/** * Copyright (c) 2014 Redpine Signals Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "rsi_mgmt.h" #include "rsi_common.h" static struct bootup_params boot_params_20 = { .magic_number = cpu_to_le16(0x5aa5), .crystal_good_time = 0x0, .valid = cpu_to_le32(VALID_20), .reserved_for_valids = 0x0, .bootup_mode_info = 0x0, .digital_loop_back_params = 0x0, .rtls_timestamp_en = 0x0, .host_spi_intr_cfg = 0x0, .device_clk_info = {{ .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = cpu_to_le16(BIT(3)), .bbp_lmac_clk_reg_val = cpu_to_le16(0x121), .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } } }, .buckboost_wakeup_cnt = 0x0, .pmu_wakeup_wait = 0x0, .shutdown_wait_time = 0x0, .pmu_slp_clkout_sel = 0x0, .wdt_prog_value = 0x0, .wdt_soc_rst_delay = 0x0, .dcdc_operation_mode = 0x0, .soc_reset_wait_cnt = 0x0 }; static struct bootup_params boot_params_40 = { .magic_number = cpu_to_le16(0x5aa5), .crystal_good_time = 0x0, .valid = cpu_to_le32(VALID_40), .reserved_for_valids = 0x0, .bootup_mode_info = 0x0, .digital_loop_back_params = 0x0, .rtls_timestamp_en = 0x0, .host_spi_intr_cfg = 0x0, .device_clk_info = {{ .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = cpu_to_le16(0x09), .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), .umac_clock_reg_config = cpu_to_le16(0x48), .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } } }, .buckboost_wakeup_cnt = 0x0, .pmu_wakeup_wait = 0x0, .shutdown_wait_time = 0x0, .pmu_slp_clkout_sel = 0x0, .wdt_prog_value = 0x0, .wdt_soc_rst_delay = 0x0, .dcdc_operation_mode = 0x0, .soc_reset_wait_cnt = 0x0 }; static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; /** * rsi_set_default_parameters() - This function sets default parameters. * @common: Pointer to the driver private structure. * * Return: none */ static void rsi_set_default_parameters(struct rsi_common *common) { common->band = IEEE80211_BAND_2GHZ; common->channel_width = BW_20MHZ; common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; common->channel = 1; common->min_rate = 0xffff; common->fsm_state = FSM_CARD_NOT_READY; common->iface_down = true; } /** * rsi_set_contention_vals() - This function sets the contention values for the * backoff procedure. * @common: Pointer to the driver private structure. * * Return: None. */ static void rsi_set_contention_vals(struct rsi_common *common) { u8 ii = 0; for (; ii < NUM_EDCA_QUEUES; ii++) { common->tx_qinfo[ii].wme_params = (((common->edca_params[ii].cw_min / 2) + (common->edca_params[ii].aifs)) * WMM_SHORT_SLOT_TIME + SIFS_DURATION); common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; common->tx_qinfo[ii].pkt_contended = 0; } } /** * rsi_send_internal_mgmt_frame() - This function sends management frames to * firmware.Also schedules packet to queue * for transmission. * @common: Pointer to the driver private structure. * @skb: Pointer to the socket buffer structure. * * Return: 0 on success, -1 on failure. */ static int rsi_send_internal_mgmt_frame(struct rsi_common *common, struct sk_buff *skb) { struct skb_info *tx_params; if (skb == NULL) { rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); return -ENOMEM; } tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; tx_params->flags |= INTERNAL_MGMT_PKT; skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); rsi_set_event(&common->tx_thread.event); return 0; } /** * rsi_load_radio_caps() - This function is used to send radio capabilities * values to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding negative error code on failure. */ static int rsi_load_radio_caps(struct rsi_common *common) { struct rsi_radio_caps *radio_caps; struct rsi_hw *adapter = common->priv; struct ieee80211_hw *hw = adapter->hw; u16 inx = 0; u8 ii; u8 radio_id = 0; u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0}; struct ieee80211_conf *conf = &hw->conf; struct sk_buff *skb; rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_radio_caps)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_radio_caps)); radio_caps = (struct rsi_radio_caps *)skb->data; radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES); radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8); if (common->channel_width == BW_40MHZ) { radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ); radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ); if (common->channel_width) { radio_caps->desc_word[5] = cpu_to_le16(common->channel_width << 12); radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE); } if (conf_is_ht40_minus(conf)) { radio_caps->desc_word[5] = 0; radio_caps->desc_word[5] |= cpu_to_le16(LOWER_20_ENABLE); radio_caps->desc_word[5] |= cpu_to_le16(LOWER_20_ENABLE >> 12); } if (conf_is_ht40_plus(conf)) { radio_caps->desc_word[5] = 0; radio_caps->desc_word[5] |= cpu_to_le16(UPPER_20_ENABLE); radio_caps->desc_word[5] |= cpu_to_le16(UPPER_20_ENABLE >> 12); } } radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8); for (ii = 0; ii < MAX_HW_QUEUES; ii++) { radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); radio_caps->qos_params[ii].txop_q = 0; } for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) { radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(common->edca_params[ii].cw_min); radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(common->edca_params[ii].cw_max); radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16((common->edca_params[ii].aifs) << 8); radio_caps->qos_params[ii].txop_q = cpu_to_le16(common->edca_params[ii].txop); } memcpy(&common->rate_pwr[0], &gc[0], 40); for (ii = 0; ii < 20; ii++) radio_caps->gcpd_per_rate[inx++] = cpu_to_le16(common->rate_pwr[ii] & 0x00FF); radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); skb_put(skb, (sizeof(struct rsi_radio_caps))); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. * @common: Pointer to the driver private structure. * @msg: Pointer to received packet. * @msg_len: Length of the recieved packet. * @type: Type of recieved packet. * * Return: 0 on success, -1 on failure. */ static int rsi_mgmt_pkt_to_core(struct rsi_common *common, u8 *msg, s32 msg_len, u8 type) { struct rsi_hw *adapter = common->priv; struct ieee80211_tx_info *info; struct skb_info *rx_params; u8 pad_bytes = msg[4]; u8 pkt_recv; struct sk_buff *skb; char *buffer; if (type == RX_DOT11_MGMT) { if (!adapter->sc_nvifs) return -ENOLINK; msg_len -= pad_bytes; if ((msg_len <= 0) || (!msg)) { rsi_dbg(MGMT_RX_ZONE, "%s: Invalid rx msg of len = %d\n", __func__, msg_len); return -EINVAL; } skb = dev_alloc_skb(msg_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n", __func__); return -ENOMEM; } buffer = skb_put(skb, msg_len); memcpy(buffer, (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), msg_len); pkt_recv = buffer[0]; info = IEEE80211_SKB_CB(skb); rx_params = (struct skb_info *)info->driver_data; rx_params->rssi = rsi_get_rssi(msg); rx_params->channel = rsi_get_channel(msg); rsi_indicate_pkt_to_os(common, skb); } else { rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__); } return 0; } /** * rsi_hal_send_sta_notify_frame() - This function sends the station notify * frame to firmware. * @common: Pointer to the driver private structure. * @opmode: Operating mode of device. * @notify_event: Notification about station connection. * @bssid: bssid. * @qos_enable: Qos is enabled. * @aid: Aid (unique for all STA). * * Return: status: 0 on success, corresponding negative error code on failure. */ static int rsi_hal_send_sta_notify_frame(struct rsi_common *common, u8 opmode, u8 notify_event, const unsigned char *bssid, u8 qos_enable, u16 aid) { struct sk_buff *skb = NULL; struct rsi_peer_notify *peer_notify; u16 vap_id = 0; int status; rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_peer_notify)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_peer_notify)); peer_notify = (struct rsi_peer_notify *)skb->data; peer_notify->command = cpu_to_le16(opmode << 1); switch (notify_event) { case STA_CONNECTED: peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); break; case STA_DISCONNECTED: peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); break; default: break; } peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); ether_addr_copy(peer_notify->mac_addr, bssid); peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); peer_notify->desc_word[0] = cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY); peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8); skb_put(skb, sizeof(struct rsi_peer_notify)); status = rsi_send_internal_mgmt_frame(common, skb); if (!status && qos_enable) { rsi_set_contention_vals(common); status = rsi_load_radio_caps(common); } return status; } /** * rsi_send_aggregation_params_frame() - This function sends the ampdu * indication frame to firmware. * @common: Pointer to the driver private structure. * @tid: traffic identifier. * @ssn: ssn. * @buf_size: buffer size. * @event: notification about station connection. * * Return: 0 on success, corresponding negative error code on failure. */ int rsi_send_aggregation_params_frame(struct rsi_common *common, u16 tid, u16 ssn, u8 buf_size, u8 event) { struct sk_buff *skb = NULL; struct rsi_mac_frame *mgmt_frame; u8 peer_id = 0; skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND); if (event == STA_TX_ADDBA_DONE) { mgmt_frame->desc_word[4] = cpu_to_le16(ssn); mgmt_frame->desc_word[5] = cpu_to_le16(buf_size); mgmt_frame->desc_word[7] = cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8))); } else if (event == STA_RX_ADDBA_DONE) { mgmt_frame->desc_word[4] = cpu_to_le16(ssn); mgmt_frame->desc_word[7] = cpu_to_le16(tid | (START_AMPDU_AGGR << 4) | (RX_BA_INDICATION << 5) | (peer_id << 8)); } else if (event == STA_TX_DELBA) { mgmt_frame->desc_word[7] = cpu_to_le16(tid | (STOP_AMPDU_AGGR << 4) | (peer_id << 8)); } else if (event == STA_RX_DELBA) { mgmt_frame->desc_word[7] = cpu_to_le16(tid | (STOP_AMPDU_AGGR << 4) | (RX_BA_INDICATION << 5) | (peer_id << 8)); } skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_program_bb_rf() - This function starts base band and RF programming. * This is called after initial configurations are done. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding negative error code on failure. */ static int rsi_program_bb_rf(struct rsi_common *common) { struct sk_buff *skb; struct rsi_mac_frame *mgmt_frame; rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA); mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint << 8); if (common->rf_reset) { mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE); rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", __func__); common->rf_reset = 0; } common->bb_rf_prog_count = 1; mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | (RSI_RF_TYPE << 4)); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_set_vap_capabilities() - This function send vap capability to firmware. * @common: Pointer to the driver private structure. * @opmode: Operating mode of device. * * Return: 0 on success, corresponding negative error code on failure. */ int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode) { struct sk_buff *skb = NULL; struct rsi_vap_caps *vap_caps; u16 vap_id = 0; rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_vap_caps)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_vap_caps)); vap_caps = (struct rsi_vap_caps *)skb->data; vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES); vap_caps->desc_word[4] = cpu_to_le16(mode | (common->channel_width << 8)); vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) | (common->mac_id << 4) | common->radio_id); memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN); vap_caps->keep_alive_period = cpu_to_le16(90); vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); vap_caps->default_mgmt_rate = 0; if (conf_is_ht40(&common->priv->hw->conf)) { vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16); } else { vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6); } vap_caps->default_data_rate = 0; vap_caps->beacon_interval = cpu_to_le16(200); vap_caps->dtim_period = cpu_to_le16(4); skb_put(skb, sizeof(*vap_caps)); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_hal_load_key() - This function is used to load keys within the firmware. * @common: Pointer to the driver private structure. * @data: Pointer to the key data. * @key_len: Key length to be loaded. * @key_type: Type of key: GROUP/PAIRWISE. * @key_id: Key index. * @cipher: Type of cipher used. * * Return: 0 on success, -1 on failure. */ int rsi_hal_load_key(struct rsi_common *common, u8 *data, u16 key_len, u8 key_type, u8 key_id, u32 cipher) { struct sk_buff *skb = NULL; struct rsi_set_key *set_key; u16 key_descriptor = 0; rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_set_key)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_set_key)); set_key = (struct rsi_set_key *)skb->data; if ((cipher == WLAN_CIPHER_SUITE_WEP40) || (cipher == WLAN_CIPHER_SUITE_WEP104)) { key_len += 1; key_descriptor |= BIT(2); if (key_len >= 13) key_descriptor |= BIT(3); } else if (cipher != KEY_TYPE_CLEAR) { key_descriptor |= BIT(4); if (key_type == RSI_PAIRWISE_KEY) key_id = 0; if (cipher == WLAN_CIPHER_SUITE_TKIP) key_descriptor |= BIT(5); } key_descriptor |= (key_type | BIT(13) | (key_id << 14)); set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ); set_key->desc_word[4] = cpu_to_le16(key_descriptor); if ((cipher == WLAN_CIPHER_SUITE_WEP40) || (cipher == WLAN_CIPHER_SUITE_WEP104)) { memcpy(&set_key->key[key_id][1], data, key_len * 2); } else { memcpy(&set_key->key[0][0], data, key_len); } memcpy(set_key->tx_mic_key, &data[16], 8); memcpy(set_key->rx_mic_key, &data[24], 8); skb_put(skb, sizeof(struct rsi_set_key)); return rsi_send_internal_mgmt_frame(common, skb); } /* * rsi_load_bootup_params() - This function send bootup params to the firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_load_bootup_params(struct rsi_common *common) { struct sk_buff *skb; struct rsi_boot_params *boot_params; rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_boot_params)); boot_params = (struct rsi_boot_params *)skb->data; rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); if (common->channel_width == BW_40MHZ) { memcpy(&boot_params->bootup_params, &boot_params_40, sizeof(struct bootup_params)); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, UMAC_CLK_40BW); boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); } else { memcpy(&boot_params->bootup_params, &boot_params_20, sizeof(struct bootup_params)); if (boot_params_20.valid != cpu_to_le32(VALID_20)) { boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 20MHZ <=== %d\n", __func__, UMAC_CLK_20BW); } else { boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 20MHZ <=== %d\n", __func__, UMAC_CLK_40MHZ); } } /** * Bit{0:11} indicates length of the Packet * Bit{12:15} indicates host queue number */ boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | (RSI_WIFI_MGMT_Q << 12)); boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); skb_put(skb, sizeof(struct rsi_boot_params)); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_send_reset_mac() - This function prepares reset MAC request and sends an * internal management frame to indicate it to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_send_reset_mac(struct rsi_common *common) { struct sk_buff *skb; struct rsi_mac_frame *mgmt_frame; rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_set_channel() - This function programs the channel. * @common: Pointer to the driver private structure. * @channel: Channel value to be set. * * Return: 0 on success, corresponding error code on failure. */ int rsi_set_channel(struct rsi_common *common, u16 channel) { struct sk_buff *skb = NULL; struct rsi_mac_frame *mgmt_frame; rsi_dbg(MGMT_TX_ZONE, "%s: Sending scan req frame\n", __func__); if (common->band == IEEE80211_BAND_5GHZ) { if ((channel >= 36) && (channel <= 64)) channel = ((channel - 32) / 4); else if ((channel > 64) && (channel <= 140)) channel = ((channel - 102) / 4) + 8; else if (channel >= 149) channel = ((channel - 151) / 4) + 18; else return -EINVAL; } else { if (channel > 14) { rsi_dbg(ERR_ZONE, "%s: Invalid chno %d, band = %d\n", __func__, channel, common->band); return -EINVAL; } } skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST); mgmt_frame->desc_word[4] = cpu_to_le16(channel); mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | (RSI_RF_TYPE << 4)); mgmt_frame->desc_word[5] = cpu_to_le16(0x01); if (common->channel_width == BW_40MHZ) mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8); common->channel = channel; skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_compare() - This function is used to compare two integers * @a: pointer to the first integer * @b: pointer to the second integer * * Return: 0 if both are equal, -1 if the first is smaller, else 1 */ static int rsi_compare(const void *a, const void *b) { u16 _a = *(const u16 *)(a); u16 _b = *(const u16 *)(b); if (_a > _b) return -1; if (_a < _b) return 1; return 0; } /** * rsi_map_rates() - This function is used to map selected rates to hw rates. * @rate: The standard rate to be mapped. * @offset: Offset that will be returned. * * Return: 0 if it is a mcs rate, else 1 */ static bool rsi_map_rates(u16 rate, int *offset) { int kk; for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { if (rate == mcs[kk]) { *offset = kk; return false; } } for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { if (rate == rsi_rates[kk].bitrate / 5) { *offset = kk; break; } } return true; } /** * rsi_send_auto_rate_request() - This function is to set rates for connection * and send autorate request to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_send_auto_rate_request(struct rsi_common *common) { struct sk_buff *skb; struct rsi_auto_rate *auto_rate; int ii = 0, jj = 0, kk = 0; struct ieee80211_hw *hw = common->priv->hw; u8 band = hw->conf.chandef.chan->band; u8 num_supported_rates = 0; u8 rate_offset = 0; u32 rate_bitmap = common->bitrate_mask[band]; u16 *selected_rates, min_rate; skb = dev_alloc_skb(sizeof(struct rsi_auto_rate)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL); if (!selected_rates) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_auto_rate)); memset(selected_rates, 0, 2 * RSI_TBL_SZ); auto_rate = (struct rsi_auto_rate *)skb->data; auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); auto_rate->collision_tolerance = cpu_to_le16(3); auto_rate->failure_limit = cpu_to_le16(3); auto_rate->initial_boundary = cpu_to_le16(3); auto_rate->max_threshold_limt = cpu_to_le16(27); auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND); if (common->channel_width == BW_40MHZ) auto_rate->desc_word[7] |= cpu_to_le16(1); if (band == IEEE80211_BAND_2GHZ) min_rate = STD_RATE_01; else min_rate = STD_RATE_06; for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) { if (rate_bitmap & BIT(ii)) { selected_rates[jj++] = (rsi_rates[ii].bitrate / 5); rate_offset++; } } num_supported_rates = jj; if (common->vif_info[0].is_ht) { for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) selected_rates[jj++] = mcs[ii]; num_supported_rates += ARRAY_SIZE(mcs); rate_offset += ARRAY_SIZE(mcs); } if (rate_offset < (RSI_TBL_SZ / 2) - 1) { for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) { selected_rates[jj++] = min_rate; rate_offset++; } } sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); /* mapping the rates to RSI rates */ for (ii = 0; ii < jj; ii++) { if (rsi_map_rates(selected_rates[ii], &kk)) { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_rates[kk].hw_value); } else { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[kk]); } } /* loading HT rates in the bottom half of the auto rate table */ if (common->vif_info[0].is_ht) { if (common->vif_info[0].sgi) auto_rate->supported_rates[rate_offset++] = cpu_to_le16(RSI_RATE_MCS7_SG); for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { if (common->vif_info[0].sgi) auto_rate->supported_rates[ii++] = cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[kk--]); } for (; ii < RSI_TBL_SZ; ii++) { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[0]); } } auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); auto_rate->desc_word[7] |= cpu_to_le16(0 << 8); num_supported_rates *= 2; auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); skb_put(skb, sizeof(struct rsi_auto_rate)); kfree(selected_rates); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_inform_bss_status() - This function informs about bss status with the * help of sta notify params by sending an internal * management frame to firmware. * @common: Pointer to the driver private structure. * @status: Bss status type. * @bssid: Bssid. * @qos_enable: Qos is enabled. * @aid: Aid (unique for all STAs). * * Return: None. */ void rsi_inform_bss_status(struct rsi_common *common, u8 status, const unsigned char *bssid, u8 qos_enable, u16 aid) { if (status) { rsi_hal_send_sta_notify_frame(common, NL80211_IFTYPE_STATION, STA_CONNECTED, bssid, qos_enable, aid); if (common->min_rate == 0xffff) rsi_send_auto_rate_request(common); } else { rsi_hal_send_sta_notify_frame(common, NL80211_IFTYPE_STATION, STA_DISCONNECTED, bssid, qos_enable, aid); } } /** * rsi_eeprom_read() - This function sends a frame to read the mac address * from the eeprom. * @common: Pointer to the driver private structure. * * Return: 0 on success, -1 on failure. */ static int rsi_eeprom_read(struct rsi_common *common) { struct rsi_mac_frame *mgmt_frame; struct sk_buff *skb; rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; /* FrameType */ mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE); mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); /* Number of bytes to read */ mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN + WLAN_MAC_MAGIC_WORD_LEN + WLAN_HOST_MODE_LEN + WLAN_FW_VERSION_LEN); /* Address to read */ mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_handle_ta_confirm_type() - This function handles the confirm frames. * @common: Pointer to the driver private structure. * @msg: Pointer to received packet. * * Return: 0 on success, -1 on failure. */ static int rsi_handle_ta_confirm_type(struct rsi_common *common, u8 *msg) { u8 sub_type = (msg[15] & 0xff); switch (sub_type) { case BOOTUP_PARAMS_REQUEST: rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", __func__); if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { if (rsi_eeprom_read(common)) { common->fsm_state = FSM_CARD_NOT_READY; goto out; } else { common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; } } else { rsi_dbg(ERR_ZONE, "%s: Received bootup params cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case EEPROM_READ_TYPE: if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { if (msg[16] == MAGIC_WORD) { u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + WLAN_MAC_MAGIC_WORD_LEN); memcpy(common->mac_addr, &msg[offset], ETH_ALEN); memcpy(&common->fw_ver, &msg[offset + ETH_ALEN], sizeof(struct version_info)); } else { common->fsm_state = FSM_CARD_NOT_READY; break; } if (rsi_send_reset_mac(common)) goto out; else common->fsm_state = FSM_RESET_MAC_SENT; } else { rsi_dbg(ERR_ZONE, "%s: Received eeprom mac addr in %d state\n", __func__, common->fsm_state); return 0; } break; case RESET_MAC_REQ: if (common->fsm_state == FSM_RESET_MAC_SENT) { rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", __func__); if (rsi_load_radio_caps(common)) goto out; else common->fsm_state = FSM_RADIO_CAPS_SENT; } else { rsi_dbg(ERR_ZONE, "%s: Received reset mac cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case RADIO_CAPABILITIES: if (common->fsm_state == FSM_RADIO_CAPS_SENT) { common->rf_reset = 1; if (rsi_program_bb_rf(common)) { goto out; } else { common->fsm_state = FSM_BB_RF_PROG_SENT; rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", __func__); } } else { rsi_dbg(ERR_ZONE, "%s: Received radio caps cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case BB_PROG_VALUES_REQUEST: case RF_PROG_VALUES_REQUEST: case BBP_PROG_IN_TA: rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); if (common->fsm_state == FSM_BB_RF_PROG_SENT) { common->bb_rf_prog_count--; if (!common->bb_rf_prog_count) { common->fsm_state = FSM_MAC_INIT_DONE; return rsi_mac80211_attach(common); } } else { goto out; } break; default: rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", __func__); break; } return 0; out: rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", __func__); return -EINVAL; } /** * rsi_mgmt_pkt_recv() - This function processes the management packets * recieved from the hardware. * @common: Pointer to the driver private structure. * @msg: Pointer to the received packet. * * Return: 0 on success, -1 on failure. */ int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) { s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); u16 msg_type = (msg[2]); int ret; rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", __func__, msg_len, msg_type); if (msg_type == TA_CONFIRM_TYPE) { return rsi_handle_ta_confirm_type(common, msg); } else if (msg_type == CARD_READY_IND) { rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", __func__); if (common->fsm_state == FSM_CARD_NOT_READY) { rsi_set_default_parameters(common); ret = rsi_load_bootup_params(common); if (ret) return ret; else common->fsm_state = FSM_BOOT_PARAMS_SENT; } else { return -EINVAL; } } else if (msg_type == TX_STATUS_IND) { if (msg[15] == PROBEREQ_CONFIRM) { common->mgmt_q_block = false; rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", __func__); } } else { return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type); } return 0; }