_desc { const char *name; unsigned int start; unsigned int width; }; static void field_desc_show(struct seq_file *seq, u64 v, const struct field_desc *p) { char buf[32]; int line_size = 0; while (p->name) { u64 mask = (1ULL << p->width) - 1; int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name, ((unsigned long long)v >> p->start) & mask); if (line_size + len >= 79) { line_size = 8; seq_puts(seq, "\n "); } seq_printf(seq, "%s ", buf); line_size += len + 1; p++; } seq_putc(seq, '\n'); } static struct field_desc tp_la0[] = { { "RcfOpCodeOut", 60, 4 }, { "State", 56, 4 }, { "WcfState", 52, 4 }, { "RcfOpcSrcOut", 50, 2 }, { "CRxError", 49, 1 }, { "ERxError", 48, 1 }, { "SanityFailed", 47, 1 }, { "SpuriousMsg", 46, 1 }, { "FlushInputMsg", 45, 1 }, { "FlushInputCpl", 44, 1 }, { "RssUpBit", 43, 1 }, { "RssFilterHit", 42, 1 }, { "Tid", 32, 10 }, { "InitTcb", 31, 1 }, { "LineNumber", 24, 7 }, { "Emsg", 23, 1 }, { "EdataOut", 22, 1 }, { "Cmsg", 21, 1 }, { "CdataOut", 20, 1 }, { "EreadPdu", 19, 1 }, { "CreadPdu", 18, 1 }, { "TunnelPkt", 17, 1 }, { "RcfPeerFin", 16, 1 }, { "RcfReasonOut", 12, 4 }, { "TxCchannel", 10, 2 }, { "RcfTxChannel", 8, 2 }, { "RxEchannel", 6, 2 }, { "RcfRxChannel", 5, 1 }, { "RcfDataOutSrdy", 4, 1 }, { "RxDvld", 3, 1 }, { "RxOoDvld", 2, 1 }, { "RxCongestion", 1, 1 }, { "TxCongestion", 0, 1 }, { NULL } }; static int tp_la_show(struct seq_file *seq, void *v, int idx) { const u64 *p = v; field_desc_show(seq, *p, tp_la0); return 0; } static int tp_la_show2(struct seq_file *seq, void *v, int idx) { const u64 *p = v; if (idx) seq_putc(seq, '\n'); field_desc_show(seq, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(seq, p[1], tp_la0); return 0; } static int tp_la_show3(struct seq_file *seq, void *v, int idx) { static struct field_desc tp_la1[] = { { "CplCmdIn", 56, 8 }, { "CplCmdOut", 48, 8 }, { "ESynOut", 47, 1 }, { "EAckOut", 46, 1 }, { "EFinOut", 45, 1 }, { "ERstOut", 44, 1 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; static struct field_desc tp_la2[] = { { "CplCmdIn", 56, 8 }, { "MpsVfVld", 55, 1 }, { "MpsPf", 52, 3 }, { "MpsVf", 44, 8 }, { "SynIn", 43, 1 }, { "AckIn", 42, 1 }, { "FinIn", 41, 1 }, { "RstIn", 40, 1 }, { "DataIn", 39, 1 }, { "DataInVld", 38, 1 }, { "PadIn", 37, 1 }, { "RxBufEmpty", 36, 1 }, { "RxDdp", 35, 1 }, { "RxFbCongestion", 34, 1 }, { "TxFbCongestion", 33, 1 }, { "TxPktSumSrdy", 32, 1 }, { "RcfUlpType", 28, 4 }, { "Eread", 27, 1 }, { "Ebypass", 26, 1 }, { "Esave", 25, 1 }, { "Static0", 24, 1 }, { "Cread", 23, 1 }, { "Cbypass", 22, 1 }, { "Csave", 21, 1 }, { "CPktOut", 20, 1 }, { "RxPagePoolFull", 18, 2 }, { "RxLpbkPkt", 17, 1 }, { "TxLpbkPkt", 16, 1 }, { "RxVfValid", 15, 1 }, { "SynLearned", 14, 1 }, { "SetDelEntry", 13, 1 }, { "SetInvEntry", 12, 1 }, { "CpcmdDvld", 11, 1 }, { "CpcmdSave", 10, 1 }, { "RxPstructsFull", 8, 2 }, { "EpcmdDvld", 7, 1 }, { "EpcmdFlush", 6, 1 }, { "EpcmdTrimPrefix", 5, 1 }, { "EpcmdTrimPostfix", 4, 1 }, { "ERssIp4Pkt", 3, 1 }, { "ERssIp6Pkt", 2, 1 }, { "ERssTcpUdpPkt", 1, 1 }, { "ERssFceFipPkt", 0, 1 }, { NULL } }; const u64 *p = v; if (idx) seq_putc(seq, '\n'); field_desc_show(seq, p[0], tp_la0); if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1); return 0; } static int tp_la_open(struct inode *inode, struct file *file) { struct seq_tab *p; struct adapter *adap = inode->i_private; switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) { case 2: p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, tp_la_show2); break; case 3: p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, tp_la_show3); break; default: p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show); } if (!p) return -ENOMEM; t4_tp_read_la(adap, (u64 *)p->data, NULL); return 0; } static ssize_t tp_la_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int err; char s[32]; unsigned long val; size_t size = min(sizeof(s) - 1, count); struct adapter *adap = file_inode(file)->i_private; if (copy_from_user(s, buf, size)) return -EFAULT; s[size] = '\0'; err = kstrtoul(s, 0, &val); if (err) return err; if (val > 0xffff) return -EINVAL; adap->params.tp.la_mask = val << 16; t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U, adap->params.tp.la_mask); return count; } static const struct file_operations tp_la_fops = { .owner = THIS_MODULE, .open = tp_la_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, .write = tp_la_write }; static int ulprx_la_show(struct seq_file *seq, void *v, int idx) { const u32 *p = v; if (v == SEQ_START_TOKEN) seq_puts(seq, " Pcmd Type Message" " Data\n"); else seq_printf(seq, "%08x%08x %4x %08x %08x%08x%08x%08x\n", p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); return 0; } static int ulprx_la_open(struct inode *inode, struct file *file) { struct seq_tab *p; struct adapter *adap = inode->i_private; p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1, ulprx_la_show); if (!p) return -ENOMEM; t4_ulprx_read_la(adap, (u32 *)p->data); return 0; } static const struct file_operations ulprx_la_fops = { .owner = THIS_MODULE, .open = ulprx_la_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; /* Show the PM memory stats. These stats include: * * TX: * Read: memory read operation * Write Bypass: cut-through * Bypass + mem: cut-through and save copy * * RX: * Read: memory read * Write Bypass: cut-through * Flush: payload trim or drop */ static int pm_stats_show(struct seq_file *seq, void *v) { static const char * const tx_pm_stats[] = { "Read:", "Write bypass:", "Write mem:", "Bypass + mem:" }; static const char * const rx_pm_stats[] = { "Read:", "Write bypass:", "Write mem:", "Flush:" }; int i; u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS]; u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS]; struct adapter *adap = seq->private; t4_pmtx_get_stats(adap, tx_cnt, tx_cyc); t4_pmrx_get_stats(adap, rx_cnt, rx_cyc); seq_printf(seq, "%13s %10s %20s\n", " ", "Tx pcmds", "Tx bytes"); for (i = 0; i < PM_NSTATS - 1; i++) seq_printf(seq, "%-13s %10u %20llu\n", tx_pm_stats[i], tx_cnt[i], tx_cyc[i]); seq_printf(seq, "%13s %10s %20s\n", " ", "Rx pcmds", "Rx bytes"); for (i = 0; i < PM_NSTATS - 1; i++) seq_printf(seq, "%-13s %10u %20llu\n", rx_pm_stats[i], rx_cnt[i], rx_cyc[i]); if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { /* In T5 the granularity of the total wait is too fine. * It is not useful as it reaches the max value too fast. * Hence display this Input FIFO wait for T6 onwards. */ seq_printf(seq, "%13s %10s %20s\n", " ", "Total wait", "Total Occupancy"); seq_printf(seq, "Tx FIFO wait %10u %20llu\n", tx_cnt[i], tx_cyc[i]); seq_printf(seq, "Rx FIFO wait %10u %20llu\n", rx_cnt[i], rx_cyc[i]); /* Skip index 6 as there is nothing useful ihere */ i += 2; /* At index 7, a new stat for read latency (count, total wait) * is added. */ seq_printf(seq, "%13s %10s %20s\n", " ", "Reads", "Total wait"); seq_printf(seq, "Tx latency %10u %20llu\n", tx_cnt[i], tx_cyc[i]); seq_printf(seq, "Rx latency %10u %20llu\n", rx_cnt[i], rx_cyc[i]); } return 0; } static int pm_stats_open(struct inode *inode, struct file *file) { return single_open(file, pm_stats_show, inode->i_private); } static ssize_t pm_stats_clear(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct adapter *adap = file_inode(file)->i_private; t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0); t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0); return count; } static const struct file_operations pm_stats_debugfs_fops = { .owner = THIS_MODULE, .open = pm_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = pm_stats_clear }; static int tx_rate_show(struct seq_file *seq, void *v) { u64 nrate[NCHAN], orate[NCHAN]; struct adapter *adap = seq->private; t4_get_chan_txrate(adap, nrate, orate); if (adap->params.arch.nchan == NCHAN) { seq_puts(seq, " channel 0 channel 1 " "channel 2 channel 3\n"); seq_printf(seq, "NIC B/s: %10llu %10llu %10llu %10llu\n", (unsigned long long)nrate[0], (unsigned long long)nrate[1], (unsigned long long)nrate[2], (unsigned long long)nrate[3]); seq_printf(seq, "Offload B/s: %10llu %10llu %10llu %10llu\n", (unsigned long long)orate[0], (unsigned long long)orate[1], (unsigned long long)orate[2], (unsigned long long)orate[3]); } else { seq_puts(seq, " channel 0 channel 1\n"); seq_printf(seq, "NIC B/s: %10llu %10llu\n", (unsigned long long)nrate[0], (unsigned long long)nrate[1]); seq_printf(seq, "Offload B/s: %10llu %10llu\n", (unsigned long long)orate[0], (unsigned long long)orate[1]); } return 0; } DEFINE_SHOW_ATTRIBUTE(tx_rate); static int cctrl_tbl_show(struct seq_file *seq, void *v) { static const char * const dec_fac[] = { "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", "0.9375" }; int i; u16 (*incr)[NCCTRL_WIN]; struct adapter *adap = seq->private; incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL); if (!incr) return -ENOMEM; t4_read_cong_tbl(adap, incr); for (i = 0; i < NCCTRL_WIN; ++i) { seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], incr[5][i], incr[6][i], incr[7][i]); seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", incr[8][i], incr[9][i], incr[10][i], incr[11][i], incr[12][i], incr[13][i], incr[14][i], incr[15][i], adap->params.a_wnd[i], dec_fac[adap->params.b_wnd[i]]); } kfree(incr); return 0; } DEFINE_SHOW_ATTRIBUTE(cctrl_tbl); /* Format a value in a unit that differs from the value's native unit by the * given factor. */ static char *unit_conv(char *buf, size_t len, unsigned int val, unsigned int factor) { unsigned int rem = val % factor; if (rem == 0) { snprintf(buf, len, "%u", val / factor); } else { while (rem % 10 == 0) rem /= 10; snprintf(buf, len, "%u.%u", val / factor, rem); } return buf; } static int clk_show(struct seq_file *seq, void *v) { char buf[32]; struct adapter *adap = seq->private; unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk; /* in ps */ u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); unsigned int tre = TIMERRESOLUTION_G(res); unsigned int dack_re = DELAYEDACKRESOLUTION_G(res); unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */ seq_printf(seq, "Core clock period: %s ns\n", unit_conv(buf, sizeof(buf), cclk_ps, 1000)); seq_printf(seq, "TP timer tick: %s us\n", unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000)); seq_printf(seq, "TCP timestamp tick: %s us\n", unit_conv(buf, sizeof(buf), (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000)); seq_printf(seq, "DACK tick: %s us\n", unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000)); seq_printf(seq, "DACK timer: %u us\n", ((cclk_ps << dack_re) / 1000000) * t4_read_reg(adap, TP_DACK_TIMER_A)); seq_printf(seq, "Retransmit min: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A)); seq_printf(seq, "Retransmit max: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A)); seq_printf(seq, "Persist timer min: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A)); seq_printf(seq, "Persist timer max: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A)); seq_printf(seq, "Keepalive idle timer: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A)); seq_printf(seq, "Keepalive interval: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A)); seq_printf(seq, "Initial SRTT: %llu us\n", tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A))); seq_printf(seq, "FINWAIT2 timer: %llu us\n", tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A)); return 0; } DEFINE_SHOW_ATTRIBUTE(clk); /* Firmware Device Log dump. */ static const char * const devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; static const char * const devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_CF] = "CF", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" }; /* Information gathered by Device Log Open routine for the display routine. */ struct devlog_info { unsigned int nentries; /* number of entries in log[] */ unsigned int first; /* first [temporal] entry in log[] */ struct fw_devlog_e log[]; /* Firmware Device Log */ }; /* Dump a Firmaware Device Log entry. */ static int devlog_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_printf(seq, "%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); else { struct devlog_info *dinfo = seq->private; int fidx = (uintptr_t)v - 2; unsigned long index; struct fw_devlog_e *e; /* Get a pointer to the log entry to display. Skip unused log * entries. */ index = dinfo->first + fidx; if (index >= dinfo->nentries) index -= dinfo->nentries; e = &dinfo->log[index]; if (e->timestamp == 0) return 0; /* Print the message. This depends on the firmware using * exactly the same formating strings as the kernel so we may * eventually have to put a format interpreter in here ... */ seq_printf(seq, "%10d %15llu %8s %8s ", be32_to_cpu(e->seqno), be64_to_cpu(e->timestamp), (e->level < ARRAY_SIZE(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < ARRAY_SIZE(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); seq_printf(seq, e->fmt, be32_to_cpu(e->params[0]), be32_to_cpu(e->params[1]), be32_to_cpu(e->params[2]), be32_to_cpu(e->params[3]), be32_to_cpu(e->params[4]), be32_to_cpu(e->params[5]), be32_to_cpu(e->params[6]), be32_to_cpu(e->params[7])); } return 0; } /* Sequential File Operations for Device Log. */ static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos) { if (pos > dinfo->nentries) return NULL; return (void *)(uintptr_t)(pos + 1); } static void *devlog_start(struct seq_file *seq, loff_t *pos) { struct devlog_info *dinfo = seq->private; return (*pos ? devlog_get_idx(dinfo, *pos) : SEQ_START_TOKEN); } static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos) { struct devlog_info *dinfo = seq->private; (*pos)++; return devlog_get_idx(dinfo, *pos); } static void devlog_stop(struct seq_file *seq, void *v) { } static const struct seq_operations devlog_seq_ops = { .start = devlog_start, .next = devlog_next, .stop = devlog_stop, .show = devlog_show }; /* Set up for reading the firmware's device log. We read the entire log here * and then display it incrementally in devlog_show(). */ static int devlog_open(struct inode *inode, struct file *file) { struct adapter *adap = inode->i_private; struct devlog_params *dparams = &adap->params.devlog; struct devlog_info *dinfo; unsigned int index; u32 fseqno; int ret; /* If we don't know where the log is we can't do anything. */ if (dparams->start == 0) return -ENXIO; /* Allocate the space to read in the firmware's device log and set up * for the iterated call to our display function. */ dinfo = __seq_open_private(file, &devlog_seq_ops, sizeof(*dinfo) + dparams->size); if (!dinfo) return -ENOMEM; /* Record the basic log buffer information and read in the raw log. */ dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e)); dinfo->first = 0; spin_lock(&adap->win0_lock); ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype, dparams->start, dparams->size, (__be32 *)dinfo->log, T4_MEMORY_READ); spin_unlock(&adap->win0_lock); if (ret) { seq_release_private(inode, file); return ret; } /* Find the earliest (lowest Sequence Number) log entry in the * circular Device Log. */ for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) { struct fw_devlog_e *e = &dinfo->log[index]; __u32 seqno; if (e->timestamp == 0) continue; seqno = be32_to_cpu(e->seqno); if (seqno < fseqno) { fseqno = seqno; dinfo->first = index; } } return 0; } static const struct file_operations devlog_fops = { .owner = THIS_MODULE, .open = devlog_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; /* Show Firmware Mailbox Command/Reply Log * * Note that we don't do any locking when dumping the Firmware Mailbox Log so * it's possible that we can catch things during a log update and therefore * see partially corrupted log entries. But it's probably Good Enough(tm). * If we ever decide that we want to make sure that we're dumping a coherent * log, we'd need to perform locking in the mailbox logging and in * mboxlog_open() where we'd need to grab the entire mailbox log in one go * like we do for the Firmware Device Log. */ static int mboxlog_show(struct seq_file *seq, void *v) { struct adapter *adapter = seq->private; struct mbox_cmd_log *log = adapter->mbox_log; struct mbox_cmd *entry; int entry_idx, i; if (v == SEQ_START_TOKEN) { seq_printf(seq, "%10s %15s %5s %5s %s\n", "Seq#", "Tstamp", "Atime", "Etime", "Command/Reply"); return 0; } entry_idx = log->cursor + ((uintptr_t)v - 2); if (entry_idx >= log->size) entry_idx -= log->size; entry = mbox_cmd_log_entry(log, entry_idx); /* skip over unused entries */ if (entry->timestamp == 0) return 0; seq_printf(seq, "%10u %15llu %5d %5d", entry->seqno, entry->timestamp, entry->access, entry->execute); for (i = 0; i < MBOX_LEN / 8; i++) { u64 flit = entry->cmd[i]; u32 hi = (u32)(flit >> 32); u32 lo = (u32)flit; seq_printf(seq, " %08x %08x", hi, lo); } seq_puts(seq, "\n"); return 0; } static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) { struct adapter *adapter = seq->private; struct mbox_cmd_log *log = adapter->mbox_log; return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); } static void *mboxlog_start(struct seq_file *seq, loff_t *pos) { return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; } static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return mboxlog_get_idx(seq, *pos); } static void mboxlog_stop(struct seq_file *seq, void *v) { } static const struct seq_operations mboxlog_seq_ops = { .start = mboxlog_start, .next = mboxlog_next, .stop = mboxlog_stop, .show = mboxlog_show }; static int mboxlog_open(struct inode *inode, struct file *file) { int res = seq_open(file, &mboxlog_seq_ops); if (!res) { struct seq_file *seq = file->private_data; seq->private = inode->i_private; } return res; } static const struct file_operations mboxlog_fops = { .owner = THIS_MODULE, .open = mboxlog_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int mbox_show(struct seq_file *seq, void *v) { static const char * const owner[] = { "none", "FW", "driver", "unknown", "" }; int i; unsigned int mbox = (uintptr_t)seq->private & 7; struct adapter *adap = seq->private - mbox; void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); /* For T4 we don't have a shadow copy of the Mailbox Control register. * And since reading that real register causes a side effect of * granting ownership, we're best of simply not reading it at all. */ if (is_t4(adap->params.chip)) { i = 4; /* index of "" */ } else { unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A; void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg); i = MBOWNER_G(readl(ctrl)); } seq_printf(seq, "mailbox owned by %s\n\n", owner[i]); for (i = 0; i < MBOX_LEN; i += 8) seq_printf(seq, "%016llx\n", (unsigned long long)readq(addr + i)); return 0; } static int mbox_open(struct inode *inode, struct file *file) { return single_open(file, mbox_show, inode->i_private); } static ssize_t mbox_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int i; char c = '\n', s[256]; unsigned long long data[8]; const struct inode *ino; unsigned int mbox; struct adapter *adap; void __iomem *addr; void __iomem *ctrl; if (count > sizeof(s) - 1 || !count) return -EINVAL; if (copy_from_user(s, buf, count)) return -EFAULT; s[count] = '\0'; if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0], &data[1], &data[2], &data[3], &data[4], &data[5], &data[6], &data[7], &c) < 8 || c != '\n') return -EINVAL; ino = file_inode(file); mbox = (uintptr_t)ino->i_private & 7; adap = ino->i_private - mbox; addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); ctrl = addr + MBOX_LEN; if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL) return -EBUSY; for (i = 0; i < 8; i++) writeq(data[i], addr + 8 * i); writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl); return count; } static const struct file_operations mbox_debugfs_fops = { .owner = THIS_MODULE, .open = mbox_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = mbox_write }; static int mps_trc_show(struct seq_file *seq, void *v) { int enabled, i; struct trace_params tp; unsigned int trcidx = (uintptr_t)seq->private & 3; struct adapter *adap = seq->private - trcidx; t4_get_trace_filter(adap, &tp, trcidx, &enabled); if (!enabled) { seq_puts(seq, "tracer is disabled\n"); return 0; } if (tp.skip_ofst * 8 >= TRACE_LEN) { dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n"); return -EINVAL; } if (tp.port < 8) { i = adap->chan_map[tp.port & 3]; if (i >= MAX_NPORTS) { dev_err(adap->pdev_dev, "tracer %u is assigned " "to non-existing port\n", trcidx); return -EINVAL; } seq_printf(seq, "tracer is capturing %s %s, ", adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx"); } else seq_printf(seq, "tracer is capturing loopback %d, ", tp.port - 8); seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len, tp.min_len); seq_printf(seq, "packets captured %smatch filter\n", tp.invert ? "do not " : ""); if (tp.skip_ofst) { seq_puts(seq, "filter pattern: "); for (i = 0; i < tp.skip_ofst * 2; i += 2) seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); seq_putc(seq, '/'); for (i = 0; i < tp.skip_ofst * 2; i += 2) seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); seq_puts(seq, "@0\n"); } seq_puts(seq, "filter pattern: "); for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); seq_putc(seq, '/'); for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8); return 0; } static int mps_trc_open(struct inode *inode, struct file *file) { return single_open(file, mps_trc_show, inode->i_private); } static unsigned int xdigit2int(unsigned char c) { return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10; } #define TRC_PORT_NONE 0xff #define TRC_RSS_ENABLE 0x33 #define TRC_RSS_DISABLE 0x13 /* Set an MPS trace filter. Syntax is: * * disable * * to disable tracing, or * * interface qid= [snaplen=] [minlen=] [not] []... * * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one * of the NIC's response qid obtained from sge_qinfo and pattern has the form * * [/][@] * * Up to 2 filter patterns can be specified. If 2 are supplied the first one * must be anchored at 0. An omitted mask is taken as a mask of 1s, an omitted * anchor is taken as 0. */ static ssize_t mps_trc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int i, enable, ret; u32 *data, *mask; struct trace_params tp; const struct inode *ino; unsigned int trcidx; char *s, *p, *word, *end; struct adapter *adap; u32 j; ino = file_inode(file); trcidx = (uintptr_t)ino->i_private & 3; adap = ino->i_private - trcidx; /* Don't accept input more than 1K, can't be anything valid except lots * of whitespace. Well, use less. */ if (count > 1024) return -EFBIG; p = s = kzalloc(count + 1, GFP_USER); if (!s) return -ENOMEM; if (copy_from_user(s, buf, count)) { count = -EFAULT; goto out; } if (s[count - 1] == '\n') s[count - 1] = '\0'; enable = strcmp("disable", s) != 0; if (!enable) goto apply; /* enable or disable trace multi rss filter */ if (adap->trace_rss) t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE); else t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE); memset(&tp, 0, sizeof(tp)); tp.port = TRC_PORT_NONE; i = 0; /* counts pattern nibbles */ while (p) { while (isspace(*p)) p++; word = strsep(&p, " "); if (!*word) break; if (!strncmp(word, "qid=", 4)) { end = (char *)word + 4; ret = kstrtouint(end, 10, &j); if (ret) goto out; if (!adap->trace_rss) { t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j); continue; } switch (trcidx) { case 0: t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j); break; case 1: t4_write_reg(adap, MPS_TRC_FILTER1_RSS_CONTROL_A, j); break; case 2: t4_write_reg(adap, MPS_TRC_FILTER2_RSS_CONTROL_A, j); break; case 3: t4_write_reg(adap, MPS_TRC_FILTER3_RSS_CONTROL_A, j); break; } continue; } if (!strncmp(word, "snaplen=", 8)) { end = (char *)word + 8; ret = kstrtouint(end, 10, &j); if (ret || j > 9600) { inval: count = -EINVAL; goto out; } tp.snap_len = j; continue; } if (!strncmp(word, "minlen=", 7)) { end = (char *)word + 7; ret = kstrtouint(end, 10, &j); if (ret || j > TFMINPKTSIZE_M) goto inval; tp.min_len = j; continue; } if (!strcmp(word, "not")) { tp.invert = !tp.invert; continue; } if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) { if (word[8] < '0' || word[8] > '3' || word[9]) goto inval; tp.port = word[8] - '0' + 8; continue; } if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) { if (word[2] < '0' || word[2] > '3' || word[3]) goto inval; tp.port = word[2] - '0' + 4; if (adap->chan_map[tp.port & 3] >= MAX_NPORTS) goto inval; continue; } if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) { if (word[2] < '0' || word[2] > '3' || word[3]) goto inval; tp.port = word[2] - '0'; if (adap->chan_map[tp.port] >= MAX_NPORTS) goto inval; continue; } if (!isxdigit(*word)) goto inval; /* we have found a trace pattern */ if (i) { /* split pattern */ if (tp.skip_len) /* too many splits */ goto inval; tp.skip_ofst = i / 16; } data = &tp.data[i / 8]; mask = &tp.mask[i / 8]; j = i; while (isxdigit(*word)) { if (i >= TRACE_LEN * 2) { count = -EFBIG; goto out; } *data = (*data << 4) + xdigit2int(*word++); if (++i % 8 == 0) data++; } if (*word == '/') { word++; while (isxdigit(*word)) { if (j >= i) /* mask longer than data */ goto inval; *mask = (*mask << 4) + xdigit2int(*word++); if (++j % 8 == 0) mask++; } if (i != j) /* mask shorter than data */ goto inval; } else { /* no mask, use all 1s */ for ( ; i - j >= 8; j += 8) *mask++ = 0xffffffff; if (i % 8) *mask = (1 << (i % 8) * 4) - 1; } if (*word == '@') { end = (char *)word + 1; ret = kstrtouint(end, 10, &j); if (*end && *end != '\n') goto inval; if (j & 7) /* doesn't start at multiple of 8 */ goto inval; j /= 8; if (j < tp.skip_ofst) /* overlaps earlier pattern */ goto inval; if (j - tp.skip_ofst > 31) /* skip too big */ goto inval; tp.skip_len = j - tp.skip_ofst; } if (i % 8) { *data <<= (8 - i % 8) * 4; *mask <<= (8 - i % 8) * 4; i = (i + 15) & ~15; /* 8-byte align */ } } if (tp.port == TRC_PORT_NONE) goto inval; apply: i = t4_set_trace_filter(adap, &tp, trcidx, enable); if (i) count = i; out: kfree(s); return count; } static const struct file_operations mps_trc_debugfs_fops = { .owner = THIS_MODULE, .open = mps_trc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = mps_trc_write }; static ssize_t flash_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { loff_t pos = *ppos; loff_t avail = file_inode(file)->i_size; struct adapter *adap = file->private_data; if (pos < 0) return -EINVAL; if (pos >= avail) return 0; if (count > avail - pos) count = avail - pos; while (count) { size_t len; int ret, ofst; u8 data[256]; ofst = pos & 3; len = min(count + ofst, sizeof(data)); ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4, (u32 *)data, 1); if (ret) return ret; len -= ofst; if (copy_to_user(buf, data + ofst, len)) return -EFAULT; buf += len; pos += len; count -= len; } count = pos - *ppos; *ppos = pos; return count; } static const struct file_operations flash_debugfs_fops = { .owner = THIS_MODULE, .open = mem_open, .read = flash_read, .llseek = default_llseek, }; static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask) { *mask = x | y; y = (__force u64)cpu_to_be64(y); memcpy(addr, (char *)&y + 2, ETH_ALEN); } static int mps_tcam_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); if (v == SEQ_START_TOKEN) { if (chip_ver > CHELSIO_T5) { seq_puts(seq, "Idx Ethernet address Mask " " VNI Mask IVLAN Vld " "DIP_Hit Lookup Port " "Vld Ports PF VF " "Replication " " P0 P1 P2 P3 ML\n"); } else { if (adap->params.arch.mps_rplc_size > 128) seq_puts(seq, "Idx Ethernet address Mask " "Vld Ports PF VF " "Replication " " P0 P1 P2 P3 ML\n"); else seq_puts(seq, "Idx Ethernet address Mask " "Vld Ports PF VF Replication" " P0 P1 P2 P3 ML\n"); } } else { u64 mask; u8 addr[ETH_ALEN]; bool replicate, dip_hit = false, vlan_vld = false; unsigned int idx = (uintptr_t)v - 2; u64 tcamy, tcamx, val; u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0; u32 rplc[8] = {0}; u8 lookup_type = 0, port_num = 0; u16 ivlan = 0; if (chip_ver > CHELSIO_T5) { /* CtlCmdType - 0: Read, 1: Write * CtlTcamSel - 0: TCAM0, 1: TCAM1 * CtlXYBitSel- 0: Y bit, 1: X bit */ /* Read tcamy */ ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0); if (idx < 256) ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0); else ctl |= CTLTCAMINDEX_V(idx - 256) | CTLTCAMSEL_V(1); t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); tcamy = DMACH_G(val) << 32; tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); lookup_type = DATALKPTYPE_G(data2); /* 0 - Outer header, 1 - Inner header * [71:48] bit locations are overloaded for * outer vs. inner lookup types. */ if (lookup_type && (lookup_type != DATALKPTYPE_M)) { /* Inner header VNI */ vniy = (data2 & DATAVIDH2_F) | (DATAVIDH1_G(data2) << 16) | VIDL_G(val); dip_hit = data2 & DATADIPHIT_F; } else { vlan_vld = data2 & DATAVIDH2_F; ivlan = VIDL_G(val); } port_num = DATAPORTNUM_G(data2); /* Read tcamx. Change the control param */ vnix = 0; ctl |= CTLXYBITSEL_V(1); t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); tcamx = DMACH_G(val) << 32; tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); if (lookup_type && (lookup_type != DATALKPTYPE_M)) { /* Inner header VNI mask */ vnix = (data2 & DATAVIDH2_F) | (DATAVIDH1_G(data2) << 16) | VIDL_G(val); } } else { tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx)); tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx)); } cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx)); cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx)); if (tcamx & tcamy) { seq_printf(seq, "%3u -\n", idx); goto out; } rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0; if (chip_ver > CHELSIO_T5) replicate = (cls_lo & T6_REPLICATE_F); else replicate = (cls_lo & REPLICATE_F); if (replicate) { struct fw_ldst_cmd ldst_cmd; int ret; struct fw_ldst_mps_rplc mps_rplc; u32 ldst_addrspc; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_addrspc = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS); ldst_cmd.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | ldst_addrspc); ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) | FW_LDST_CMD_IDX_V(idx)); ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); if (ret) dev_warn(adap->pdev_dev, "Can't read MPS " "replication map for idx %d: %d\n", idx, -ret); else { mps_rplc = ldst_cmd.u.mps.rplc; rplc[0] = ntohl(mps_rplc.rplc31_0); rplc[1] = ntohl(mps_rplc.rplc63_32); rplc[2] = ntohl(mps_rplc.rplc95_64); rplc[3] = ntohl(mps_rplc.rplc127_96); if (adap->params.arch.mps_rplc_size > 128) { rplc[4] = ntohl(mps_rplc.rplc159_128); rplc[5] = ntohl(mps_rplc.rplc191_160); rplc[6] = ntohl(mps_rplc.rplc223_192); rplc[7] = ntohl(mps_rplc.rplc255_224); } } } tcamxy2valmask(tcamx, tcamy, addr, &mask); if (chip_ver > CHELSIO_T5) { /* Inner header lookup */ if (lookup_type && (lookup_type != DATALKPTYPE_M)) { seq_printf(seq, "%3u %pM %012llx %06x %06x - - %3c 'I' %4x %3c %#x%4u%4d", idx, addr, (unsigned long long)mask, vniy, (vnix | vniy), dip_hit ? 'Y' : 'N', port_num, (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', PORTMAP_G(cls_hi), T6_PF_G(cls_lo), (cls_lo & T6_VF_VALID_F) ? T6_VF_G(cls_lo) : -1); } else { seq_printf(seq, "%3u %pM %012llx - - ", idx, addr, (unsigned long long)mask); if (vlan_vld) seq_printf(seq, "%4u Y ", ivlan); else seq_puts(seq, " - N "); seq_printf(seq, "- %3c %4x %3c %#x%4u%4d", lookup_type ? 'I' : 'O', port_num, (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', PORTMAP_G(cls_hi), T6_PF_G(cls_lo), (cls_lo & T6_VF_VALID_F) ? T6_VF_G(cls_lo) : -1); } } else seq_printf(seq, "%3u %pM %012llx%3c %#x%4u%4d", idx, addr, (unsigned long long)mask, (cls_lo & SRAM_VLD_F) ? 'Y' : 'N', PORTMAP_G(cls_hi), PF_G(cls_lo), (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1); if (replicate) { if (adap->params.arch.mps_rplc_size > 128) seq_printf(seq, " %08x %08x %08x %08x " "%08x %08x %08x %08x", rplc[7], rplc[6], rplc[5], rplc[4], rplc[3], rplc[2], rplc[1], rplc[0]); else seq_printf(seq, " %08x %08x %08x %08x", rplc[3], rplc[2], rplc[1], rplc[0]); } else { if (adap->params.arch.mps_rplc_size > 128) seq_printf(seq, "%72c", ' '); else seq_printf(seq, "%36c", ' '); } if (chip_ver > CHELSIO_T5) seq_printf(seq, "%4u%3u%3u%3u %#x\n", T6_SRAM_PRIO0_G(cls_lo), T6_SRAM_PRIO1_G(cls_lo), T6_SRAM_PRIO2_G(cls_lo), T6_SRAM_PRIO3_G(cls_lo), (cls_lo >> T6_MULTILISTEN0_S) & 0xf); else seq_printf(seq, "%4u%3u%3u%3u %#x\n", SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo), SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo), (cls_lo >> MULTILISTEN0_S) & 0xf); } out: return 0; } static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos) { struct adapter *adap = seq->private; int max_mac_addr = is_t4(adap->params.chip) ? NUM_MPS_CLS_SRAM_L_INSTANCES : NUM_MPS_T5_CLS_SRAM_L_INSTANCES; return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL); } static void *mps_tcam_start(struct seq_file *seq, loff_t *pos) { return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN; } static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return mps_tcam_get_idx(seq, *pos); } static void mps_tcam_stop(struct seq_file *seq, void *v) { } static const struct seq_operations mps_tcam_seq_ops = { .start = mps_tcam_start, .next = mps_tcam_next, .stop = mps_tcam_stop, .show = mps_tcam_show }; static int mps_tcam_open(struct inode *inode, struct file *file) { int res = seq_open(file, &mps_tcam_seq_ops); if (!res) { struct seq_file *seq = file->private_data; seq->private = inode->i_private; } return res; } static const struct file_operations mps_tcam_debugfs_fops = { .owner = THIS_MODULE, .open = mps_tcam_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; /* Display various sensor information. */ static int sensors_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; u32 param[7], val[7]; int ret; /* Note that if the sensors haven't been initialized and turned on * we'll get values of 0, so treat those as "" ... */ param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP)); param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD)); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val); if (ret < 0 || val[0] == 0) seq_puts(seq, "Temperature: \n"); else seq_printf(seq, "Temperature: %dC\n", val[0]); if (ret < 0 || val[1] == 0) seq_puts(seq, "Core VDD: \n"); else seq_printf(seq, "Core VDD: %dmV\n", val[1]); return 0; } DEFINE_SHOW_ATTRIBUTE(sensors); #if IS_ENABLED(CONFIG_IPV6) DEFINE_SHOW_ATTRIBUTE(clip_tbl); #endif /*RSS Table. */ static int rss_show(struct seq_file *seq, void *v, int idx) { u16 *entry = v; seq_printf(seq, "%4d: %4u %4u %4u %4u %4u %4u %4u %4u\n", idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4], entry[5], entry[6], entry[7]); return 0; } static int rss_open(struct inode *inode, struct file *file) { struct adapter *adap = inode->i_private; int ret, nentries; struct seq_tab *p; nentries = t4_chip_rss_size(adap); p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show); if (!p) return -ENOMEM; ret = t4_read_rss(adap, (u16 *)p->data); if (ret) seq_release_private(inode, file); return ret; } static const struct file_operations rss_debugfs_fops = { .owner = THIS_MODULE, .open = rss_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; /* RSS Configuration. */ /* Small utility function to return the strings "yes" or "no" if the supplied * argument is non-zero. */ static const char *yesno(int x) { static const char *yes = "yes"; static const char *no = "no"; return x ? yes : no; } static int rss_config_show(struct seq_file *seq, void *v) { struct adapter *adapter = seq->private; static const char * const keymode[] = { "global", "global and per-VF scramble", "per-PF and per-VF scramble", "per-VF and per-VF scramble", }; u32 rssconf; rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A); seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf); seq_printf(seq, " Tnl4TupEnIpv6: %3s\n", yesno(rssconf & TNL4TUPENIPV6_F)); seq_printf(seq, " Tnl2TupEnIpv6: %3s\n", yesno(rssconf & TNL2TUPENIPV6_F)); seq_printf(seq, " Tnl4TupEnIpv4: %3s\n", yesno(rssconf & TNL4TUPENIPV4_F)); seq_printf(seq, " Tnl2TupEnIpv4: %3s\n", yesno(rssconf & TNL2TUPENIPV4_F)); seq_printf(seq, " TnlTcpSel: %3s\n", yesno(rssconf & TNLTCPSEL_F)); seq_printf(seq, " TnlIp6Sel: %3s\n", yesno(rssconf & TNLIP6SEL_F)); seq_printf(seq, " TnlVrtSel: %3s\n", yesno(rssconf & TNLVRTSEL_F)); seq_printf(seq, " TnlMapEn: %3s\n", yesno(rssconf & TNLMAPEN_F)); seq_printf(seq, " OfdHashSave: %3s\n", yesno(rssconf & OFDHASHSAVE_F)); seq_printf(seq, " OfdVrtSel: %3s\n", yesno(rssconf & OFDVRTSEL_F)); seq_printf(seq, " OfdMapEn: %3s\n", yesno(rssconf & OFDMAPEN_F)); seq_printf(seq, " OfdLkpEn: %3s\n", yesno(rssconf & OFDLKPEN_F)); seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & SYN4TUPENIPV6_F)); seq_printf(seq, " Syn2TupEnIpv6: %3s\n", yesno(rssconf & SYN2TUPENIPV6_F)); seq_printf(seq, " Syn4TupEnIpv4: %3s\n", yesno(rssconf & SYN4TUPENIPV4_F)); seq_printf(seq, " Syn2TupEnIpv4: %3s\n", yesno(rssconf & SYN2TUPENIPV4_F)); seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & SYN4TUPENIPV6_F)); seq_printf(seq, " SynIp6Sel: %3s\n", yesno(rssconf & SYNIP6SEL_F)); seq_printf(seq, " SynVrt6Sel: %3s\n", yesno(rssconf & SYNVRTSEL_F)); seq_printf(seq, " SynMapEn: %3s\n", yesno(rssconf & SYNMAPEN_F)); seq_printf(seq, " SynLkpEn: %3s\n", yesno(rssconf & SYNLKPEN_F)); seq_printf(seq, " ChnEn: %3s\n", yesno(rssconf & CHANNELENABLE_F)); seq_printf(seq, " PrtEn: %3s\n", yesno(rssconf & PORTENABLE_F)); seq_printf(seq, " TnlAllLkp: %3s\n", yesno(rssconf & TNLALLLOOKUP_F)); seq_printf(seq, " VrtEn: %3s\n", yesno(rssconf & VIRTENABLE_F)); seq_printf(seq, " CngEn: %3s\n", yesno(rssconf & CONGESTIONENABLE_F)); seq_printf(seq, " HashToeplitz: %3s\n", yesno(rssconf & HASHTOEPLITZ_F)); seq_printf(seq, " Udp4En: %3s\n", yesno(rssconf & UDPENABLE_F)); seq_printf(seq, " Disable: %3s\n", yesno(rssconf & DISABLE_F)); seq_puts(seq, "\n"); rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A); seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf); seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); seq_printf(seq, " MaskFilter: %3d\n", MASKFILTER_G(rssconf)); if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { seq_printf(seq, " HashAll: %3s\n", yesno(rssconf & HASHALL_F)); seq_printf(seq, " HashEth: %3s\n", yesno(rssconf & HASHETH_F)); } seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); seq_puts(seq, "\n"); rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A); seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf); seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); seq_printf(seq, " RRCplMapEn: %3s\n", yesno(rssconf & RRCPLMAPEN_F)); seq_printf(seq, " RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf)); seq_puts(seq, "\n"); rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A); seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf); seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); seq_puts(seq, "\n"); rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf); if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { seq_printf(seq, " KeyWrAddrX: %3d\n", KEYWRADDRX_G(rssconf)); seq_printf(seq, " KeyExtend: %3s\n", yesno(rssconf & KEYEXTEND_F)); } seq_printf(seq, " VfRdRg: %3s\n", yesno(rssconf & VFRDRG_F)); seq_printf(seq, " VfRdEn: %3s\n", yesno(rssconf & VFRDEN_F)); seq_printf(seq, " VfPerrEn: %3s\n", yesno(rssconf & VFPERREN_F)); seq_printf(seq, " KeyPerrEn: %3s\n", yesno(rssconf & KEYPERREN_F)); seq_printf(seq, " DisVfVlan: %3s\n", yesno(rssconf & DISABLEVLAN_F)); seq_printf(seq, " EnUpSwt: %3s\n", yesno(rssconf & ENABLEUP0_F)); seq_printf(seq, " HashDelay: %3d\n", HASHDELAY_G(rssconf)); if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) seq_printf(seq, " VfWrAddr: %3d\n", VFWRADDR_G(rssconf)); else seq_printf(seq, " VfWrAddr: %3d\n", T6_VFWRADDR_G(rssconf)); seq_printf(seq, " KeyMode: %s\n", keymode[KEYMODE_G(rssconf)]); seq_printf(seq, " VfWrEn: %3s\n", yesno(rssconf & VFWREN_F)); seq_printf(seq, " KeyWrEn: %3s\n", yesno(rssconf & KEYWREN_F)); seq_printf(seq, " KeyWrAddr: %3d\n", KEYWRADDR_G(rssconf)); seq_puts(seq, "\n"); rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A); seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf); seq_printf(seq, " ChnCount3: %3s\n", yesno(rssconf & CHNCOUNT3_F)); seq_printf(seq, " ChnCount2: %3s\n", yesno(rssconf & CHNCOUNT2_F)); seq_printf(seq, " ChnCount1: %3s\n", yesno(rssconf & CHNCOUNT1_F)); seq_printf(seq, " ChnCount0: %3s\n", yesno(rssconf & CHNCOUNT0_F)); seq_printf(seq, " ChnUndFlow3: %3s\n", yesno(rssconf & CHNUNDFLOW3_F)); seq_printf(seq, " ChnUndFlow2: %3s\n", yesno(rssconf & CHNUNDFLOW2_F)); seq_printf(seq, " ChnUndFlow1: %3s\n", yesno(rssconf & CHNUNDFLOW1_F)); seq_printf(seq, " ChnUndFlow0: %3s\n", yesno(rssconf & CHNUNDFLOW0_F)); seq_printf(seq, " RstChn3: %3s\n", yesno(rssconf & RSTCHN3_F)); seq_printf(seq, " RstChn2: %3s\n", yesno(rssconf & RSTCHN2_F)); seq_printf(seq, " RstChn1: %3s\n", yesno(rssconf & RSTCHN1_F)); seq_printf(seq, " RstChn0: %3s\n", yesno(rssconf & RSTCHN0_F)); seq_printf(seq, " UpdVld: %3s\n", yesno(rssconf & UPDVLD_F)); seq_printf(seq, " Xoff: %3s\n", yesno(rssconf & XOFF_F)); seq_printf(seq, " UpdChn3: %3s\n", yesno(rssconf & UPDCHN3_F)); seq_printf(seq, " UpdChn2: %3s\n", yesno(rssconf & UPDCHN2_F)); seq_printf(seq, " UpdChn1: %3s\n", yesno(rssconf & UPDCHN1_F)); seq_printf(seq, " UpdChn0: %3s\n", yesno(rssconf & UPDCHN0_F)); seq_printf(seq, " Queue: %3d\n", QUEUE_G(rssconf)); return 0; } DEFINE_SHOW_ATTRIBUTE(rss_config); /* RSS Secret Key. */ static int rss_key_show(struct seq_file *seq, void *v) { u32 key[10]; t4_read_rss_key(seq->private, key, true); seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", key[9], key[8], key[7], key[6], key[5], key[4], key[3], key[2], key[1], key[0]); return 0; } static int rss_key_open(struct inode *inode, struct file *file) { return single_open(file, rss_key_show, inode->i_private); } static ssize_t rss_key_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int i, j; u32 key[10]; char s[100], *p; struct adapter *adap = file_inode(file)->i_private; if (count > sizeof(s) - 1) return -EINVAL; if (copy_from_user(s, buf, count)) return -EFAULT; for (i = count; i > 0 && isspace(s[i - 1]); i--) ; s[i] = '\0'; for (p = s, i = 9; i >= 0; i--) { key[i] = 0; for (j = 0; j < 8; j++, p++) { if (!isxdigit(*p)) return -EINVAL; key[i] = (key[i] << 4) | hex2val(*p); } } t4_write_rss_key(adap, key, -1, true); return count; } static const struct file_operations rss_key_debugfs_fops = { .owner = THIS_MODULE, .open = rss_key_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = rss_key_write }; /* PF RSS Configuration. */ struct rss_pf_conf { u32 rss_pf_map; u32 rss_pf_mask; u32 rss_pf_config; }; static int rss_pf_config_show(struct seq_file *seq, void *v, int idx) { struct rss_pf_conf *pfconf; if (v == SEQ_START_TOKEN) { /* use the 0th entry to dump the PF Map Index Size */ pfconf = seq->private + offsetof(struct seq_tab, data); seq_printf(seq, "PF Map Index Size = %d\n\n", LKPIDXSIZE_G(pfconf->rss_pf_map)); seq_puts(seq, " RSS PF VF Hash Tuple Enable Default\n"); seq_puts(seq, " Enable IPF Mask Mask IPv6 IPv4 UDP Queue\n"); seq_puts(seq, " PF Map Chn Prt Map Size Size Four Two Four Two Four Ch1 Ch0\n"); } else { #define G_PFnLKPIDX(map, n) \ (((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M) #define G_PFnMSKSIZE(mask, n) \ (((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M) pfconf = v; seq_printf(seq, "%3d %3s %3s %3s %3d %3d %3d %3s %3s %3s %3s %3s %3d %3d\n", idx, yesno(pfconf->rss_pf_config & MAPENABLE_F), yesno(pfconf->rss_pf_config & CHNENABLE_F), yesno(pfconf->rss_pf_config & PRTENABLE_F), G_PFnLKPIDX(pfconf->rss_pf_map, idx), G_PFnMSKSIZE(pfconf->rss_pf_mask, idx), IVFWIDTH_G(pfconf->rss_pf_config), yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F), yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F), yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F), yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F), yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F), CH1DEFAULTQUEUE_G(pfconf->rss_pf_config), CH0DEFAULTQUEUE_G(pfconf->rss_pf_config)); #undef G_PFnLKPIDX #undef G_PFnMSKSIZE } return 0; } static int rss_pf_config_open(struct inode *inode, struct file *file) { struct adapter *adapter = inode->i_private; struct seq_tab *p; u32 rss_pf_map, rss_pf_mask; struct rss_pf_conf *pfconf; int pf; p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show); if (!p) return -ENOMEM; pfconf = (struct rss_pf_conf *)p->data; rss_pf_map = t4_read_rss_pf_map(adapter, true); rss_pf_mask = t4_read_rss_pf_mask(adapter, true); for (pf = 0; pf < 8; pf++) { pfconf[pf].rss_pf_map = rss_pf_map; pfconf[pf].rss_pf_mask = rss_pf_mask; t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config, true); } return 0; } static const struct file_operations rss_pf_config_debugfs_fops = { .owner = THIS_MODULE, .open = rss_pf_config_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; /* VF RSS Configuration. */ struct rss_vf_conf { u32 rss_vf_vfl; u32 rss_vf_vfh; }; static int rss_vf_config_show(struct seq_file *seq, void *v, int idx) { if (v == SEQ_START_TOKEN) { seq_puts(seq, " RSS Hash Tuple Enable\n"); seq_puts(seq, " Enable IVF Dis Enb IPv6 IPv4 UDP Def Secret Key\n"); seq_puts(seq, " VF Chn Prt Map VLAN uP Four Two Four Two Four Que Idx Hash\n"); } else { struct rss_vf_conf *vfconf = v; seq_printf(seq, "%3d %3s %3s %3d %3s %3s %3s %3s %3s %3s %3s %4d %3d %#10x\n", idx, yesno(vfconf->rss_vf_vfh & VFCHNEN_F), yesno(vfconf->rss_vf_vfh & VFPRTEN_F), VFLKPIDX_G(vfconf->rss_vf_vfh), yesno(vfconf->rss_vf_vfh & VFVLNEX_F), yesno(vfconf->rss_vf_vfh & VFUPEN_F), yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F), yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F), yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F), DEFAULTQUEUE_G(vfconf->rss_vf_vfh), KEYINDEX_G(vfconf->rss_vf_vfh), vfconf->rss_vf_vfl); } return 0; } static int rss_vf_config_open(struct inode *inode, struct file *file) { struct adapter *adapter = inode->i_private; struct seq_tab *p; struct rss_vf_conf *vfconf; int vf, vfcount = adapter->params.arch.vfcount; p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show); if (!p) return -ENOMEM; vfconf = (struct rss_vf_conf *)p->data; for (vf = 0; vf < vfcount; vf++) { t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl, &vfconf[vf].rss_vf_vfh, true); } return 0; } static const struct file_operations rss_vf_config_debugfs_fops = { .owner = THIS_MODULE, .open = rss_vf_config_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private }; #ifdef CONFIG_CHELSIO_T4_DCB /* Data Center Briging information for each port. */ static int dcb_info_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Data Center Bridging Information\n"); } else { int port = (uintptr_t)v - 2; struct net_device *dev = adap->port[port]; struct port_info *pi = netdev2pinfo(dev); struct port_dcb_info *dcb = &pi->dcb; seq_puts(seq, "\n"); seq_printf(seq, "Port: %d (DCB negotiated: %s)\n", port, cxgb4_dcb_enabled(dev) ? "yes" : "no"); if (cxgb4_dcb_enabled(dev)) seq_printf(seq, "[ DCBx Version %s ]\n", dcb_ver_array[dcb->dcb_version]); if (dcb->msgs) { int i; seq_puts(seq, "\n Index\t\t\t :\t"); for (i = 0; i < 8; i++) seq_printf(seq, " %3d", i); seq_puts(seq, "\n\n"); } if (dcb->msgs & CXGB4_DCB_FW_PGID) { int prio, pgid; seq_puts(seq, " Priority Group IDs\t :\t"); for (prio = 0; prio < 8; prio++) { pgid = (dcb->pgid >> 4 * (7 - prio)) & 0xf; seq_printf(seq, " %3d", pgid); } seq_puts(seq, "\n"); } if (dcb->msgs & CXGB4_DCB_FW_PGRATE) { int pg; seq_puts(seq, " Priority Group BW(%)\t :\t"); for (pg = 0; pg < 8; pg++) seq_printf(seq, " %3d", dcb->pgrate[pg]); seq_puts(seq, "\n"); if (dcb->dcb_version == FW_PORT_DCB_VER_IEEE) { seq_puts(seq, " TSA Algorithm\t\t :\t"); for (pg = 0; pg < 8; pg++) seq_printf(seq, " %3d", dcb->tsa[pg]); seq_puts(seq, "\n"); } seq_printf(seq, " Max PG Traffic Classes [%3d ]\n", dcb->pg_num_tcs_supported); seq_puts(seq, "\n"); } if (dcb->msgs & CXGB4_DCB_FW_PRIORATE) { int prio; seq_puts(seq, " Priority Rate\t:\t"); for (prio = 0; prio < 8; prio++) seq_printf(seq, " %3d", dcb->priorate[prio]); seq_puts(seq, "\n"); } if (dcb->msgs & CXGB4_DCB_FW_PFC) { int prio; seq_puts(seq, " Priority Flow Control :\t"); for (prio = 0; prio < 8; prio++) { int pfcen = (dcb->pfcen >> 1 * (7 - prio)) & 0x1; seq_printf(seq, " %3d", pfcen); } seq_puts(seq, "\n"); seq_printf(seq, " Max PFC Traffic Classes [%3d ]\n", dcb->pfc_num_tcs_supported); seq_puts(seq, "\n"); } if (dcb->msgs & CXGB4_DCB_FW_APP_ID) { int app, napps; seq_puts(seq, " Application Information:\n"); seq_puts(seq, " App Priority Selection Protocol\n"); seq_puts(seq, " Index Map Field ID\n"); for (app = 0, napps = 0; app < CXGB4_MAX_DCBX_APP_SUPPORTED; app++) { struct app_priority *ap; static const char * const sel_names[] = { "Ethertype", "Socket TCP", "Socket UDP", "Socket All", }; const char *sel_name; ap = &dcb->app_priority[app]; /* skip empty slots */ if (ap->protocolid == 0) continue; napps++; if (ap->sel_field < ARRAY_SIZE(sel_names)) sel_name = sel_names[ap->sel_field]; else sel_name = "UNKNOWN"; seq_printf(seq, " %3d %#04x %-10s (%d) %#06x (%d)\n", app, ap->user_prio_map, sel_name, ap->sel_field, ap->protocolid, ap->protocolid); } if (napps == 0) seq_puts(seq, " --- None ---\n"); } } return 0; } static inline void *dcb_info_get_idx(struct adapter *adap, loff_t pos) { return (pos <= adap->params.nports ? (void *)((uintptr_t)pos + 1) : NULL); } static void *dcb_info_start(struct seq_file *seq, loff_t *pos) { struct adapter *adap = seq->private; return (*pos ? dcb_info_get_idx(adap, *pos) : SEQ_START_TOKEN); } static void dcb_info_stop(struct seq_file *seq, void *v) { } static void *dcb_info_next(struct seq_file *seq, void *v, loff_t *pos) { struct adapter *adap = seq->private; (*pos)++; return dcb_info_get_idx(adap, *pos); } static const struct seq_operations dcb_info_seq_ops = { .start = dcb_info_start, .next = dcb_info_next, .stop = dcb_info_stop, .show = dcb_info_show }; static int dcb_info_open(struct inode *inode, struct file *file) { int res = seq_open(file, &dcb_info_seq_ops); if (!res) { struct seq_file *seq = file->private_data; seq->private = inode->i_private; } return res; } static const struct file_operations dcb_info_debugfs_fops = { .owner = THIS_MODULE, .open = dcb_info_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif /* CONFIG_CHELSIO_T4_DCB */ static int resources_show(struct seq_file *seq, void *v) { struct adapter *adapter = seq->private; struct pf_resources *pfres = &adapter->params.pfres; #define S(desc, fmt, var) \ seq_printf(seq, "%-60s " fmt "\n", \ desc " (" #var "):", pfres->var) S("Virtual Interfaces", "%d", nvi); S("Egress Queues", "%d", neq); S("Ethernet Control", "%d", nethctrl); S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); S("Ingress Queues", "%d", niq); S("Traffic Class", "%d", tc); S("Port Access Rights Mask", "%#x", pmask); S("MAC Address Filters", "%d", nexactf); S("Firmware Command Read Capabilities", "%#x", r_caps); S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); #undef S return 0; } DEFINE_SHOW_ATTRIBUTE(resources); /** * ethqset2pinfo - return port_info of an Ethernet Queue Set * @adap: the adapter * @qset: Ethernet Queue Set */ static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset) { int pidx; for_each_port(adap, pidx) { struct port_info *pi = adap2pinfo(adap, pidx); if (qset >= pi->first_qset && qset < pi->first_qset + pi->nqsets) return pi; } /* should never happen! */ BUG(); return NULL; } static int sge_qinfo_uld_txq_entries(const struct adapter *adap, int uld) { const struct sge_uld_txq_info *utxq_info = adap->sge.uld_txq_info[uld]; if (!utxq_info) return 0; return DIV_ROUND_UP(utxq_info->ntxq, 4); } static int sge_qinfo_uld_rspq_entries(const struct adapter *adap, int uld, bool ciq) { const struct sge_uld_rxq_info *urxq_info = adap->sge.uld_rxq_info[uld]; if (!urxq_info) return 0; return ciq ? DIV_ROUND_UP(urxq_info->nciq, 4) : DIV_ROUND_UP(urxq_info->nrxq, 4); } static int sge_qinfo_uld_rxq_entries(const struct adapter *adap, int uld) { return sge_qinfo_uld_rspq_entries(adap, uld, false); } static int sge_qinfo_uld_ciq_entries(const struct adapter *adap, int uld) { return sge_qinfo_uld_rspq_entries(adap, uld, true); } static int sge_qinfo_show(struct seq_file *seq, void *v) { int eth_entries, ctrl_entries, eohw_entries = 0, eosw_entries = 0; int uld_rxq_entries[CXGB4_ULD_MAX] = { 0 }; int uld_ciq_entries[CXGB4_ULD_MAX] = { 0 }; int uld_txq_entries[CXGB4_TX_MAX] = { 0 }; const struct sge_uld_txq_info *utxq_info; const struct sge_uld_rxq_info *urxq_info; struct cxgb4_tc_port_mqprio *port_mqprio; struct adapter *adap = seq->private; int i, j, n, r = (uintptr_t)v - 1; struct sge *s = &adap->sge; eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4); ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4); if (r) seq_putc(seq, '\n'); #define S3(fmt_spec, s, v) \ do { \ seq_printf(seq, "%-12s", s); \ for (i = 0; i < n; ++i) \ seq_printf(seq, " %16" fmt_spec, v); \ seq_putc(seq, '\n'); \ } while (0) #define S(s, v) S3("s", s, v) #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v) #define T(s, v) S3("u", s, tx[i].v) #define TL(s, v) T3("lu", s, v) #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v) #define R(s, v) S3("u", s, rx[i].v) #define RL(s, v) R3("lu", s, v) if (r < eth_entries) { int base_qset = r * 4; const struct sge_eth_rxq *rx = &s->ethrxq[base_qset]; const struct sge_eth_txq *tx = &s->ethtxq[base_qset]; n = min(4, s->ethqsets - 4 * r); S("QType:", "Ethernet"); S("Interface:", rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); T("TxQ ID:", q.cntxt_id); T("TxQ size:", q.size); T("TxQ inuse:", q.in_use); T("TxQ CIDX:", q.cidx); T("TxQ PIDX:", q.pidx); #ifdef CONFIG_CHELSIO_T4_DCB T("DCB Prio:", dcb_prio); S3("u", "DCB PGID:", (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >> 4*(7-tx[i].dcb_prio)) & 0xf); S3("u", "DCB PFC:", (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >> 1*(7-tx[i].dcb_prio)) & 0x1); #endif R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); RL("RxPackets:", stats.pkts); RL("RxCSO:", stats.rx_cso); RL("VLANxtract:", stats.vlan_ex); RL("LROmerged:", stats.lro_merged); RL("LROpackets:", stats.lro_pkts); RL("RxDrops:", stats.rx_drops); RL("RxBadPkts:", stats.bad_rx_pkts); TL("TSO:", tso); TL("USO:", uso); TL("TxCSO:", tx_cso); TL("VLANins:", vlan_ins); TL("TxQFull:", q.stops); TL("TxQRestarts:", q.restarts); TL("TxMapErr:", mapping_err); RL("FLAllocErr:", fl.alloc_failed); RL("FLLrgAlcErr:", fl.large_alloc_failed); RL("FLMapErr:", fl.mapping_err); RL("FLLow:", fl.low); RL("FLStarving:", fl.starving); goto out; } r -= eth_entries; for_each_port(adap, j) { struct port_info *pi = adap2pinfo(adap, j); const struct sge_eth_rxq *rx; mutex_lock(&pi->vi_mirror_mutex); if (!pi->vi_mirror_count) { mutex_unlock(&pi->vi_mirror_mutex); continue; } if (r >= DIV_ROUND_UP(pi->nmirrorqsets, 4)) { r -= DIV_ROUND_UP(pi->nmirrorqsets, 4); mutex_unlock(&pi->vi_mirror_mutex); continue; } rx = &s->mirror_rxq[j][r * 4]; n = min(4, pi->nmirrorqsets - 4 * r); S("QType:", "Mirror-Rxq"); S("Interface:", rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); RL("RxPackets:", stats.pkts); RL("RxCSO:", stats.rx_cso); RL("VLANxtract:", stats.vlan_ex); RL("LROmerged:", stats.lro_merged); RL("LROpackets:", stats.lro_pkts); RL("RxDrops:", stats.rx_drops); RL("RxBadPkts:", stats.bad_rx_pkts); RL("FLAllocErr:", fl.alloc_failed); RL("FLLrgAlcErr:", fl.large_alloc_failed); RL("FLMapErr:", fl.mapping_err); RL("FLLow:", fl.low); RL("FLStarving:", fl.starving); mutex_unlock(&pi->vi_mirror_mutex); goto out; } if (!adap->tc_mqprio) goto skip_mqprio; mutex_lock(&adap->tc_mqprio->mqprio_mutex); if (!refcount_read(&adap->tc_mqprio->refcnt)) { mutex_unlock(&adap->tc_mqprio->mqprio_mutex); goto skip_mqprio; } eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4); if (r < eohw_entries) { int base_qset = r * 4; const struct sge_ofld_rxq *rx = &s->eohw_rxq[base_qset]; const struct sge_eohw_txq *tx = &s->eohw_txq[base_qset]; n = min(4, s->eoqsets - 4 * r); S("QType:", "ETHOFLD"); S("Interface:", rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); T("TxQ ID:", q.cntxt_id); T("TxQ size:", q.size); T("TxQ inuse:", q.in_use); T("TxQ CIDX:", q.cidx); T("TxQ PIDX:", q.pidx); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); S3("u", "FL size:", rx->fl.size ? rx->fl.size - 8 : 0); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); RL("RxPackets:", stats.pkts); RL("RxImm:", stats.imm); RL("RxAN", stats.an); RL("RxNoMem", stats.nomem); TL("TSO:", tso); TL("USO:", uso); TL("TxCSO:", tx_cso); TL("VLANins:", vlan_ins); TL("TxQFull:", q.stops); TL("TxQRestarts:", q.restarts); TL("TxMapErr:", mapping_err); RL("FLAllocErr:", fl.alloc_failed); RL("FLLrgAlcErr:", fl.large_alloc_failed); RL("FLMapErr:", fl.mapping_err); RL("FLLow:", fl.low); RL("FLStarving:", fl.starving); mutex_unlock(&adap->tc_mqprio->mqprio_mutex); goto out; } r -= eohw_entries; for (j = 0; j < adap->params.nports; j++) { int entries; u8 tc; port_mqprio = &adap->tc_mqprio->port_mqprio[j]; entries = 0; for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++) entries += port_mqprio->mqprio.qopt.count[tc]; if (!entries) continue; eosw_entries = DIV_ROUND_UP(entries, 4); if (r < eosw_entries) { const struct sge_eosw_txq *tx; n = min(4, entries - 4 * r); tx = &port_mqprio->eosw_txq[4 * r]; S("QType:", "EOSW-TXQ"); S("Interface:", adap->port[j] ? adap->port[j]->name : "N/A"); T("EOTID:", hwtid); T("HWQID:", hwqid); T("State:", state); T("Size:", ndesc); T("In-Use:", inuse); T("Credits:", cred); T("Compl:", ncompl); T("Last-Compl:", last_compl); T("PIDX:", pidx); T("Last-PIDX:", last_pidx); T("CIDX:", cidx); T("Last-CIDX:", last_cidx); T("FLOWC-IDX:", flowc_idx); mutex_unlock(&adap->tc_mqprio->mqprio_mutex); goto out; } r -= eosw_entries; } mutex_unlock(&adap->tc_mqprio->mqprio_mutex); skip_mqprio: if (!is_uld(adap)) goto skip_uld; mutex_lock(&uld_mutex); if (s->uld_txq_info) for (i = 0; i < ARRAY_SIZE(uld_txq_entries); i++) uld_txq_entries[i] = sge_qinfo_uld_txq_entries(adap, i); if (s->uld_rxq_info) { for (i = 0; i < ARRAY_SIZE(uld_rxq_entries); i++) { uld_rxq_entries[i] = sge_qinfo_uld_rxq_entries(adap, i); uld_ciq_entries[i] = sge_qinfo_uld_ciq_entries(adap, i); } } if (r < uld_txq_entries[CXGB4_TX_OFLD]) { const struct sge_uld_txq *tx; utxq_info = s->uld_txq_info[CXGB4_TX_OFLD]; tx = &utxq_info->uldtxq[r * 4]; n = min(4, utxq_info->ntxq - 4 * r); S("QType:", "OFLD-TXQ"); T("TxQ ID:", q.cntxt_id); T("TxQ size:", q.size); T("TxQ inuse:", q.in_use); T("TxQ CIDX:", q.cidx); T("TxQ PIDX:", q.pidx); goto unlock; } r -= uld_txq_entries[CXGB4_TX_OFLD]; if (r < uld_rxq_entries[CXGB4_ULD_RDMA]) { const struct sge_ofld_rxq *rx; urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; rx = &urxq_info->uldrxq[r * 4]; n = min(4, urxq_info->nrxq - 4 * r); S("QType:", "RDMA-CPL"); S("Interface:", rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); goto unlock; } r -= uld_rxq_entries[CXGB4_ULD_RDMA]; if (r < uld_ciq_entries[CXGB4_ULD_RDMA]) { const struct sge_ofld_rxq *rx; int ciq_idx = 0; urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; ciq_idx = urxq_info->nrxq + (r * 4); rx = &urxq_info->uldrxq[ciq_idx]; n = min(4, urxq_info->nciq - 4 * r); S("QType:", "RDMA-CIQ"); S("Interface:", rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); goto unlock; } r -= uld_ciq_entries[CXGB4_ULD_RDMA]; if (r < uld_rxq_entries[CXGB4_ULD_ISCSI]) { const struct sge_ofld_rxq *rx; urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSI]; rx = &urxq_info->uldrxq[r * 4]; n = min(4, urxq_info->nrxq - 4 * r); S("QType:", "iSCSI"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); goto unlock; } r -= uld_rxq_entries[CXGB4_ULD_ISCSI]; if (r < uld_rxq_entries[CXGB4_ULD_ISCSIT]) { const struct sge_ofld_rxq *rx; urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSIT]; rx = &urxq_info->uldrxq[r * 4]; n = min(4, urxq_info->nrxq - 4 * r); S("QType:", "iSCSIT"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); goto unlock; } r -= uld_rxq_entries[CXGB4_ULD_ISCSIT]; if (r < uld_rxq_entries[CXGB4_ULD_TLS]) { const struct sge_ofld_rxq *rx; urxq_info = s->uld_rxq_info[CXGB4_ULD_TLS]; rx = &urxq_info->uldrxq[r * 4]; n = min(4, urxq_info->nrxq - 4 * r); S("QType:", "TLS"); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); goto unlock; } r -= uld_rxq_entries[CXGB4_ULD_TLS]; if (r < uld_txq_entries[CXGB4_TX_CRYPTO]) { const struct sge_ofld_rxq *rx; const struct sge_uld_txq *tx; utxq_info = s->uld_txq_info[CXGB4_TX_CRYPTO]; urxq_info = s->uld_rxq_info[CXGB4_ULD_CRYPTO]; tx = &utxq_info->uldtxq[r * 4]; rx = &urxq_info->uldrxq[r * 4]; n = min(4, utxq_info->ntxq - 4 * r); S("QType:", "Crypto"); T("TxQ ID:", q.cntxt_id); T("TxQ size:", q.size); T("TxQ inuse:", q.in_use); T("TxQ CIDX:", q.cidx); T("TxQ PIDX:", q.pidx); R("RspQ ID:", rspq.abs_id); R("RspQ size:", rspq.size); R("RspQE size:", rspq.iqe_len); R("RspQ CIDX:", rspq.cidx); R("RspQ Gen:", rspq.gen); S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); R("FL ID:", fl.cntxt_id); R("FL size:", fl.size - 8); R("FL pend:", fl.pend_cred); R("FL avail:", fl.avail); R("FL PIDX:", fl.pidx); R("FL CIDX:", fl.cidx); goto unlock; } r -= uld_txq_entries[CXGB4_TX_CRYPTO]; mutex_unlock(&uld_mutex); skip_uld: if (r < ctrl_entries) { const struct sge_ctrl_txq *tx = &s->ctrlq[r * 4]; n = min(4, adap->params.nports - 4 * r); S("QType:", "Control"); T("TxQ ID:", q.cntxt_id); T("TxQ size:", q.size); T("TxQ inuse:", q.in_use); T("TxQ CIDX:", q.cidx); T("TxQ PIDX:", q.pidx); TL("TxQFull:", q.stops); TL("TxQRestarts:", q.restarts); goto out; } r -= ctrl_entries; if (r < 1) { const struct sge_rspq *evtq = &s->fw_evtq; seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size); seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len); seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx); seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); seq_printf(seq, "%-12s %16u\n", "Intr delay:", qtimer_val(adap, evtq)); seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", s->counter_val[evtq->pktcnt_idx]); goto out; } #undef R #undef RL #undef T #undef TL #undef S #undef R3 #undef T3 #undef S3 out: return 0; unlock: mutex_unlock(&uld_mutex); return 0; } static int sge_queue_entries(struct adapter *adap) { int i, tot_uld_entries = 0, eohw_entries = 0, eosw_entries = 0; int mirror_rxq_entries = 0; if (adap->tc_mqprio) { struct cxgb4_tc_port_mqprio *port_mqprio; u8 tc; mutex_lock(&adap->tc_mqprio->mqprio_mutex); if (adap->sge.eohw_txq) eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4); for (i = 0; i < adap->params.nports; i++) { u32 entries = 0; port_mqprio = &adap->tc_mqprio->port_mqprio[i]; for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++) entries += port_mqprio->mqprio.qopt.count[tc]; if (entries) eosw_entries += DIV_ROUND_UP(entries, 4); } mutex_unlock(&adap->tc_mqprio->mqprio_mutex); } for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); mutex_lock(&pi->vi_mirror_mutex); if (pi->vi_mirror_count) mirror_rxq_entries += DIV_ROUND_UP(pi->nmirrorqsets, 4); mutex_unlock(&pi->vi_mirror_mutex); } if (!is_uld(adap)) goto lld_only; mutex_lock(&uld_mutex); for (i = 0; i < CXGB4_TX_MAX; i++) tot_uld_entries += sge_qinfo_uld_txq_entries(adap, i); for (i = 0; i < CXGB4_ULD_MAX; i++) { tot_uld_entries += sge_qinfo_uld_rxq_entries(adap, i); tot_uld_entries += sge_qinfo_uld_ciq_entries(adap, i); } mutex_unlock(&uld_mutex); lld_only: return DIV_ROUND_UP(adap->sge.ethqsets, 4) + mirror_rxq_entries + eohw_entries + eosw_entries + tot_uld_entries + DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1; } static void *sge_queue_start(struct seq_file *seq, loff_t *pos) { int entries = sge_queue_entries(seq->private); return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; } static void sge_queue_stop(struct seq_file *seq, void *v) { } static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) { int entries = sge_queue_entries(seq->private); ++*pos; return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; } static const struct seq_operations sge_qinfo_seq_ops = { .start = sge_queue_start, .next = sge_queue_next, .stop = sge_queue_stop, .show = sge_qinfo_show }; static int sge_qinfo_open(struct inode *inode, struct file *file) { int res = seq_open(file, &sge_qinfo_seq_ops); if (!res) { struct seq_file *seq = file->private_data; seq->private = inode->i_private; } return res; } static const struct file_operations sge_qinfo_debugfs_fops = { .owner = THIS_MODULE, .open = sge_qinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; int mem_open(struct inode *inode, struct file *file) { unsigned int mem; struct adapter *adap; file->private_data = inode->i_private; mem = (uintptr_t)file->private_data & 0x7; adap = file->private_data - mem; (void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH); return 0; } static ssize_t mem_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { loff_t pos = *ppos; loff_t avail = file_inode(file)->i_size; unsigned int mem = (uintptr_t)file->private_data & 0x7; struct adapter *adap = file->private_data - mem; __be32 *data; int ret; if (pos < 0) return -EINVAL; if (pos >= avail) return 0; if (count > avail - pos) count = avail - pos; data = kvzalloc(count, GFP_KERNEL); if (!data) return -ENOMEM; spin_lock(&adap->win0_lock); ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ); spin_unlock(&adap->win0_lock); if (ret) { kvfree(data); return ret; } ret = copy_to_user(buf, data, count); kvfree(data); if (ret) return -EFAULT; *ppos = pos + count; return count; } static const struct file_operations mem_debugfs_fops = { .owner = THIS_MODULE, .open = simple_open, .read = mem_read, .llseek = default_llseek, }; static int tid_info_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; const struct tid_info *t; enum chip_type chip; t = &adap->tids; chip = CHELSIO_CHIP_VERSION(adap->params.chip); if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) { unsigned int sb; seq_printf(seq, "Connections in use: %u\n", atomic_read(&t->conns_in_use)); if (chip <= CHELSIO_T5) sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4; else sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A); if (sb) { seq_printf(seq, "TID range: %u..%u/%u..%u", t->tid_base, sb - 1, adap->tids.hash_base, t->tid_base + t->ntids - 1); seq_printf(seq, ", in use: %u/%u\n", atomic_read(&t->tids_in_use), atomic_read(&t->hash_tids_in_use)); } else if (adap->flags & CXGB4_FW_OFLD_CONN) { seq_printf(seq, "TID range: %u..%u/%u..%u", t->aftid_base, t->aftid_end, adap->tids.hash_base, t->tid_base + t->ntids - 1); seq_printf(seq, ", in use: %u/%u\n", atomic_read(&t->tids_in_use), atomic_read(&t->hash_tids_in_use)); } else { seq_printf(seq, "TID range: %u..%u", adap->tids.hash_base, t->tid_base + t->ntids - 1); seq_printf(seq, ", in use: %u\n", atomic_read(&t->hash_tids_in_use)); } } else if (t->ntids) { seq_printf(seq, "Connections in use: %u\n", atomic_read(&t->conns_in_use)); seq_printf(seq, "TID range: %u..%u", t->tid_base, t->tid_base + t->ntids - 1); seq_printf(seq, ", in use: %u\n", atomic_read(&t->tids_in_use)); } if (t->nstids) seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n", (!t->stid_base && (chip <= CHELSIO_T5)) ? t->stid_base + 1 : t->stid_base, t->stid_base + t->nstids - 1, t->stids_in_use - t->v6_stids_in_use, t->v6_stids_in_use); if (t->natids) seq_printf(seq, "ATID range: 0..%u, in use: %u\n", t->natids - 1, t->atids_in_use); seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base, t->ftid_base + t->nftids - 1); if (t->nsftids) seq_printf(seq, "SFTID range: %u..%u in use: %u\n", t->sftid_base, t->sftid_base + t->nsftids - 2, t->sftids_in_use); if (t->nhpftids) seq_printf(seq, "HPFTID range: %u..%u\n", t->hpftid_base, t->hpftid_base + t->nhpftids - 1); if (t->neotids) seq_printf(seq, "EOTID range: %u..%u, in use: %u\n", t->eotid_base, t->eotid_base + t->neotids - 1, atomic_read(&t->eotids_in_use)); if (t->ntids) seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n", t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A), t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A)); return 0; } DEFINE_SHOW_ATTRIBUTE(tid_info); static void add_debugfs_mem(struct adapter *adap, const char *name, unsigned int idx, unsigned int size_mb) { debugfs_create_file_size(name, 0400, adap->debugfs_root, (void *)adap + idx, &mem_debugfs_fops, size_mb << 20); } static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf, size_t count, loff_t *ppos) { int len; const struct adapter *adap = filp->private_data; char *buf; ssize_t size = (adap->sge.egr_sz + 3) / 4 + adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */ buf = kzalloc(size, GFP_KERNEL); if (!buf) return -ENOMEM; len = snprintf(buf, size - 1, "%*pb\n", adap->sge.egr_sz, adap->sge.blocked_fl); len += sprintf(buf + len, "\n"); size = simple_read_from_buffer(ubuf, count, ppos, buf, len); kfree(buf); return size; } static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf, size_t count, loff_t *ppos) { int err; unsigned long *t; struct adapter *adap = filp->private_data; t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL); if (!t) return -ENOMEM; err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz); if (err) { kfree(t); return err; } bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz); kfree(t); return count; } static const struct file_operations blocked_fl_fops = { .owner = THIS_MODULE, .open = simple_open, .read = blocked_fl_read, .write = blocked_fl_write, .llseek = generic_file_llseek, }; static void mem_region_show(struct seq_file *seq, const char *name, unsigned int from, unsigned int to) { char buf[40]; string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf, sizeof(buf)); seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf); } static int meminfo_show(struct seq_file *seq, void *v) { static const char * const memory[] = { "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"}; struct adapter *adap = seq->private; struct cudbg_meminfo meminfo; int i, rc; memset(&meminfo, 0, sizeof(struct cudbg_meminfo)); rc = cudbg_fill_meminfo(adap, &meminfo); if (rc) return -ENXIO; for (i = 0; i < meminfo.avail_c; i++) mem_region_show(seq, memory[meminfo.avail[i].idx], meminfo.avail[i].base, meminfo.avail[i].limit - 1); seq_putc(seq, '\n'); for (i = 0; i < meminfo.mem_c; i++) { if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region)) continue; /* skip holes */ if (!meminfo.mem[i].limit) meminfo.mem[i].limit = i < meminfo.mem_c - 1 ? meminfo.mem[i + 1].base - 1 : ~0; mem_region_show(seq, cudbg_region[meminfo.mem[i].idx], meminfo.mem[i].base, meminfo.mem[i].limit); } seq_putc(seq, '\n'); mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi); mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo, meminfo.up_extmem2_hi); seq_printf(seq, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", meminfo.rx_pages_data[0], meminfo.free_rx_cnt, meminfo.rx_pages_data[1], meminfo.rx_pages_data[2]); seq_printf(seq, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", meminfo.tx_pages_data[0], meminfo.free_tx_cnt, meminfo.tx_pages_data[1], meminfo.tx_pages_data[2], meminfo.tx_pages_data[3]); seq_printf(seq, "%u p-structs (%u free)\n\n", meminfo.p_structs, meminfo.p_structs_free_cnt); for (i = 0; i < 4; i++) /* For T6 these are MAC buffer groups */ seq_printf(seq, "Port %d using %u pages out of %u allocated\n", i, meminfo.port_used[i], meminfo.port_alloc[i]); for (i = 0; i < adap->params.arch.nchan; i++) /* For T6 these are MAC buffer groups */ seq_printf(seq, "Loopback %d using %u pages out of %u allocated\n", i, meminfo.loopback_used[i], meminfo.loopback_alloc[i]); return 0; } DEFINE_SHOW_ATTRIBUTE(meminfo); static int chcr_stats_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; seq_puts(seq, "Chelsio Crypto Accelerator Stats \n"); seq_printf(seq, "Cipher Ops: %10u \n", atomic_read(&adap->chcr_stats.cipher_rqst)); seq_printf(seq, "Digest Ops: %10u \n", atomic_read(&adap->chcr_stats.digest_rqst)); seq_printf(seq, "Aead Ops: %10u \n", atomic_read(&adap->chcr_stats.aead_rqst)); seq_printf(seq, "Completion: %10u \n", atomic_read(&adap->chcr_stats.complete)); seq_printf(seq, "Error: %10u \n", atomic_read(&adap->chcr_stats.error)); seq_printf(seq, "Fallback: %10u \n", atomic_read(&adap->chcr_stats.fallback)); seq_printf(seq, "TLS PDU Tx: %10u\n", atomic_read(&adap->chcr_stats.tls_pdu_tx)); seq_printf(seq, "TLS PDU Rx: %10u\n", atomic_read(&adap->chcr_stats.tls_pdu_rx)); seq_printf(seq, "TLS Keys (DDR) Count: %10u\n", atomic_read(&adap->chcr_stats.tls_key)); #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) seq_puts(seq, "\nChelsio Inline IPsec Crypto Accelerator Stats\n"); seq_printf(seq, "IPSec PDU: %10u\n", atomic_read(&adap->ch_ipsec_stats.ipsec_cnt)); #endif #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) seq_puts(seq, "\nChelsio KTLS Crypto Accelerator Stats\n"); seq_printf(seq, "Tx TLS offload refcount: %20u\n", refcount_read(&adap->chcr_ktls.ktls_refcount)); seq_printf(seq, "Tx HW offload contexts added: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_ctx)); seq_printf(seq, "Tx connection created: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_open)); seq_printf(seq, "Tx connection failed: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_fail)); seq_printf(seq, "Tx connection closed: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_connection_close)); seq_printf(seq, "Packets passed for encryption : %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_encrypted_packets)); seq_printf(seq, "Bytes passed for encryption : %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_encrypted_bytes)); seq_printf(seq, "Tx records send: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_send_records)); seq_printf(seq, "Tx partial start of records: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_start_pkts)); seq_printf(seq, "Tx partial middle of records: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_middle_pkts)); seq_printf(seq, "Tx partial end of record: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_end_pkts)); seq_printf(seq, "Tx complete records: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_complete_pkts)); seq_printf(seq, "TX trim pkts : %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_trimmed_pkts)); seq_printf(seq, "Tx out of order packets: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_ooo)); seq_printf(seq, "Tx drop pkts before HW offload: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_skip_no_sync_data)); seq_printf(seq, "Tx drop not synced packets: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_drop_no_sync_data)); seq_printf(seq, "Tx drop bypass req: %20llu\n", atomic64_read(&adap->ch_ktls_stats.ktls_tx_drop_bypass_req)); #endif return 0; } DEFINE_SHOW_ATTRIBUTE(chcr_stats); #define PRINT_ADAP_STATS(string, value) \ seq_printf(seq, "%-25s %-20llu\n", (string), \ (unsigned long long)(value)) #define PRINT_CH_STATS(string, value) \ do { \ seq_printf(seq, "%-25s ", (string)); \ for (i = 0; i < adap->params.arch.nchan; i++) \ seq_printf(seq, "%-20llu ", \ (unsigned long long)stats.value[i]); \ seq_printf(seq, "\n"); \ } while (0) #define PRINT_CH_STATS2(string, value) \ do { \ seq_printf(seq, "%-25s ", (string)); \ for (i = 0; i < adap->params.arch.nchan; i++) \ seq_printf(seq, "%-20llu ", \ (unsigned long long)stats[i].value); \ seq_printf(seq, "\n"); \ } while (0) static void show_tcp_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_tcp_stats v4, v6; spin_lock(&adap->stats_lock); t4_tp_get_tcp_stats(adap, &v4, &v6, false); spin_unlock(&adap->stats_lock); PRINT_ADAP_STATS("tcp_ipv4_out_rsts:", v4.tcp_out_rsts); PRINT_ADAP_STATS("tcp_ipv4_in_segs:", v4.tcp_in_segs); PRINT_ADAP_STATS("tcp_ipv4_out_segs:", v4.tcp_out_segs); PRINT_ADAP_STATS("tcp_ipv4_retrans_segs:", v4.tcp_retrans_segs); PRINT_ADAP_STATS("tcp_ipv6_out_rsts:", v6.tcp_out_rsts); PRINT_ADAP_STATS("tcp_ipv6_in_segs:", v6.tcp_in_segs); PRINT_ADAP_STATS("tcp_ipv6_out_segs:", v6.tcp_out_segs); PRINT_ADAP_STATS("tcp_ipv6_retrans_segs:", v6.tcp_retrans_segs); } static void show_ddp_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_usm_stats stats; spin_lock(&adap->stats_lock); t4_get_usm_stats(adap, &stats, false); spin_unlock(&adap->stats_lock); PRINT_ADAP_STATS("usm_ddp_frames:", stats.frames); PRINT_ADAP_STATS("usm_ddp_octets:", stats.octets); PRINT_ADAP_STATS("usm_ddp_drops:", stats.drops); } static void show_rdma_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_rdma_stats stats; spin_lock(&adap->stats_lock); t4_tp_get_rdma_stats(adap, &stats, false); spin_unlock(&adap->stats_lock); PRINT_ADAP_STATS("rdma_no_rqe_mod_defer:", stats.rqe_dfr_mod); PRINT_ADAP_STATS("rdma_no_rqe_pkt_defer:", stats.rqe_dfr_pkt); } static void show_tp_err_adapter_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_err_stats stats; spin_lock(&adap->stats_lock); t4_tp_get_err_stats(adap, &stats, false); spin_unlock(&adap->stats_lock); PRINT_ADAP_STATS("tp_err_ofld_no_neigh:", stats.ofld_no_neigh); PRINT_ADAP_STATS("tp_err_ofld_cong_defer:", stats.ofld_cong_defer); } static void show_cpl_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_cpl_stats stats; u8 i; spin_lock(&adap->stats_lock); t4_tp_get_cpl_stats(adap, &stats, false); spin_unlock(&adap->stats_lock); PRINT_CH_STATS("tp_cpl_requests:", req); PRINT_CH_STATS("tp_cpl_responses:", rsp); } static void show_tp_err_channel_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_err_stats stats; u8 i; spin_lock(&adap->stats_lock); t4_tp_get_err_stats(adap, &stats, false); spin_unlock(&adap->stats_lock); PRINT_CH_STATS("tp_mac_in_errs:", mac_in_errs); PRINT_CH_STATS("tp_hdr_in_errs:", hdr_in_errs); PRINT_CH_STATS("tp_tcp_in_errs:", tcp_in_errs); PRINT_CH_STATS("tp_tcp6_in_errs:", tcp6_in_errs); PRINT_CH_STATS("tp_tnl_cong_drops:", tnl_cong_drops); PRINT_CH_STATS("tp_tnl_tx_drops:", tnl_tx_drops); PRINT_CH_STATS("tp_ofld_vlan_drops:", ofld_vlan_drops); PRINT_CH_STATS("tp_ofld_chan_drops:", ofld_chan_drops); } static void show_fcoe_stats(struct seq_file *seq) { struct adapter *adap = seq->private; struct tp_fcoe_stats stats[NCHAN]; u8 i; spin_lock(&adap->stats_lock); for (i = 0; i < adap->params.arch.nchan; i++) t4_get_fcoe_stats(adap, i, &stats[i], false); spin_unlock(&adap->stats_lock); PRINT_CH_STATS2("fcoe_octets_ddp", octets_ddp); PRINT_CH_STATS2("fcoe_frames_ddp", frames_ddp); PRINT_CH_STATS2("fcoe_frames_drop", frames_drop); } #undef PRINT_CH_STATS2 #undef PRINT_CH_STATS #undef PRINT_ADAP_STATS static int tp_stats_show(struct seq_file *seq, void *v) { struct adapter *adap = seq->private; seq_puts(seq, "\n--------Adapter Stats--------\n"); show_tcp_stats(seq); show_ddp_stats(seq); show_rdma_stats(seq); show_tp_err_adapter_stats(seq); seq_puts(seq, "\n-------- Channel Stats --------\n"); if (adap->params.arch.nchan == NCHAN) seq_printf(seq, "%-25s %-20s %-20s %-20s %-20s\n", " ", "channel 0", "channel 1", "channel 2", "channel 3"); else seq_printf(seq, "%-25s %-20s %-20s\n", " ", "channel 0", "channel 1"); show_cpl_stats(seq); show_tp_err_channel_stats(seq); show_fcoe_stats(seq); return 0; } DEFINE_SHOW_ATTRIBUTE(tp_stats); /* Add an array of Debug FS files. */ void add_debugfs_files(struct adapter *adap, struct t4_debugfs_entry *files, unsigned int nfiles) { int i; /* debugfs support is best effort */ for (i = 0; i < nfiles; i++) debugfs_create_file(files[i].name, files[i].mode, adap->debugfs_root, (void *)adap + files[i].data, files[i].ops); } int t4_setup_debugfs(struct adapter *adap) { int i; u32 size = 0; static struct t4_debugfs_entry t4_debugfs_files[] = { { "cim_la", &cim_la_fops, 0400, 0 }, { "cim_pif_la", &cim_pif_la_fops, 0400, 0 }, { "cim_ma_la", &cim_ma_la_fops, 0400, 0 }, { "cim_qcfg", &cim_qcfg_fops, 0400, 0 }, { "clk", &clk_fops, 0400, 0 }, { "devlog", &devlog_fops, 0400, 0 }, { "mboxlog", &mboxlog_fops, 0400, 0 }, { "mbox0", &mbox_debugfs_fops, 0600, 0 }, { "mbox1", &mbox_debugfs_fops, 0600, 1 }, { "mbox2", &mbox_debugfs_fops, 0600, 2 }, { "mbox3", &mbox_debugfs_fops, 0600, 3 }, { "mbox4", &mbox_debugfs_fops, 0600, 4 }, { "mbox5", &mbox_debugfs_fops, 0600, 5 }, { "mbox6", &mbox_debugfs_fops, 0600, 6 }, { "mbox7", &mbox_debugfs_fops, 0600, 7 }, { "trace0", &mps_trc_debugfs_fops, 0600, 0 }, { "trace1", &mps_trc_debugfs_fops, 0600, 1 }, { "trace2", &mps_trc_debugfs_fops, 0600, 2 }, { "trace3", &mps_trc_debugfs_fops, 0600, 3 }, { "l2t", &t4_l2t_fops, 0400, 0}, { "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 }, { "rss", &rss_debugfs_fops, 0400, 0 }, { "rss_config", &rss_config_fops, 0400, 0 }, { "rss_key", &rss_key_debugfs_fops, 0400, 0 }, { "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 }, { "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 }, { "resources", &resources_fops, 0400, 0 }, #ifdef CONFIG_CHELSIO_T4_DCB { "dcb_info", &dcb_info_debugfs_fops, 0400, 0 }, #endif { "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 }, { "ibq_tp0", &cim_ibq_fops, 0400, 0 }, { "ibq_tp1", &cim_ibq_fops, 0400, 1 }, { "ibq_ulp", &cim_ibq_fops, 0400, 2 }, { "ibq_sge0", &cim_ibq_fops, 0400, 3 }, { "ibq_sge1", &cim_ibq_fops, 0400, 4 }, { "ibq_ncsi", &cim_ibq_fops, 0400, 5 }, { "obq_ulp0", &cim_obq_fops, 0400, 0 }, { "obq_ulp1", &cim_obq_fops, 0400, 1 }, { "obq_ulp2", &cim_obq_fops, 0400, 2 }, { "obq_ulp3", &cim_obq_fops, 0400, 3 }, { "obq_sge", &cim_obq_fops, 0400, 4 }, { "obq_ncsi", &cim_obq_fops, 0400, 5 }, { "tp_la", &tp_la_fops, 0400, 0 }, { "ulprx_la", &ulprx_la_fops, 0400, 0 }, { "sensors", &sensors_fops, 0400, 0 }, { "pm_stats", &pm_stats_debugfs_fops, 0400, 0 }, { "tx_rate", &tx_rate_fops, 0400, 0 }, { "cctrl", &cctrl_tbl_fops, 0400, 0 }, #if IS_ENABLED(CONFIG_IPV6) { "clip_tbl", &clip_tbl_fops, 0400, 0 }, #endif { "tids", &tid_info_fops, 0400, 0}, { "blocked_fl", &blocked_fl_fops, 0600, 0 }, { "meminfo", &meminfo_fops, 0400, 0 }, { "crypto", &chcr_stats_fops, 0400, 0 }, { "tp_stats", &tp_stats_fops, 0400, 0 }, }; /* Debug FS nodes common to all T5 and later adapters. */ static struct t4_debugfs_entry t5_debugfs_files[] = { { "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 }, { "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 }, }; add_debugfs_files(adap, t4_debugfs_files, ARRAY_SIZE(t4_debugfs_files)); if (!is_t4(adap->params.chip)) add_debugfs_files(adap, t5_debugfs_files, ARRAY_SIZE(t5_debugfs_files)); i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A); if (i & EDRAM0_ENABLE_F) { size = t4_read_reg(adap, MA_EDRAM0_BAR_A); add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size)); } if (i & EDRAM1_ENABLE_F) { size = t4_read_reg(adap, MA_EDRAM1_BAR_A); add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size)); } if (is_t5(adap->params.chip)) { if (i & EXT_MEM0_ENABLE_F) { size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); add_debugfs_mem(adap, "mc0", MEM_MC0, EXT_MEM0_SIZE_G(size)); } if (i & EXT_MEM1_ENABLE_F) { size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); add_debugfs_mem(adap, "mc1", MEM_MC1, EXT_MEM1_SIZE_G(size)); } } else { if (i & EXT_MEM_ENABLE_F) { size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A); add_debugfs_mem(adap, "mc", MEM_MC, EXT_MEM_SIZE_G(size)); } if (i & HMA_MUX_F) { size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); add_debugfs_mem(adap, "hma", MEM_HMA, EXT_MEM1_SIZE_G(size)); } } debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap, &flash_debugfs_fops, adap->params.sf_size); debugfs_create_bool("use_backdoor", 0600, adap->debugfs_root, &adap->use_bd); debugfs_create_bool("trace_rss", 0600, adap->debugfs_root, &adap->trace_rss); return 0; }