/* NXP TDA10048HN DVB OFDM demodulator driver Copyright (C) 2009 Steven Toth This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dvb_math.h" #include "tda10048.h" #define TDA10048_DEFAULT_FIRMWARE "dvb-fe-tda10048-1.0.fw" #define TDA10048_DEFAULT_FIRMWARE_SIZE 24878 /* Register name definitions */ #define TDA10048_IDENTITY 0x00 #define TDA10048_VERSION 0x01 #define TDA10048_DSP_CODE_CPT 0x0C #define TDA10048_DSP_CODE_IN 0x0E #define TDA10048_IN_CONF1 0x10 #define TDA10048_IN_CONF2 0x11 #define TDA10048_IN_CONF3 0x12 #define TDA10048_OUT_CONF1 0x14 #define TDA10048_OUT_CONF2 0x15 #define TDA10048_OUT_CONF3 0x16 #define TDA10048_AUTO 0x18 #define TDA10048_SYNC_STATUS 0x1A #define TDA10048_CONF_C4_1 0x1E #define TDA10048_CONF_C4_2 0x1F #define TDA10048_CODE_IN_RAM 0x20 #define TDA10048_CHANNEL_INFO1_R 0x22 #define TDA10048_CHANNEL_INFO2_R 0x23 #define TDA10048_CHANNEL_INFO1 0x24 #define TDA10048_CHANNEL_INFO2 0x25 #define TDA10048_TIME_ERROR_R 0x26 #define TDA10048_TIME_ERROR 0x27 #define TDA10048_FREQ_ERROR_LSB_R 0x28 #define TDA10048_FREQ_ERROR_MSB_R 0x29 #define TDA10048_FREQ_ERROR_LSB 0x2A #define TDA10048_FREQ_ERROR_MSB 0x2B #define TDA10048_IT_SEL 0x30 #define TDA10048_IT_STAT 0x32 #define TDA10048_DSP_AD_LSB 0x3C #define TDA10048_DSP_AD_MSB 0x3D #define TDA10048_DSP_REG_LSB 0x3E #define TDA10048_DSP_REG_MSB 0x3F #define TDA10048_CONF_TRISTATE1 0x44 #define TDA10048_CONF_TRISTATE2 0x45 #define TDA10048_CONF_POLARITY 0x46 #define TDA10048_GPIO_SP_DS0 0x48 #define TDA10048_GPIO_SP_DS1 0x49 #define TDA10048_GPIO_SP_DS2 0x4A #define TDA10048_GPIO_SP_DS3 0x4B #define TDA10048_GPIO_OUT_SEL 0x4C #define TDA10048_GPIO_SELECT 0x4D #define TDA10048_IC_MODE 0x4E #define TDA10048_CONF_XO 0x50 #define TDA10048_CONF_PLL1 0x51 #define TDA10048_CONF_PLL2 0x52 #define TDA10048_CONF_PLL3 0x53 #define TDA10048_CONF_ADC 0x54 #define TDA10048_CONF_ADC_2 0x55 #define TDA10048_CONF_C1_1 0x60 #define TDA10048_CONF_C1_3 0x62 #define TDA10048_AGC_CONF 0x70 #define TDA10048_AGC_THRESHOLD_LSB 0x72 #define TDA10048_AGC_THRESHOLD_MSB 0x73 #define TDA10048_AGC_RENORM 0x74 #define TDA10048_AGC_GAINS 0x76 #define TDA10048_AGC_TUN_MIN 0x78 #define TDA10048_AGC_TUN_MAX 0x79 #define TDA10048_AGC_IF_MIN 0x7A #define TDA10048_AGC_IF_MAX 0x7B #define TDA10048_AGC_TUN_LEVEL 0x7E #define TDA10048_AGC_IF_LEVEL 0x7F #define TDA10048_DIG_AGC_LEVEL 0x81 #define TDA10048_FREQ_PHY2_LSB 0x86 #define TDA10048_FREQ_PHY2_MSB 0x87 #define TDA10048_TIME_INVWREF_LSB 0x88 #define TDA10048_TIME_INVWREF_MSB 0x89 #define TDA10048_TIME_WREF_LSB 0x8A #define TDA10048_TIME_WREF_MID1 0x8B #define TDA10048_TIME_WREF_MID2 0x8C #define TDA10048_TIME_WREF_MSB 0x8D #define TDA10048_NP_OUT 0xA2 #define TDA10048_CELL_ID_LSB 0xA4 #define TDA10048_CELL_ID_MSB 0xA5 #define TDA10048_EXTTPS_ODD 0xAA #define TDA10048_EXTTPS_EVEN 0xAB #define TDA10048_TPS_LENGTH 0xAC #define TDA10048_FREE_REG_1 0xB2 #define TDA10048_FREE_REG_2 0xB3 #define TDA10048_CONF_C3_1 0xC0 #define TDA10048_CVBER_CTRL 0xC2 #define TDA10048_CBER_NMAX_LSB 0xC4 #define TDA10048_CBER_NMAX_MSB 0xC5 #define TDA10048_CBER_LSB 0xC6 #define TDA10048_CBER_MSB 0xC7 #define TDA10048_VBER_LSB 0xC8 #define TDA10048_VBER_MID 0xC9 #define TDA10048_VBER_MSB 0xCA #define TDA10048_CVBER_LUT 0xCC #define TDA10048_UNCOR_CTRL 0xCD #define TDA10048_UNCOR_CPT_LSB 0xCE #define TDA10048_UNCOR_CPT_MSB 0xCF #define TDA10048_SOFT_IT_C3 0xD6 #define TDA10048_CONF_TS2 0xE0 #define TDA10048_CONF_TS1 0xE1 static unsigned int debug; #define dprintk(level, fmt, arg...)\ do { if (debug >= level)\ printk(KERN_DEBUG "tda10048: " fmt, ## arg);\ } while (0) struct tda10048_state { struct i2c_adapter *i2c; /* We'll cache and update the attach config settings */ struct tda10048_config config; struct dvb_frontend frontend; int fwloaded; u32 freq_if_hz; u32 xtal_hz; u32 pll_mfactor; u32 pll_nfactor; u32 pll_pfactor; u32 sample_freq; enum fe_bandwidth bandwidth; }; static struct init_tab { u8 reg; u16 data; } init_tab[] = { { TDA10048_CONF_PLL1, 0x08 }, { TDA10048_CONF_ADC_2, 0x00 }, { TDA10048_CONF_C4_1, 0x00 }, { TDA10048_CONF_PLL1, 0x0f }, { TDA10048_CONF_PLL2, 0x0a }, { TDA10048_CONF_PLL3, 0x43 }, { TDA10048_FREQ_PHY2_LSB, 0x02 }, { TDA10048_FREQ_PHY2_MSB, 0x0a }, { TDA10048_TIME_WREF_LSB, 0xbd }, { TDA10048_TIME_WREF_MID1, 0xe4 }, { TDA10048_TIME_WREF_MID2, 0xa8 }, { TDA10048_TIME_WREF_MSB, 0x02 }, { TDA10048_TIME_INVWREF_LSB, 0x04 }, { TDA10048_TIME_INVWREF_MSB, 0x06 }, { TDA10048_CONF_C4_1, 0x00 }, { TDA10048_CONF_C1_1, 0xa8 }, { TDA10048_AGC_CONF, 0x16 }, { TDA10048_CONF_C1_3, 0x0b }, { TDA10048_AGC_TUN_MIN, 0x00 }, { TDA10048_AGC_TUN_MAX, 0xff }, { TDA10048_AGC_IF_MIN, 0x00 }, { TDA10048_AGC_IF_MAX, 0xff }, { TDA10048_AGC_THRESHOLD_MSB, 0x00 }, { TDA10048_AGC_THRESHOLD_LSB, 0x70 }, { TDA10048_CVBER_CTRL, 0x38 }, { TDA10048_AGC_GAINS, 0x12 }, { TDA10048_CONF_XO, 0x00 }, { TDA10048_CONF_TS1, 0x07 }, { TDA10048_IC_MODE, 0x00 }, { TDA10048_CONF_TS2, 0xc0 }, { TDA10048_CONF_TRISTATE1, 0x21 }, { TDA10048_CONF_TRISTATE2, 0x00 }, { TDA10048_CONF_POLARITY, 0x00 }, { TDA10048_CONF_C4_2, 0x04 }, { TDA10048_CONF_ADC, 0x60 }, { TDA10048_CONF_ADC_2, 0x10 }, { TDA10048_CONF_ADC, 0x60 }, { TDA10048_CONF_ADC_2, 0x00 }, { TDA10048_CONF_C1_1, 0xa8 }, { TDA10048_UNCOR_CTRL, 0x00 }, { TDA10048_CONF_C4_2, 0x04 }, }; static struct pll_tab { u32 clk_freq_khz; u32 if_freq_khz; } pll_tab[] = { { TDA10048_CLK_4000, TDA10048_IF_36130 }, { TDA10048_CLK_16000, TDA10048_IF_3300 }, { TDA10048_CLK_16000, TDA10048_IF_3500 }, { TDA10048_CLK_16000, TDA10048_IF_3800 }, { TDA10048_CLK_16000, TDA10048_IF_4000 }, { TDA10048_CLK_16000, TDA10048_IF_4300 }, { TDA10048_CLK_16000, TDA10048_IF_4500 }, { TDA10048_CLK_16000, TDA10048_IF_5000 }, { TDA10048_CLK_16000, TDA10048_IF_36130 }, }; static int tda10048_writereg(struct tda10048_state *state, u8 reg, u8 data) { struct tda10048_config *config = &state->config; int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = config->demod_address, .flags = 0, .buf = buf, .len = 2 }; dprintk(2, "%s(reg = 0x%02x, data = 0x%02x)\n", __func__, reg, data); ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) printk("%s: writereg error (ret == %i)\n", __func__, ret); return (ret != 1) ? -1 : 0; } static u8 tda10048_readreg(struct tda10048_state *state, u8 reg) { struct tda10048_config *config = &state->config; int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; dprintk(2, "%s(reg = 0x%02x)\n", __func__, reg); ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) printk(KERN_ERR "%s: readreg error (ret == %i)\n", __func__, ret); return b1[0]; } static int tda10048_writeregbulk(struct tda10048_state *state, u8 reg, const u8 *data, u16 len) { struct tda10048_config *config = &state->config; int ret = -EREMOTEIO; struct i2c_msg msg; u8 *buf; dprintk(2, "%s(%d, ?, len = %d)\n", __func__, reg, len); buf = kmalloc(len + 1, GFP_KERNEL); if (buf == NULL) { ret = -ENOMEM; goto error; } *buf = reg; memcpy(buf + 1, data, len); msg.addr = config->demod_address; msg.flags = 0; msg.buf = buf; msg.len = len + 1; dprintk(2, "%s(): write len = %d\n", __func__, msg.len); ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) { printk(KERN_ERR "%s(): writereg error err %i\n", __func__, ret); ret = -EREMOTEIO; } error: kfree(buf); return ret; } static int tda10048_set_phy2(struct dvb_frontend *fe, u32 sample_freq_hz, u32 if_hz) { struct tda10048_state *state = fe->demodulator_priv; u64 t; dprintk(1, "%s()\n", __func__); if (sample_freq_hz == 0) return -EINVAL; if (if_hz < (sample_freq_hz / 2)) { /* PHY2 = (if2/fs) * 2^15 */ t = if_hz; t *= 10; t *= 32768; do_div(t, sample_freq_hz); t += 5; do_div(t, 10); } else { /* PHY2 = ((IF1-fs)/fs) * 2^15 */ t = sample_freq_hz - if_hz; t *= 10; t *= 32768; do_div(t, sample_freq_hz); t += 5; do_div(t, 10); t = ~t + 1; } tda10048_writereg(state, TDA10048_FREQ_PHY2_LSB, (u8)t); tda10048_writereg(state, TDA10048_FREQ_PHY2_MSB, (u8)(t >> 8)); return 0; } static int tda10048_set_wref(struct dvb_frontend *fe, u32 sample_freq_hz, u32 bw) { struct tda10048_state *state = fe->demodulator_priv; u64 t, z; u32 b = 8000000; dprintk(1, "%s()\n", __func__); if (sample_freq_hz == 0) return -EINVAL; if (bw == BANDWIDTH_6_MHZ) b = 6000000; else if (bw == BANDWIDTH_7_MHZ) b = 7000000; /* WREF = (B / (7 * fs)) * 2^31 */ t = b * 10; /* avoid warning: this decimal constant is unsigned only in ISO C90 */ /* t *= 2147483648 on 32bit platforms */ t *= (2048 * 1024); t *= 1024; z = 7 * sample_freq_hz; do_div(t, z); t += 5; do_div(t, 10); tda10048_writereg(state, TDA10048_TIME_WREF_LSB, (u8)t); tda10048_writereg(state, TDA10048_TIME_WREF_MID1, (u8)(t >> 8)); tda10048_writereg(state, TDA10048_TIME_WREF_MID2, (u8)(t >> 16)); tda10048_writereg(state, TDA10048_TIME_WREF_MSB, (u8)(t >> 24)); return 0; } static int tda10048_set_invwref(struct dvb_frontend *fe, u32 sample_freq_hz, u32 bw) { struct tda10048_state *state = fe->demodulator_priv; u64 t; u32 b = 8000000; dprintk(1, "%s()\n", __func__); if (sample_freq_hz == 0) return -EINVAL; if (bw == BANDWIDTH_6_MHZ) b = 6000000; else if (bw == BANDWIDTH_7_MHZ) b = 7000000; /* INVWREF = ((7 * fs) / B) * 2^5 */ t = sample_freq_hz; t *= 7; t *= 32; t *= 10; do_div(t, b); t += 5; do_div(t, 10); tda10048_writereg(state, TDA10048_TIME_INVWREF_LSB, (u8)t); tda10048_writereg(state, TDA10048_TIME_INVWREF_MSB, (u8)(t >> 8)); return 0; } static int tda10048_set_bandwidth(struct dvb_frontend *fe, enum fe_bandwidth bw) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s(bw=%d)\n", __func__, bw); /* Bandwidth setting may need to be adjusted */ switch (bw) { case BANDWIDTH_6_MHZ: case BANDWIDTH_7_MHZ: case BANDWIDTH_8_MHZ: tda10048_set_wref(fe, state->sample_freq, bw); tda10048_set_invwref(fe, state->sample_freq, bw); break; default: printk(KERN_ERR "%s() invalid bandwidth\n", __func__); return -EINVAL; } state->bandwidth = bw; return 0; } static int tda10048_set_if(struct dvb_frontend *fe, enum fe_bandwidth bw) { struct tda10048_state *state = fe->demodulator_priv; struct tda10048_config *config = &state->config; int i; u32 if_freq_khz; dprintk(1, "%s(bw = %d)\n", __func__, bw); /* based on target bandwidth and clk we calculate pll factors */ switch (bw) { case BANDWIDTH_6_MHZ: if_freq_khz = config->dtv6_if_freq_khz; break; case BANDWIDTH_7_MHZ: if_freq_khz = config->dtv7_if_freq_khz; break; case BANDWIDTH_8_MHZ: if_freq_khz = config->dtv8_if_freq_khz; break; default: printk(KERN_ERR "%s() no default\n", __func__); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(pll_tab); i++) { if ((pll_tab[i].clk_freq_khz == config->clk_freq_khz) && (pll_tab[i].if_freq_khz == if_freq_khz)) { state->freq_if_hz = pll_tab[i].if_freq_khz * 1000; state->xtal_hz = pll_tab[i].clk_freq_khz * 1000; break; } } if (i == ARRAY_SIZE(pll_tab)) { printk(KERN_ERR "%s() Incorrect attach settings\n", __func__); return -EINVAL; } dprintk(1, "- freq_if_hz = %d\n", state->freq_if_hz); dprintk(1, "- xtal_hz = %d\n", state->xtal_hz); dprintk(1, "- pll_mfactor = %d\n", state->pll_mfactor); dprintk(1, "- pll_nfactor = %d\n", state->pll_nfactor); dprintk(1, "- pll_pfactor = %d\n", state->pll_pfactor); /* Calculate the sample frequency */ state->sample_freq = state->xtal_hz * (state->pll_mfactor + 45); state->sample_freq /= (state->pll_nfactor + 1); state->sample_freq /= (state->pll_pfactor + 4); dprintk(1, "- sample_freq = %d\n", state->sample_freq); /* Update the I/F */ tda10048_set_phy2(fe, state->sample_freq, state->freq_if_hz); return 0; } static int tda10048_firmware_upload(struct dvb_frontend *fe) { struct tda10048_state *state = fe->demodulator_priv; struct tda10048_config *config = &state->config; const struct firmware *fw; int ret; int pos = 0; int cnt; u8 wlen = config->fwbulkwritelen; if ((wlen != TDA10048_BULKWRITE_200) && (wlen != TDA10048_BULKWRITE_50)) wlen = TDA10048_BULKWRITE_200; /* request the firmware, this will block and timeout */ printk(KERN_INFO "%s: waiting for firmware upload (%s)...\n", __func__, TDA10048_DEFAULT_FIRMWARE); ret = request_firmware(&fw, TDA10048_DEFAULT_FIRMWARE, state->i2c->dev.parent); if (ret) { printk(KERN_ERR "%s: Upload failed. (file not found?)\n", __func__); return -EIO; } else { printk(KERN_INFO "%s: firmware read %Zu bytes.\n", __func__, fw->size); ret = 0; } if (fw->size != TDA10048_DEFAULT_FIRMWARE_SIZE) { printk(KERN_ERR "%s: firmware incorrect size\n", __func__); ret = -EIO; } else { printk(KERN_INFO "%s: firmware uploading\n", __func__); /* Soft reset */ tda10048_writereg(state, TDA10048_CONF_TRISTATE1, tda10048_readreg(state, TDA10048_CONF_TRISTATE1) & 0xfe); tda10048_writereg(state, TDA10048_CONF_TRISTATE1, tda10048_readreg(state, TDA10048_CONF_TRISTATE1) | 0x01); /* Put the demod into host download mode */ tda10048_writereg(state, TDA10048_CONF_C4_1, tda10048_readreg(state, TDA10048_CONF_C4_1) & 0xf9); /* Boot the DSP */ tda10048_writereg(state, TDA10048_CONF_C4_1, tda10048_readreg(state, TDA10048_CONF_C4_1) | 0x08); /* Prepare for download */ tda10048_writereg(state, TDA10048_DSP_CODE_CPT, 0); /* Download the firmware payload */ while (pos < fw->size) { if ((fw->size - pos) > wlen) cnt = wlen; else cnt = fw->size - pos; tda10048_writeregbulk(state, TDA10048_DSP_CODE_IN, &fw->data[pos], cnt); pos += cnt; } ret = -EIO; /* Wait up to 250ms for the DSP to boot */ for (cnt = 0; cnt < 250 ; cnt += 10) { msleep(10); if (tda10048_readreg(state, TDA10048_SYNC_STATUS) & 0x40) { ret = 0; break; } } } release_firmware(fw); if (ret == 0) { printk(KERN_INFO "%s: firmware uploaded\n", __func__); state->fwloaded = 1; } else printk(KERN_ERR "%s: firmware upload failed\n", __func__); return ret; } static int tda10048_set_inversion(struct dvb_frontend *fe, int inversion) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s(%d)\n", __func__, inversion); if (inversion == TDA10048_INVERSION_ON) tda10048_writereg(state, TDA10048_CONF_C1_1, tda10048_readreg(state, TDA10048_CONF_C1_1) | 0x20); else tda10048_writereg(state, TDA10048_CONF_C1_1, tda10048_readreg(state, TDA10048_CONF_C1_1) & 0xdf); return 0; } /* Retrieve the demod settings */ static int tda10048_get_tps(struct tda10048_state *state, struct dvb_ofdm_parameters *p) { u8 val; /* Make sure the TPS regs are valid */ if (!(tda10048_readreg(state, TDA10048_AUTO) & 0x01)) return -EAGAIN; val = tda10048_readreg(state, TDA10048_OUT_CONF2); switch ((val & 0x60) >> 5) { case 0: p->constellation = QPSK; break; case 1: p->constellation = QAM_16; break; case 2: p->constellation = QAM_64; break; } switch ((val & 0x18) >> 3) { case 0: p->hierarchy_information = HIERARCHY_NONE; break; case 1: p->hierarchy_information = HIERARCHY_1; break; case 2: p->hierarchy_information = HIERARCHY_2; break; case 3: p->hierarchy_information = HIERARCHY_4; break; } switch (val & 0x07) { case 0: p->code_rate_HP = FEC_1_2; break; case 1: p->code_rate_HP = FEC_2_3; break; case 2: p->code_rate_HP = FEC_3_4; break; case 3: p->code_rate_HP = FEC_5_6; break; case 4: p->code_rate_HP = FEC_7_8; break; } val = tda10048_readreg(state, TDA10048_OUT_CONF3); switch (val & 0x07) { case 0: p->code_rate_LP = FEC_1_2; break; case 1: p->code_rate_LP = FEC_2_3; break; case 2: p->code_rate_LP = FEC_3_4; break; case 3: p->code_rate_LP = FEC_5_6; break; case 4: p->code_rate_LP = FEC_7_8; break; } val = tda10048_readreg(state, TDA10048_OUT_CONF1); switch ((val & 0x0c) >> 2) { case 0: p->guard_interval = GUARD_INTERVAL_1_32; break; case 1: p->guard_interval = GUARD_INTERVAL_1_16; break; case 2: p->guard_interval = GUARD_INTERVAL_1_8; break; case 3: p->guard_interval = GUARD_INTERVAL_1_4; break; } switch (val & 0x03) { case 0: p->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: p->transmission_mode = TRANSMISSION_MODE_8K; break; } return 0; } static int tda10048_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct tda10048_state *state = fe->demodulator_priv; struct tda10048_config *config = &state->config; dprintk(1, "%s(%d)\n", __func__, enable); if (config->disable_gate_access) return 0; if (enable) return tda10048_writereg(state, TDA10048_CONF_C4_1, tda10048_readreg(state, TDA10048_CONF_C4_1) | 0x02); else return tda10048_writereg(state, TDA10048_CONF_C4_1, tda10048_readreg(state, TDA10048_CONF_C4_1) & 0xfd); } static int tda10048_output_mode(struct dvb_frontend *fe, int serial) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s(%d)\n", __func__, serial); /* Ensure pins are out of tri-state */ tda10048_writereg(state, TDA10048_CONF_TRISTATE1, 0x21); tda10048_writereg(state, TDA10048_CONF_TRISTATE2, 0x00); if (serial) { tda10048_writereg(state, TDA10048_IC_MODE, 0x80 | 0x20); tda10048_writereg(state, TDA10048_CONF_TS2, 0xc0); } else { tda10048_writereg(state, TDA10048_IC_MODE, 0x00); tda10048_writereg(state, TDA10048_CONF_TS2, 0x01); } return 0; } /* Talk to the demod, set the FEC, GUARD, QAM settings etc */ /* TODO: Support manual tuning with specific params */ static int tda10048_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s(frequency=%d)\n", __func__, p->frequency); /* Update the I/F pll's if the bandwidth changes */ if (p->u.ofdm.bandwidth != state->bandwidth) { tda10048_set_if(fe, p->u.ofdm.bandwidth); tda10048_set_bandwidth(fe, p->u.ofdm.bandwidth); } if (fe->ops.tuner_ops.set_params) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* Enable demod TPS auto detection and begin acquisition */ tda10048_writereg(state, TDA10048_AUTO, 0x57); /* trigger cber and vber acquisition */ tda10048_writereg(state, TDA10048_CVBER_CTRL, 0x3B); return 0; } /* Establish sane defaults and load firmware. */ static int tda10048_init(struct dvb_frontend *fe) { struct tda10048_state *state = fe->demodulator_priv; struct tda10048_config *config = &state->config; int ret = 0, i; dprintk(1, "%s()\n", __func__); /* PLL */ init_tab[4].data = (u8)(state->pll_mfactor); init_tab[5].data = (u8)(state->pll_nfactor) | 0x40; /* Apply register defaults */ for (i = 0; i < ARRAY_SIZE(init_tab); i++) tda10048_writereg(state, init_tab[i].reg, init_tab[i].data); if (state->fwloaded == 0) ret = tda10048_firmware_upload(fe); /* Set either serial or parallel */ tda10048_output_mode(fe, config->output_mode); /* Set inversion */ tda10048_set_inversion(fe, config->inversion); /* Establish default RF values */ tda10048_set_if(fe, BANDWIDTH_8_MHZ); tda10048_set_bandwidth(fe, BANDWIDTH_8_MHZ); /* Ensure we leave the gate closed */ tda10048_i2c_gate_ctrl(fe, 0); return ret; } static int tda10048_read_status(struct dvb_frontend *fe, fe_status_t *status) { struct tda10048_state *state = fe->demodulator_priv; u8 reg; *status = 0; reg = tda10048_readreg(state, TDA10048_SYNC_STATUS); dprintk(1, "%s() status =0x%02x\n", __func__, reg); if (reg & 0x02) *status |= FE_HAS_CARRIER; if (reg & 0x04) *status |= FE_HAS_SIGNAL; if (reg & 0x08) { *status |= FE_HAS_LOCK; *status |= FE_HAS_VITERBI; *status |= FE_HAS_SYNC; } return 0; } static int tda10048_read_ber(struct dvb_frontend *fe, u32 *ber) { struct tda10048_state *state = fe->demodulator_priv; static u32 cber_current; u32 cber_nmax; u64 cber_tmp; dprintk(1, "%s()\n", __func__); /* update cber on interrupt */ if (tda10048_readreg(state, TDA10048_SOFT_IT_C3) & 0x01) { cber_tmp = tda10048_readreg(state, TDA10048_CBER_MSB) << 8 | tda10048_readreg(state, TDA10048_CBER_LSB); cber_nmax = tda10048_readreg(state, TDA10048_CBER_NMAX_MSB) << 8 | tda10048_readreg(state, TDA10048_CBER_NMAX_LSB); cber_tmp *= 100000000; cber_tmp *= 2; cber_tmp = div_u64(cber_tmp, (cber_nmax * 32) + 1); cber_current = (u32)cber_tmp; /* retrigger cber acquisition */ tda10048_writereg(state, TDA10048_CVBER_CTRL, 0x39); } /* actual cber is (*ber)/1e8 */ *ber = cber_current; return 0; } static int tda10048_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { struct tda10048_state *state = fe->demodulator_priv; u8 v; dprintk(1, "%s()\n", __func__); *signal_strength = 65535; v = tda10048_readreg(state, TDA10048_NP_OUT); if (v > 0) *signal_strength -= (v << 8) | v; return 0; } /* SNR lookup table */ static struct snr_tab { u8 val; u8 data; } snr_tab[] = { { 0, 0 }, { 1, 246 }, { 2, 215 }, { 3, 198 }, { 4, 185 }, { 5, 176 }, { 6, 168 }, { 7, 161 }, { 8, 155 }, { 9, 150 }, { 10, 146 }, { 11, 141 }, { 12, 138 }, { 13, 134 }, { 14, 131 }, { 15, 128 }, { 16, 125 }, { 17, 122 }, { 18, 120 }, { 19, 118 }, { 20, 115 }, { 21, 113 }, { 22, 111 }, { 23, 109 }, { 24, 107 }, { 25, 106 }, { 26, 104 }, { 27, 102 }, { 28, 101 }, { 29, 99 }, { 30, 98 }, { 31, 96 }, { 32, 95 }, { 33, 94 }, { 34, 92 }, { 35, 91 }, { 36, 90 }, { 37, 89 }, { 38, 88 }, { 39, 86 }, { 40, 85 }, { 41, 84 }, { 42, 83 }, { 43, 82 }, { 44, 81 }, { 45, 80 }, { 46, 79 }, { 47, 78 }, { 48, 77 }, { 49, 76 }, { 50, 76 }, { 51, 75 }, { 52, 74 }, { 53, 73 }, { 54, 72 }, { 56, 71 }, { 57, 70 }, { 58, 69 }, { 60, 68 }, { 61, 67 }, { 63, 66 }, { 64, 65 }, { 66, 64 }, { 67, 63 }, { 68, 62 }, { 69, 62 }, { 70, 61 }, { 72, 60 }, { 74, 59 }, { 75, 58 }, { 77, 57 }, { 79, 56 }, { 81, 55 }, { 83, 54 }, { 85, 53 }, { 87, 52 }, { 89, 51 }, { 91, 50 }, { 93, 49 }, { 95, 48 }, { 97, 47 }, { 100, 46 }, { 102, 45 }, { 104, 44 }, { 107, 43 }, { 109, 42 }, { 112, 41 }, { 114, 40 }, { 117, 39 }, { 120, 38 }, { 123, 37 }, { 125, 36 }, { 128, 35 }, { 131, 34 }, { 134, 33 }, { 138, 32 }, { 141, 31 }, { 144, 30 }, { 147, 29 }, { 151, 28 }, { 154, 27 }, { 158, 26 }, { 162, 25 }, { 165, 24 }, { 169, 23 }, { 173, 22 }, { 177, 21 }, { 181, 20 }, { 186, 19 }, { 190, 18 }, { 194, 17 }, { 199, 16 }, { 204, 15 }, { 208, 14 }, { 213, 13 }, { 218, 12 }, { 223, 11 }, { 229, 10 }, { 234, 9 }, { 239, 8 }, { 245, 7 }, { 251, 6 }, { 255, 5 }, }; static int tda10048_read_snr(struct dvb_frontend *fe, u16 *snr) { struct tda10048_state *state = fe->demodulator_priv; u8 v; int i, ret = -EINVAL; dprintk(1, "%s()\n", __func__); v = tda10048_readreg(state, TDA10048_NP_OUT); for (i = 0; i < ARRAY_SIZE(snr_tab); i++) { if (v <= snr_tab[i].val) { *snr = snr_tab[i].data; ret = 0; break; } } return ret; } static int tda10048_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s()\n", __func__); *ucblocks = tda10048_readreg(state, TDA10048_UNCOR_CPT_MSB) << 8 | tda10048_readreg(state, TDA10048_UNCOR_CPT_LSB); /* clear the uncorrected TS packets counter when saturated */ if (*ucblocks == 0xFFFF) tda10048_writereg(state, TDA10048_UNCOR_CTRL, 0x80); return 0; } static int tda10048_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s()\n", __func__); p->inversion = tda10048_readreg(state, TDA10048_CONF_C1_1) & 0x20 ? INVERSION_ON : INVERSION_OFF; return tda10048_get_tps(state, &p->u.ofdm); } static int tda10048_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void tda10048_release(struct dvb_frontend *fe) { struct tda10048_state *state = fe->demodulator_priv; dprintk(1, "%s()\n", __func__); kfree(state); } static void tda10048_establish_defaults(struct dvb_frontend *fe) { struct tda10048_state *state = fe->demodulator_priv; struct tda10048_config *config = &state->config; /* Validate/default the config */ if (config->dtv6_if_freq_khz == 0) { config->dtv6_if_freq_khz = TDA10048_IF_4300; printk(KERN_WARNING "%s() tda10048_config.dtv6_if_freq_khz " "is not set (defaulting to %d)\n", __func__, config->dtv6_if_freq_khz); } if (config->dtv7_if_freq_khz == 0) { config->dtv7_if_freq_khz = TDA10048_IF_4300; printk(KERN_WARNING "%s() tda10048_config.dtv7_if_freq_khz " "is not set (defaulting to %d)\n", __func__, config->dtv7_if_freq_khz); } if (config->dtv8_if_freq_khz == 0) { config->dtv8_if_freq_khz = TDA10048_IF_4300; printk(KERN_WARNING "%s() tda10048_config.dtv8_if_freq_khz " "is not set (defaulting to %d)\n", __func__, config->dtv8_if_freq_khz); } if (config->clk_freq_khz == 0) { config->clk_freq_khz = TDA10048_CLK_16000; printk(KERN_WARNING "%s() tda10048_config.clk_freq_khz " "is not set (defaulting to %d)\n", __func__, config->clk_freq_khz); } } static struct dvb_frontend_ops tda10048_ops; struct dvb_frontend *tda10048_attach(const struct tda10048_config *config, struct i2c_adapter *i2c) { struct tda10048_state *state = NULL; dprintk(1, "%s()\n", __func__); /* allocate memory for the internal state */ state = kzalloc(sizeof(struct tda10048_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state and clone the config */ memcpy(&state->config, config, sizeof(*config)); state->i2c = i2c; state->fwloaded = config->no_firmware; state->bandwidth = BANDWIDTH_8_MHZ; /* check if the demod is present */ if (tda10048_readreg(state, TDA10048_IDENTITY) != 0x048) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &tda10048_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; /* set pll */ if (config->set_pll) { state->pll_mfactor = config->pll_m; state->pll_nfactor = config->pll_n; state->pll_pfactor = config->pll_p; } else { state->pll_mfactor = 10; state->pll_nfactor = 3; state->pll_pfactor = 0; } /* Establish any defaults the the user didn't pass */ tda10048_establish_defaults(&state->frontend); /* Set the xtal and freq defaults */ if (tda10048_set_if(&state->frontend, BANDWIDTH_8_MHZ) != 0) goto error; /* Default bandwidth */ if (tda10048_set_bandwidth(&state->frontend, BANDWIDTH_8_MHZ) != 0) goto error; /* Leave the gate closed */ tda10048_i2c_gate_ctrl(&state->frontend, 0); return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(tda10048_attach); static struct dvb_frontend_ops tda10048_ops = { .info = { .name = "NXP TDA10048HN DVB-T", .type = FE_OFDM, .frequency_min = 177000000, .frequency_max = 858000000, .frequency_stepsize = 166666, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER }, .release = tda10048_release, .init = tda10048_init, .i2c_gate_ctrl = tda10048_i2c_gate_ctrl, .set_frontend_legacy = tda10048_set_frontend, .get_frontend_legacy = tda10048_get_frontend, .get_tune_settings = tda10048_get_tune_settings, .read_status = tda10048_read_status, .read_ber = tda10048_read_ber, .read_signal_strength = tda10048_read_signal_strength, .read_snr = tda10048_read_snr, .read_ucblocks = tda10048_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Enable verbose debug messages"); MODULE_DESCRIPTION("NXP TDA10048HN DVB-T Demodulator driver"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL");