/* * Copyright (c) 2001-2004 by David Brownell * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* this file is part of ehci-hcd.c */ /*-------------------------------------------------------------------------*/ /* * EHCI scheduled transaction support: interrupt, iso, split iso * These are called "periodic" transactions in the EHCI spec. * * Note that for interrupt transfers, the QH/QTD manipulation is shared * with the "asynchronous" transaction support (control/bulk transfers). * The only real difference is in how interrupt transfers are scheduled. * * For ISO, we make an "iso_stream" head to serve the same role as a QH. * It keeps track of every ITD (or SITD) that's linked, and holds enough * pre-calculated schedule data to make appending to the queue be quick. */ static int ehci_get_frame (struct usb_hcd *hcd); /* * periodic_next_shadow - return "next" pointer on shadow list * @periodic: host pointer to qh/itd/sitd * @tag: hardware tag for type of this record */ static union ehci_shadow * periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, __hc32 tag) { switch (hc32_to_cpu(ehci, tag)) { case Q_TYPE_QH: return &periodic->qh->qh_next; case Q_TYPE_FSTN: return &periodic->fstn->fstn_next; case Q_TYPE_ITD: return &periodic->itd->itd_next; // case Q_TYPE_SITD: default: return &periodic->sitd->sitd_next; } } static __hc32 * shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, __hc32 tag) { switch (hc32_to_cpu(ehci, tag)) { /* our ehci_shadow.qh is actually software part */ case Q_TYPE_QH: return &periodic->qh->hw->hw_next; /* others are hw parts */ default: return periodic->hw_next; } } /* caller must hold ehci->lock */ static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) { union ehci_shadow *prev_p = &ehci->pshadow[frame]; __hc32 *hw_p = &ehci->periodic[frame]; union ehci_shadow here = *prev_p; /* find predecessor of "ptr"; hw and shadow lists are in sync */ while (here.ptr && here.ptr != ptr) { prev_p = periodic_next_shadow(ehci, prev_p, Q_NEXT_TYPE(ehci, *hw_p)); hw_p = shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)); here = *prev_p; } /* an interrupt entry (at list end) could have been shared */ if (!here.ptr) return; /* update shadow and hardware lists ... the old "next" pointers * from ptr may still be in use, the caller updates them. */ *prev_p = *periodic_next_shadow(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)); if (!ehci->use_dummy_qh || *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) != EHCI_LIST_END(ehci)) *hw_p = *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)); else *hw_p = ehci->dummy->qh_dma; } /* how many of the uframe's 125 usecs are allocated? */ static unsigned short periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) { __hc32 *hw_p = &ehci->periodic [frame]; union ehci_shadow *q = &ehci->pshadow [frame]; unsigned usecs = 0; struct ehci_qh_hw *hw; while (q->ptr) { switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { case Q_TYPE_QH: hw = q->qh->hw; /* is it in the S-mask? */ if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) usecs += q->qh->usecs; /* ... or C-mask? */ if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << (8 + uframe))) usecs += q->qh->c_usecs; hw_p = &hw->hw_next; q = &q->qh->qh_next; break; // case Q_TYPE_FSTN: default: /* for "save place" FSTNs, count the relevant INTR * bandwidth from the previous frame */ if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { ehci_dbg (ehci, "ignoring FSTN cost ...\n"); } hw_p = &q->fstn->hw_next; q = &q->fstn->fstn_next; break; case Q_TYPE_ITD: if (q->itd->hw_transaction[uframe]) usecs += q->itd->stream->usecs; hw_p = &q->itd->hw_next; q = &q->itd->itd_next; break; case Q_TYPE_SITD: /* is it in the S-mask? (count SPLIT, DATA) */ if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 1 << uframe)) { if (q->sitd->hw_fullspeed_ep & cpu_to_hc32(ehci, 1<<31)) usecs += q->sitd->stream->usecs; else /* worst case for OUT start-split */ usecs += HS_USECS_ISO (188); } /* ... C-mask? (count CSPLIT, DATA) */ if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 1 << (8 + uframe))) { /* worst case for IN complete-split */ usecs += q->sitd->stream->c_usecs; } hw_p = &q->sitd->hw_next; q = &q->sitd->sitd_next; break; } } #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) if (usecs > ehci->uframe_periodic_max) ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", frame * 8 + uframe, usecs); #endif return usecs; } /*-------------------------------------------------------------------------*/ static int same_tt (struct usb_device *dev1, struct usb_device *dev2) { if (!dev1->tt || !dev2->tt) return 0; if (dev1->tt != dev2->tt) return 0; if (dev1->tt->multi) return dev1->ttport == dev2->ttport; else return 1; } #ifdef CONFIG_USB_EHCI_TT_NEWSCHED /* Which uframe does the low/fullspeed transfer start in? * * The parameter is the mask of ssplits in "H-frame" terms * and this returns the transfer start uframe in "B-frame" terms, * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. */ static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) { unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); if (!smask) { ehci_err(ehci, "invalid empty smask!\n"); /* uframe 7 can't have bw so this will indicate failure */ return 7; } return ffs(smask) - 1; } static const unsigned char max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; /* carryover low/fullspeed bandwidth that crosses uframe boundries */ static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) { int i; for (i=0; i<7; i++) { if (max_tt_usecs[i] < tt_usecs[i]) { tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; tt_usecs[i] = max_tt_usecs[i]; } } } /* How many of the tt's periodic downstream 1000 usecs are allocated? * * While this measures the bandwidth in terms of usecs/uframe, * the low/fullspeed bus has no notion of uframes, so any particular * low/fullspeed transfer can "carry over" from one uframe to the next, * since the TT just performs downstream transfers in sequence. * * For example two separate 100 usec transfers can start in the same uframe, * and the second one would "carry over" 75 usecs into the next uframe. */ static void periodic_tt_usecs ( struct ehci_hcd *ehci, struct usb_device *dev, unsigned frame, unsigned short tt_usecs[8] ) { __hc32 *hw_p = &ehci->periodic [frame]; union ehci_shadow *q = &ehci->pshadow [frame]; unsigned char uf; memset(tt_usecs, 0, 16); while (q->ptr) { switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { case Q_TYPE_ITD: hw_p = &q->itd->hw_next; q = &q->itd->itd_next; continue; case Q_TYPE_QH: if (same_tt(dev, q->qh->dev)) { uf = tt_start_uframe(ehci, q->qh->hw->hw_info2); tt_usecs[uf] += q->qh->tt_usecs; } hw_p = &q->qh->hw->hw_next; q = &q->qh->qh_next; continue; case Q_TYPE_SITD: if (same_tt(dev, q->sitd->urb->dev)) { uf = tt_start_uframe(ehci, q->sitd->hw_uframe); tt_usecs[uf] += q->sitd->stream->tt_usecs; } hw_p = &q->sitd->hw_next; q = &q->sitd->sitd_next; continue; // case Q_TYPE_FSTN: default: ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", frame); hw_p = &q->fstn->hw_next; q = &q->fstn->fstn_next; } } carryover_tt_bandwidth(tt_usecs); if (max_tt_usecs[7] < tt_usecs[7]) ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", frame, tt_usecs[7] - max_tt_usecs[7]); } /* * Return true if the device's tt's downstream bus is available for a * periodic transfer of the specified length (usecs), starting at the * specified frame/uframe. Note that (as summarized in section 11.19 * of the usb 2.0 spec) TTs can buffer multiple transactions for each * uframe. * * The uframe parameter is when the fullspeed/lowspeed transfer * should be executed in "B-frame" terms, which is the same as the * highspeed ssplit's uframe (which is in "H-frame" terms). For example * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. * See the EHCI spec sec 4.5 and fig 4.7. * * This checks if the full/lowspeed bus, at the specified starting uframe, * has the specified bandwidth available, according to rules listed * in USB 2.0 spec section 11.18.1 fig 11-60. * * This does not check if the transfer would exceed the max ssplit * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, * since proper scheduling limits ssplits to less than 16 per uframe. */ static int tt_available ( struct ehci_hcd *ehci, unsigned period, struct usb_device *dev, unsigned frame, unsigned uframe, u16 usecs ) { if ((period == 0) || (uframe >= 7)) /* error */ return 0; for (; frame < ehci->periodic_size; frame += period) { unsigned short tt_usecs[8]; periodic_tt_usecs (ehci, dev, frame, tt_usecs); if (max_tt_usecs[uframe] <= tt_usecs[uframe]) return 0; /* special case for isoc transfers larger than 125us: * the first and each subsequent fully used uframe * must be empty, so as to not illegally delay * already scheduled transactions */ if (125 < usecs) { int ufs = (usecs / 125); int i; for (i = uframe; i < (uframe + ufs) && i < 8; i++) if (0 < tt_usecs[i]) return 0; } tt_usecs[uframe] += usecs; carryover_tt_bandwidth(tt_usecs); /* fail if the carryover pushed bw past the last uframe's limit */ if (max_tt_usecs[7] < tt_usecs[7]) return 0; } return 1; } #else /* return true iff the device's transaction translator is available * for a periodic transfer starting at the specified frame, using * all the uframes in the mask. */ static int tt_no_collision ( struct ehci_hcd *ehci, unsigned period, struct usb_device *dev, unsigned frame, u32 uf_mask ) { if (period == 0) /* error */ return 0; /* note bandwidth wastage: split never follows csplit * (different dev or endpoint) until the next uframe. * calling convention doesn't make that distinction. */ for (; frame < ehci->periodic_size; frame += period) { union ehci_shadow here; __hc32 type; struct ehci_qh_hw *hw; here = ehci->pshadow [frame]; type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); while (here.ptr) { switch (hc32_to_cpu(ehci, type)) { case Q_TYPE_ITD: type = Q_NEXT_TYPE(ehci, here.itd->hw_next); here = here.itd->itd_next; continue; case Q_TYPE_QH: hw = here.qh->hw; if (same_tt (dev, here.qh->dev)) { u32 mask; mask = hc32_to_cpu(ehci, hw->hw_info2); /* "knows" no gap is needed */ mask |= mask >> 8; if (mask & uf_mask) break; } type = Q_NEXT_TYPE(ehci, hw->hw_next); here = here.qh->qh_next; continue; case Q_TYPE_SITD: if (same_tt (dev, here.sitd->urb->dev)) { u16 mask; mask = hc32_to_cpu(ehci, here.sitd ->hw_uframe); /* FIXME assumes no gap for IN! */ mask |= mask >> 8; if (mask & uf_mask) break; } type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); here = here.sitd->sitd_next; continue; // case Q_TYPE_FSTN: default: ehci_dbg (ehci, "periodic frame %d bogus type %d\n", frame, type); } /* collision or error */ return 0; } } /* no collision */ return 1; } #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ /*-------------------------------------------------------------------------*/ static void enable_periodic(struct ehci_hcd *ehci) { if (ehci->periodic_count++) return; /* Stop waiting to turn off the periodic schedule */ ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); /* Don't start the schedule until PSS is 0 */ ehci_poll_PSS(ehci); turn_on_io_watchdog(ehci); } static void disable_periodic(struct ehci_hcd *ehci) { if (--ehci->periodic_count) return; /* Don't turn off the schedule until PSS is 1 */ ehci_poll_PSS(ehci); } /*-------------------------------------------------------------------------*/ /* periodic schedule slots have iso tds (normal or split) first, then a * sparse tree for active interrupt transfers. * * this just links in a qh; caller guarantees uframe masks are set right. * no FSTN support (yet; ehci 0.96+) */ static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) { unsigned i; unsigned period = qh->period; dev_dbg (&qh->dev->dev, "link qh%d-%04x/%p start %d [%d/%d us]\n", period, hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* high bandwidth, or otherwise every microframe */ if (period == 0) period = 1; for (i = qh->start; i < ehci->periodic_size; i += period) { union ehci_shadow *prev = &ehci->pshadow[i]; __hc32 *hw_p = &ehci->periodic[i]; union ehci_shadow here = *prev; __hc32 type = 0; /* skip the iso nodes at list head */ while (here.ptr) { type = Q_NEXT_TYPE(ehci, *hw_p); if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) break; prev = periodic_next_shadow(ehci, prev, type); hw_p = shadow_next_periodic(ehci, &here, type); here = *prev; } /* sorting each branch by period (slow-->fast) * enables sharing interior tree nodes */ while (here.ptr && qh != here.qh) { if (qh->period > here.qh->period) break; prev = &here.qh->qh_next; hw_p = &here.qh->hw->hw_next; here = *prev; } /* link in this qh, unless some earlier pass did that */ if (qh != here.qh) { qh->qh_next = here; if (here.qh) qh->hw->hw_next = *hw_p; wmb (); prev->qh = qh; *hw_p = QH_NEXT (ehci, qh->qh_dma); } } qh->qh_state = QH_STATE_LINKED; qh->xacterrs = 0; qh->exception = 0; /* update per-qh bandwidth for usbfs */ ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); list_add(&qh->intr_node, &ehci->intr_qh_list); /* maybe enable periodic schedule processing */ ++ehci->intr_count; enable_periodic(ehci); } static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) { unsigned i; unsigned period; /* * If qh is for a low/full-speed device, simply unlinking it * could interfere with an ongoing split transaction. To unlink * it safely would require setting the QH_INACTIVATE bit and * waiting at least one frame, as described in EHCI 4.12.2.5. * * We won't bother with any of this. Instead, we assume that the * only reason for unlinking an interrupt QH while the current URB * is still active is to dequeue all the URBs (flush the whole * endpoint queue). * * If rebalancing the periodic schedule is ever implemented, this * approach will no longer be valid. */ /* high bandwidth, or otherwise part of every microframe */ if ((period = qh->period) == 0) period = 1; for (i = qh->start; i < ehci->periodic_size; i += period) periodic_unlink (ehci, i, qh); /* update per-qh bandwidth for usbfs */ ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); dev_dbg (&qh->dev->dev, "unlink qh%d-%04x/%p start %d [%d/%d us]\n", qh->period, hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* qh->qh_next still "live" to HC */ qh->qh_state = QH_STATE_UNLINK; qh->qh_next.ptr = NULL; if (ehci->qh_scan_next == qh) ehci->qh_scan_next = list_entry(qh->intr_node.next, struct ehci_qh, intr_node); list_del(&qh->intr_node); } static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) { if (qh->qh_state != QH_STATE_LINKED || list_empty(&qh->unlink_node)) return; list_del_init(&qh->unlink_node); /* * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for * avoiding unnecessary CPU wakeup */ } static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) { /* If the QH isn't linked then there's nothing we can do. */ if (qh->qh_state != QH_STATE_LINKED) return; /* if the qh is waiting for unlink, cancel it now */ cancel_unlink_wait_intr(ehci, qh); qh_unlink_periodic (ehci, qh); /* Make sure the unlinks are visible before starting the timer */ wmb(); /* * The EHCI spec doesn't say how long it takes the controller to * stop accessing an unlinked interrupt QH. The timer delay is * 9 uframes; presumably that will be long enough. */ qh->unlink_cycle = ehci->intr_unlink_cycle; /* New entries go at the end of the intr_unlink list */ list_add_tail(&qh->unlink_node, &ehci->intr_unlink); if (ehci->intr_unlinking) ; /* Avoid recursive calls */ else if (ehci->rh_state < EHCI_RH_RUNNING) ehci_handle_intr_unlinks(ehci); else if (ehci->intr_unlink.next == &qh->unlink_node) { ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); ++ehci->intr_unlink_cycle; } } /* * It is common only one intr URB is scheduled on one qh, and * given complete() is run in tasklet context, introduce a bit * delay to avoid unlink qh too early. */ static void start_unlink_intr_wait(struct ehci_hcd *ehci, struct ehci_qh *qh) { qh->unlink_cycle = ehci->intr_unlink_wait_cycle; /* New entries go at the end of the intr_unlink_wait list */ list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); if (ehci->rh_state < EHCI_RH_RUNNING) ehci_handle_start_intr_unlinks(ehci); else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); ++ehci->intr_unlink_wait_cycle; } } static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) { struct ehci_qh_hw *hw = qh->hw; int rc; qh->qh_state = QH_STATE_IDLE; hw->hw_next = EHCI_LIST_END(ehci); if (!list_empty(&qh->qtd_list)) qh_completions(ehci, qh); /* reschedule QH iff another request is queued */ if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { rc = qh_schedule(ehci, qh); if (rc == 0) { qh_refresh(ehci, qh); qh_link_periodic(ehci, qh); } /* An error here likely indicates handshake failure * or no space left in the schedule. Neither fault * should happen often ... * * FIXME kill the now-dysfunctional queued urbs */ else { ehci_err(ehci, "can't reschedule qh %p, err %d\n", qh, rc); } } /* maybe turn off periodic schedule */ --ehci->intr_count; disable_periodic(ehci); } /*-------------------------------------------------------------------------*/ static int check_period ( struct ehci_hcd *ehci, unsigned frame, unsigned uframe, unsigned period, unsigned usecs ) { int claimed; /* complete split running into next frame? * given FSTN support, we could sometimes check... */ if (uframe >= 8) return 0; /* convert "usecs we need" to "max already claimed" */ usecs = ehci->uframe_periodic_max - usecs; /* we "know" 2 and 4 uframe intervals were rejected; so * for period 0, check _every_ microframe in the schedule. */ if (unlikely (period == 0)) { do { for (uframe = 0; uframe < 7; uframe++) { claimed = periodic_usecs (ehci, frame, uframe); if (claimed > usecs) return 0; } } while ((frame += 1) < ehci->periodic_size); /* just check the specified uframe, at that period */ } else { do { claimed = periodic_usecs (ehci, frame, uframe); if (claimed > usecs) return 0; } while ((frame += period) < ehci->periodic_size); } // success! return 1; } static int check_intr_schedule ( struct ehci_hcd *ehci, unsigned frame, unsigned uframe, const struct ehci_qh *qh, __hc32 *c_maskp ) { int retval = -ENOSPC; u8 mask = 0; if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ goto done; if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) goto done; if (!qh->c_usecs) { retval = 0; *c_maskp = 0; goto done; } #ifdef CONFIG_USB_EHCI_TT_NEWSCHED if (tt_available (ehci, qh->period, qh->dev, frame, uframe, qh->tt_usecs)) { unsigned i; /* TODO : this may need FSTN for SSPLIT in uframe 5. */ for (i = uframe+2; i < 8 && i <= uframe+4; i++) if (!check_period (ehci, frame, i, qh->period, qh->c_usecs)) goto done; else mask |= 1 << i; retval = 0; *c_maskp = cpu_to_hc32(ehci, mask << 8); } #else /* Make sure this tt's buffer is also available for CSPLITs. * We pessimize a bit; probably the typical full speed case * doesn't need the second CSPLIT. * * NOTE: both SPLIT and CSPLIT could be checked in just * one smart pass... */ mask = 0x03 << (uframe + qh->gap_uf); *c_maskp = cpu_to_hc32(ehci, mask << 8); mask |= 1 << uframe; if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, qh->period, qh->c_usecs)) goto done; if (!check_period (ehci, frame, uframe + qh->gap_uf, qh->period, qh->c_usecs)) goto done; retval = 0; } #endif done: return retval; } /* "first fit" scheduling policy used the first time through, * or when the previous schedule slot can't be re-used. */ static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) { int status; unsigned uframe; __hc32 c_mask; unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ struct ehci_qh_hw *hw = qh->hw; hw->hw_next = EHCI_LIST_END(ehci); frame = qh->start; /* reuse the previous schedule slots, if we can */ if (frame < qh->period) { uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK); status = check_intr_schedule (ehci, frame, --uframe, qh, &c_mask); } else { uframe = 0; c_mask = 0; status = -ENOSPC; } /* else scan the schedule to find a group of slots such that all * uframes have enough periodic bandwidth available. */ if (status) { /* "normal" case, uframing flexible except with splits */ if (qh->period) { int i; for (i = qh->period; status && i > 0; --i) { frame = ++ehci->random_frame % qh->period; for (uframe = 0; uframe < 8; uframe++) { status = check_intr_schedule (ehci, frame, uframe, qh, &c_mask); if (status == 0) break; } } /* qh->period == 0 means every uframe */ } else { frame = 0; status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); } if (status) goto done; qh->start = frame; /* reset S-frame and (maybe) C-frame masks */ hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); hw->hw_info2 |= qh->period ? cpu_to_hc32(ehci, 1 << uframe) : cpu_to_hc32(ehci, QH_SMASK); hw->hw_info2 |= c_mask; } else ehci_dbg (ehci, "reused qh %p schedule\n", qh); done: return status; } static int intr_submit ( struct ehci_hcd *ehci, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags ) { unsigned epnum; unsigned long flags; struct ehci_qh *qh; int status; struct list_head empty; /* get endpoint and transfer/schedule data */ epnum = urb->ep->desc.bEndpointAddress; spin_lock_irqsave (&ehci->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { status = -ESHUTDOWN; goto done_not_linked; } status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); if (unlikely(status)) goto done_not_linked; /* get qh and force any scheduling errors */ INIT_LIST_HEAD (&empty); qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); if (qh == NULL) { status = -ENOMEM; goto done; } if (qh->qh_state == QH_STATE_IDLE) { if ((status = qh_schedule (ehci, qh)) != 0) goto done; } /* then queue the urb's tds to the qh */ qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); BUG_ON (qh == NULL); /* stuff into the periodic schedule */ if (qh->qh_state == QH_STATE_IDLE) { qh_refresh(ehci, qh); qh_link_periodic(ehci, qh); } else { /* cancel unlink wait for the qh */ cancel_unlink_wait_intr(ehci, qh); } /* ... update usbfs periodic stats */ ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; done: if (unlikely(status)) usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); done_not_linked: spin_unlock_irqrestore (&ehci->lock, flags); if (status) qtd_list_free (ehci, urb, qtd_list); return status; } static void scan_intr(struct ehci_hcd *ehci) { struct ehci_qh *qh; list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, intr_node) { /* clean any finished work for this qh */ if (!list_empty(&qh->qtd_list)) { int temp; /* * Unlinks could happen here; completion reporting * drops the lock. That's why ehci->qh_scan_next * always holds the next qh to scan; if the next qh * gets unlinked then ehci->qh_scan_next is adjusted * in qh_unlink_periodic(). */ temp = qh_completions(ehci, qh); if (unlikely(temp)) start_unlink_intr(ehci, qh); else if (unlikely(list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED)) start_unlink_intr_wait(ehci, qh); } } } /*-------------------------------------------------------------------------*/ /* ehci_iso_stream ops work with both ITD and SITD */ static struct ehci_iso_stream * iso_stream_alloc (gfp_t mem_flags) { struct ehci_iso_stream *stream; stream = kzalloc(sizeof *stream, mem_flags); if (likely (stream != NULL)) { INIT_LIST_HEAD(&stream->td_list); INIT_LIST_HEAD(&stream->free_list); stream->next_uframe = -1; } return stream; } static void iso_stream_init ( struct ehci_hcd *ehci, struct ehci_iso_stream *stream, struct usb_device *dev, int pipe, unsigned interval ) { static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; u32 buf1; unsigned epnum, maxp; int is_input; long bandwidth; /* * this might be a "high bandwidth" highspeed endpoint, * as encoded in the ep descriptor's wMaxPacket field */ epnum = usb_pipeendpoint (pipe); is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; maxp = usb_maxpacket(dev, pipe, !is_input); if (is_input) { buf1 = (1 << 11); } else { buf1 = 0; } /* knows about ITD vs SITD */ if (dev->speed == USB_SPEED_HIGH) { unsigned multi = hb_mult(maxp); stream->highspeed = 1; maxp = max_packet(maxp); buf1 |= maxp; maxp *= multi; stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); stream->buf1 = cpu_to_hc32(ehci, buf1); stream->buf2 = cpu_to_hc32(ehci, multi); /* usbfs wants to report the average usecs per frame tied up * when transfers on this endpoint are scheduled ... */ stream->usecs = HS_USECS_ISO (maxp); bandwidth = stream->usecs * 8; bandwidth /= interval; } else { u32 addr; int think_time; int hs_transfers; addr = dev->ttport << 24; if (!ehci_is_TDI(ehci) || (dev->tt->hub != ehci_to_hcd(ehci)->self.root_hub)) addr |= dev->tt->hub->devnum << 16; addr |= epnum << 8; addr |= dev->devnum; stream->usecs = HS_USECS_ISO (maxp); think_time = dev->tt ? dev->tt->think_time : 0; stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( dev->speed, is_input, 1, maxp)); hs_transfers = max (1u, (maxp + 187) / 188); if (is_input) { u32 tmp; addr |= 1 << 31; stream->c_usecs = stream->usecs; stream->usecs = HS_USECS_ISO (1); stream->raw_mask = 1; /* c-mask as specified in USB 2.0 11.18.4 3.c */ tmp = (1 << (hs_transfers + 2)) - 1; stream->raw_mask |= tmp << (8 + 2); } else stream->raw_mask = smask_out [hs_transfers - 1]; bandwidth = stream->usecs + stream->c_usecs; bandwidth /= interval; /* stream->splits gets created from raw_mask later */ stream->address = cpu_to_hc32(ehci, addr); } stream->bandwidth = bandwidth; stream->udev = dev; stream->bEndpointAddress = is_input | epnum; stream->interval = interval; stream->maxp = maxp; } static struct ehci_iso_stream * iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) { unsigned epnum; struct ehci_iso_stream *stream; struct usb_host_endpoint *ep; unsigned long flags; epnum = usb_pipeendpoint (urb->pipe); if (usb_pipein(urb->pipe)) ep = urb->dev->ep_in[epnum]; else ep = urb->dev->ep_out[epnum]; spin_lock_irqsave (&ehci->lock, flags); stream = ep->hcpriv; if (unlikely (stream == NULL)) { stream = iso_stream_alloc(GFP_ATOMIC); if (likely (stream != NULL)) { ep->hcpriv = stream; stream->ep = ep; iso_stream_init(ehci, stream, urb->dev, urb->pipe, urb->interval); } /* if dev->ep [epnum] is a QH, hw is set */ } else if (unlikely (stream->hw != NULL)) { ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", urb->dev->devpath, epnum, usb_pipein(urb->pipe) ? "in" : "out"); stream = NULL; } spin_unlock_irqrestore (&ehci->lock, flags); return stream; } /*-------------------------------------------------------------------------*/ /* ehci_iso_sched ops can be ITD-only or SITD-only */ static struct ehci_iso_sched * iso_sched_alloc (unsigned packets, gfp_t mem_flags) { struct ehci_iso_sched *iso_sched; int size = sizeof *iso_sched; size += packets * sizeof (struct ehci_iso_packet); iso_sched = kzalloc(size, mem_flags); if (likely (iso_sched != NULL)) { INIT_LIST_HEAD (&iso_sched->td_list); } return iso_sched; } static inline void itd_sched_init( struct ehci_hcd *ehci, struct ehci_iso_sched *iso_sched, struct ehci_iso_stream *stream, struct urb *urb ) { unsigned i; dma_addr_t dma = urb->transfer_dma; /* how many uframes are needed for these transfers */ iso_sched->span = urb->number_of_packets * stream->interval; /* figure out per-uframe itd fields that we'll need later * when we fit new itds into the schedule. */ for (i = 0; i < urb->number_of_packets; i++) { struct ehci_iso_packet *uframe = &iso_sched->packet [i]; unsigned length; dma_addr_t buf; u32 trans; length = urb->iso_frame_desc [i].length; buf = dma + urb->iso_frame_desc [i].offset; trans = EHCI_ISOC_ACTIVE; trans |= buf & 0x0fff; if (unlikely (((i + 1) == urb->number_of_packets)) && !(urb->transfer_flags & URB_NO_INTERRUPT)) trans |= EHCI_ITD_IOC; trans |= length << 16; uframe->transaction = cpu_to_hc32(ehci, trans); /* might need to cross a buffer page within a uframe */ uframe->bufp = (buf & ~(u64)0x0fff); buf += length; if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) uframe->cross = 1; } } static void iso_sched_free ( struct ehci_iso_stream *stream, struct ehci_iso_sched *iso_sched ) { if (!iso_sched) return; // caller must hold ehci->lock! list_splice (&iso_sched->td_list, &stream->free_list); kfree (iso_sched); } static int itd_urb_transaction ( struct ehci_iso_stream *stream, struct ehci_hcd *ehci, struct urb *urb, gfp_t mem_flags ) { struct ehci_itd *itd; dma_addr_t itd_dma; int i; unsigned num_itds; struct ehci_iso_sched *sched; unsigned long flags; sched = iso_sched_alloc (urb->number_of_packets, mem_flags); if (unlikely (sched == NULL)) return -ENOMEM; itd_sched_init(ehci, sched, stream, urb); if (urb->interval < 8) num_itds = 1 + (sched->span + 7) / 8; else num_itds = urb->number_of_packets; /* allocate/init ITDs */ spin_lock_irqsave (&ehci->lock, flags); for (i = 0; i < num_itds; i++) { /* * Use iTDs from the free list, but not iTDs that may * still be in use by the hardware. */ if (likely(!list_empty(&stream->free_list))) { itd = list_first_entry(&stream->free_list, struct ehci_itd, itd_list); if (itd->frame == ehci->now_frame) goto alloc_itd; list_del (&itd->itd_list); itd_dma = itd->itd_dma; } else { alloc_itd: spin_unlock_irqrestore (&ehci->lock, flags); itd = dma_pool_alloc (ehci->itd_pool, mem_flags, &itd_dma); spin_lock_irqsave (&ehci->lock, flags); if (!itd) { iso_sched_free(stream, sched); spin_unlock_irqrestore(&ehci->lock, flags); return -ENOMEM; } } memset (itd, 0, sizeof *itd); itd->itd_dma = itd_dma; itd->frame = 9999; /* an invalid value */ list_add (&itd->itd_list, &sched->td_list); } spin_unlock_irqrestore (&ehci->lock, flags); /* temporarily store schedule info in hcpriv */ urb->hcpriv = sched; urb->error_count = 0; return 0; } /*-------------------------------------------------------------------------*/ static inline int itd_slot_ok ( struct ehci_hcd *ehci, u32 mod, u32 uframe, u8 usecs, u32 period ) { uframe %= period; do { /* can't commit more than uframe_periodic_max usec */ if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) > (ehci->uframe_periodic_max - usecs)) return 0; /* we know urb->interval is 2^N uframes */ uframe += period; } while (uframe < mod); return 1; } static inline int sitd_slot_ok ( struct ehci_hcd *ehci, u32 mod, struct ehci_iso_stream *stream, u32 uframe, struct ehci_iso_sched *sched, u32 period_uframes ) { u32 mask, tmp; u32 frame, uf; mask = stream->raw_mask << (uframe & 7); /* for IN, don't wrap CSPLIT into the next frame */ if (mask & ~0xffff) return 0; /* check bandwidth */ uframe %= period_uframes; frame = uframe >> 3; #ifdef CONFIG_USB_EHCI_TT_NEWSCHED /* The tt's fullspeed bus bandwidth must be available. * tt_available scheduling guarantees 10+% for control/bulk. */ uf = uframe & 7; if (!tt_available(ehci, period_uframes >> 3, stream->udev, frame, uf, stream->tt_usecs)) return 0; #else /* tt must be idle for start(s), any gap, and csplit. * assume scheduling slop leaves 10+% for control/bulk. */ if (!tt_no_collision(ehci, period_uframes >> 3, stream->udev, frame, mask)) return 0; #endif /* this multi-pass logic is simple, but performance may * suffer when the schedule data isn't cached. */ do { u32 max_used; frame = uframe >> 3; uf = uframe & 7; /* check starts (OUT uses more than one) */ max_used = ehci->uframe_periodic_max - stream->usecs; for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { if (periodic_usecs (ehci, frame, uf) > max_used) return 0; } /* for IN, check CSPLIT */ if (stream->c_usecs) { uf = uframe & 7; max_used = ehci->uframe_periodic_max - stream->c_usecs; do { tmp = 1 << uf; tmp <<= 8; if ((stream->raw_mask & tmp) == 0) continue; if (periodic_usecs (ehci, frame, uf) > max_used) return 0; } while (++uf < 8); } /* we know urb->interval is 2^N uframes */ uframe += period_uframes; } while (uframe < mod); stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); return 1; } /* * This scheduler plans almost as far into the future as it has actual * periodic schedule slots. (Affected by TUNE_FLS, which defaults to * "as small as possible" to be cache-friendlier.) That limits the size * transfers you can stream reliably; avoid more than 64 msec per urb. * Also avoid queue depths of less than ehci's worst irq latency (affected * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, * and other factors); or more than about 230 msec total (for portability, * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! */ #define SCHEDULING_DELAY 40 /* microframes */ static int iso_stream_schedule ( struct ehci_hcd *ehci, struct urb *urb, struct ehci_iso_stream *stream ) { u32 now, base, next, start, period, span, now2; u32 wrap = 0, skip = 0; int status = 0; unsigned mod = ehci->periodic_size << 3; struct ehci_iso_sched *sched = urb->hcpriv; bool empty = list_empty(&stream->td_list); period = urb->interval; span = sched->span; if (!stream->highspeed) { period <<= 3; span <<= 3; } now = ehci_read_frame_index(ehci) & (mod - 1); /* Take the isochronous scheduling threshold into account */ if (ehci->i_thresh) next = now + ehci->i_thresh; /* uframe cache */ else next = (now + 2 + 7) & ~0x07; /* full frame cache */ /* * Use ehci->last_iso_frame as the base. There can't be any * TDs scheduled for earlier than that. */ base = ehci->last_iso_frame << 3; next = (next - base) & (mod - 1); /* * Need to schedule; when's the next (u)frame we could start? * This is bigger than ehci->i_thresh allows; scheduling itself * isn't free, the delay should handle reasonably slow cpus. It * can also help high bandwidth if the dma and irq loads don't * jump until after the queue is primed. */ if (unlikely(empty && !hcd_periodic_completion_in_progress( ehci_to_hcd(ehci), urb->ep))) { int done = 0; start = (now & ~0x07) + SCHEDULING_DELAY; /* find a uframe slot with enough bandwidth. * Early uframes are more precious because full-speed * iso IN transfers can't use late uframes, * and therefore they should be allocated last. */ next = start; start += period; do { start--; /* check schedule: enough space? */ if (stream->highspeed) { if (itd_slot_ok(ehci, mod, start, stream->usecs, period)) done = 1; } else { if ((start % 8) >= 6) continue; if (sitd_slot_ok(ehci, mod, stream, start, sched, period)) done = 1; } } while (start > next && !done); /* no room in the schedule */ if (!done) { ehci_dbg(ehci, "iso sched full %p", urb); status = -ENOSPC; goto fail; } start = (start - base) & (mod - 1); goto use_start; } /* * Typical case: reuse current schedule, stream is still active. * Hopefully there are no gaps from the host falling behind * (irq delays etc). If there are, the behavior depends on * whether URB_ISO_ASAP is set. */ start = (stream->next_uframe - base) & (mod - 1); now2 = (now - base) & (mod - 1); /* Is the schedule already full? */ if (unlikely(!empty && start < period)) { ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n", urb, stream->next_uframe, base, period, mod); status = -ENOSPC; goto fail; } /* Is the next packet scheduled after the base time? */ if (likely(!empty || start <= now2 + period)) { /* URB_ISO_ASAP: make sure that start >= next */ if (unlikely(start < next && (urb->transfer_flags & URB_ISO_ASAP))) goto do_ASAP; /* Otherwise use start, if it's not in the past */ if (likely(start >= now2)) goto use_start; /* Otherwise we got an underrun while the queue was empty */ } else { if (urb->transfer_flags & URB_ISO_ASAP) goto do_ASAP; wrap = mod; now2 += mod; } /* How many uframes and packets do we need to skip? */ skip = (now2 - start + period - 1) & -period; if (skip >= span) { /* Entirely in the past? */ ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", urb, start + base, span - period, now2 + base, base); /* Try to keep the last TD intact for scanning later */ skip = span - period; /* Will it come before the current scan position? */ if (empty) { skip = span; /* Skip the entire URB */ status = 1; /* and give it back immediately */ iso_sched_free(stream, sched); sched = NULL; } } urb->error_count = skip / period; if (sched) sched->first_packet = urb->error_count; goto use_start; do_ASAP: /* Use the first slot after "next" */ start = next + ((start - next) & (period - 1)); use_start: /* Tried to schedule too far into the future? */ if (unlikely(start + span - period >= mod + wrap)) { ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", urb, start, span - period, mod + wrap); status = -EFBIG; goto fail; } start += base; stream->next_uframe = (start + skip) & (mod - 1); /* report high speed start in uframes; full speed, in frames */ urb->start_frame = start & (mod - 1); if (!stream->highspeed) urb->start_frame >>= 3; /* Make sure scan_isoc() sees these */ if (ehci->isoc_count == 0) ehci->last_iso_frame = now >> 3; return status; fail: iso_sched_free(stream, sched); urb->hcpriv = NULL; return status; } /*-------------------------------------------------------------------------*/ static inline void itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, struct ehci_itd *itd) { int i; /* it's been recently zeroed */ itd->hw_next = EHCI_LIST_END(ehci); itd->hw_bufp [0] = stream->buf0; itd->hw_bufp [1] = stream->buf1; itd->hw_bufp [2] = stream->buf2; for (i = 0; i < 8; i++) itd->index[i] = -1; /* All other fields are filled when scheduling */ } static inline void itd_patch( struct ehci_hcd *ehci, struct ehci_itd *itd, struct ehci_iso_sched *iso_sched, unsigned index, u16 uframe ) { struct ehci_iso_packet *uf = &iso_sched->packet [index]; unsigned pg = itd->pg; // BUG_ON (pg == 6 && uf->cross); uframe &= 0x07; itd->index [uframe] = index; itd->hw_transaction[uframe] = uf->transaction; itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); /* iso_frame_desc[].offset must be strictly increasing */ if (unlikely (uf->cross)) { u64 bufp = uf->bufp + 4096; itd->pg = ++pg; itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); } } static inline void itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) { union ehci_shadow *prev = &ehci->pshadow[frame]; __hc32 *hw_p = &ehci->periodic[frame]; union ehci_shadow here = *prev; __hc32 type = 0; /* skip any iso nodes which might belong to previous microframes */ while (here.ptr) { type = Q_NEXT_TYPE(ehci, *hw_p); if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) break; prev = periodic_next_shadow(ehci, prev, type); hw_p = shadow_next_periodic(ehci, &here, type); here = *prev; } itd->itd_next = here; itd->hw_next = *hw_p; prev->itd = itd; itd->frame = frame; wmb (); *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); } /* fit urb's itds into the selected schedule slot; activate as needed */ static void itd_link_urb( struct ehci_hcd *ehci, struct urb *urb, unsigned mod, struct ehci_iso_stream *stream ) { int packet; unsigned next_uframe, uframe, frame; struct ehci_iso_sched *iso_sched = urb->hcpriv; struct ehci_itd *itd; next_uframe = stream->next_uframe & (mod - 1); if (unlikely (list_empty(&stream->td_list))) ehci_to_hcd(ehci)->self.bandwidth_allocated += stream->bandwidth; if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { if (ehci->amd_pll_fix == 1) usb_amd_quirk_pll_disable(); } ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; /* fill iTDs uframe by uframe */ for (packet = iso_sched->first_packet, itd = NULL; packet < urb->number_of_packets;) { if (itd == NULL) { /* ASSERT: we have all necessary itds */ // BUG_ON (list_empty (&iso_sched->td_list)); /* ASSERT: no itds for this endpoint in this uframe */ itd = list_entry (iso_sched->td_list.next, struct ehci_itd, itd_list); list_move_tail (&itd->itd_list, &stream->td_list); itd->stream = stream; itd->urb = urb; itd_init (ehci, stream, itd); } uframe = next_uframe & 0x07; frame = next_uframe >> 3; itd_patch(ehci, itd, iso_sched, packet, uframe); next_uframe += stream->interval; next_uframe &= mod - 1; packet++; /* link completed itds into the schedule */ if (((next_uframe >> 3) != frame) || packet == urb->number_of_packets) { itd_link(ehci, frame & (ehci->periodic_size - 1), itd); itd = NULL; } } stream->next_uframe = next_uframe; /* don't need that schedule data any more */ iso_sched_free (stream, iso_sched); urb->hcpriv = stream; ++ehci->isoc_count; enable_periodic(ehci); } #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) /* Process and recycle a completed ITD. Return true iff its urb completed, * and hence its completion callback probably added things to the hardware * schedule. * * Note that we carefully avoid recycling this descriptor until after any * completion callback runs, so that it won't be reused quickly. That is, * assuming (a) no more than two urbs per frame on this endpoint, and also * (b) only this endpoint's completions submit URBs. It seems some silicon * corrupts things if you reuse completed descriptors very quickly... */ static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) { struct urb *urb = itd->urb; struct usb_iso_packet_descriptor *desc; u32 t; unsigned uframe; int urb_index = -1; struct ehci_iso_stream *stream = itd->stream; struct usb_device *dev; bool retval = false; /* for each uframe with a packet */ for (uframe = 0; uframe < 8; uframe++) { if (likely (itd->index[uframe] == -1)) continue; urb_index = itd->index[uframe]; desc = &urb->iso_frame_desc [urb_index]; t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); itd->hw_transaction [uframe] = 0; /* report transfer status */ if (unlikely (t & ISO_ERRS)) { urb->error_count++; if (t & EHCI_ISOC_BUF_ERR) desc->status = usb_pipein (urb->pipe) ? -ENOSR /* hc couldn't read */ : -ECOMM; /* hc couldn't write */ else if (t & EHCI_ISOC_BABBLE) desc->status = -EOVERFLOW; else /* (t & EHCI_ISOC_XACTERR) */ desc->status = -EPROTO; /* HC need not update length with this error */ if (!(t & EHCI_ISOC_BABBLE)) { desc->actual_length = EHCI_ITD_LENGTH(t); urb->actual_length += desc->actual_length; } } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { desc->status = 0; desc->actual_length = EHCI_ITD_LENGTH(t); urb->actual_length += desc->actual_length; } else { /* URB was too late */ urb->error_count++; } } /* handle completion now? */ if (likely ((urb_index + 1) != urb->number_of_packets)) goto done; /* ASSERT: it's really the last itd for this urb list_for_each_entry (itd, &stream->td_list, itd_list) BUG_ON (itd->urb == urb); */ /* give urb back to the driver; completion often (re)submits */ dev = urb->dev; ehci_urb_done(ehci, urb, 0); retval = true; urb = NULL; --ehci->isoc_count; disable_periodic(ehci); ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { if (ehci->amd_pll_fix == 1) usb_amd_quirk_pll_enable(); } if (unlikely(list_is_singular(&stream->td_list))) ehci_to_hcd(ehci)->self.bandwidth_allocated -= stream->bandwidth; done: itd->urb = NULL; /* Add to the end of the free list for later reuse */ list_move_tail(&itd->itd_list, &stream->free_list); /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ if (list_empty(&stream->td_list)) { list_splice_tail_init(&stream->free_list, &ehci->cached_itd_list); start_free_itds(ehci); } return retval; } /*-------------------------------------------------------------------------*/ static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, gfp_t mem_flags) { int status = -EINVAL; unsigned long flags; struct ehci_iso_stream *stream; /* Get iso_stream head */ stream = iso_stream_find (ehci, urb); if (unlikely (stream == NULL)) { ehci_dbg (ehci, "can't get iso stream\n"); return -ENOMEM; } if (unlikely (urb->interval != stream->interval)) { ehci_dbg (ehci, "can't change iso interval %d --> %d\n", stream->interval, urb->interval); goto done; } #ifdef EHCI_URB_TRACE ehci_dbg (ehci, "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", __func__, urb->dev->devpath, urb, usb_pipeendpoint (urb->pipe), usb_pipein (urb->pipe) ? "in" : "out", urb->transfer_buffer_length, urb->number_of_packets, urb->interval, stream); #endif /* allocate ITDs w/o locking anything */ status = itd_urb_transaction (stream, ehci, urb, mem_flags); if (unlikely (status < 0)) { ehci_dbg (ehci, "can't init itds\n"); goto done; } /* schedule ... need to lock */ spin_lock_irqsave (&ehci->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { status = -ESHUTDOWN; goto done_not_linked; } status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); if (unlikely(status)) goto done_not_linked; status = iso_stream_schedule(ehci, urb, stream); if (likely(status == 0)) { itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); } else if (status > 0) { status = 0; ehci_urb_done(ehci, urb, 0); } else { usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); } done_not_linked: spin_unlock_irqrestore (&ehci->lock, flags); done: return status; } /*-------------------------------------------------------------------------*/ /* * "Split ISO TDs" ... used for USB 1.1 devices going through the * TTs in USB 2.0 hubs. These need microframe scheduling. */ static inline void sitd_sched_init( struct ehci_hcd *ehci, struct ehci_iso_sched *iso_sched, struct ehci_iso_stream *stream, struct urb *urb ) { unsigned i; dma_addr_t dma = urb->transfer_dma; /* how many frames are needed for these transfers */ iso_sched->span = urb->number_of_packets * stream->interval; /* figure out per-frame sitd fields that we'll need later * when we fit new sitds into the schedule. */ for (i = 0; i < urb->number_of_packets; i++) { struct ehci_iso_packet *packet = &iso_sched->packet [i]; unsigned length; dma_addr_t buf; u32 trans; length = urb->iso_frame_desc [i].length & 0x03ff; buf = dma + urb->iso_frame_desc [i].offset; trans = SITD_STS_ACTIVE; if (((i + 1) == urb->number_of_packets) && !(urb->transfer_flags & URB_NO_INTERRUPT)) trans |= SITD_IOC; trans |= length << 16; packet->transaction = cpu_to_hc32(ehci, trans); /* might need to cross a buffer page within a td */ packet->bufp = buf; packet->buf1 = (buf + length) & ~0x0fff; if (packet->buf1 != (buf & ~(u64)0x0fff)) packet->cross = 1; /* OUT uses multiple start-splits */ if (stream->bEndpointAddress & USB_DIR_IN) continue; length = (length + 187) / 188; if (length > 1) /* BEGIN vs ALL */ length |= 1 << 3; packet->buf1 |= length; } } static int sitd_urb_transaction ( struct ehci_iso_stream *stream, struct ehci_hcd *ehci, struct urb *urb, gfp_t mem_flags ) { struct ehci_sitd *sitd; dma_addr_t sitd_dma; int i; struct ehci_iso_sched *iso_sched; unsigned long flags; iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); if (iso_sched == NULL) return -ENOMEM; sitd_sched_init(ehci, iso_sched, stream, urb); /* allocate/init sITDs */ spin_lock_irqsave (&ehci->lock, flags); for (i = 0; i < urb->number_of_packets; i++) { /* NOTE: for now, we don't try to handle wraparound cases * for IN (using sitd->hw_backpointer, like a FSTN), which * means we never need two sitds for full speed packets. */ /* * Use siTDs from the free list, but not siTDs that may * still be in use by the hardware. */ if (likely(!list_empty(&stream->free_list))) { sitd = list_first_entry(&stream->free_list, struct ehci_sitd, sitd_list); if (sitd->frame == ehci->now_frame) goto alloc_sitd; list_del (&sitd->sitd_list); sitd_dma = sitd->sitd_dma; } else { alloc_sitd: spin_unlock_irqrestore (&ehci->lock, flags); sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, &sitd_dma); spin_lock_irqsave (&ehci->lock, flags); if (!sitd) { iso_sched_free(stream, iso_sched); spin_unlock_irqrestore(&ehci->lock, flags); return -ENOMEM; } } memset (sitd, 0, sizeof *sitd); sitd->sitd_dma = sitd_dma; sitd->frame = 9999; /* an invalid value */ list_add (&sitd->sitd_list, &iso_sched->td_list); } /* temporarily store schedule info in hcpriv */ urb->hcpriv = iso_sched; urb->error_count = 0; spin_unlock_irqrestore (&ehci->lock, flags); return 0; } /*-------------------------------------------------------------------------*/ static inline void sitd_patch( struct ehci_hcd *ehci, struct ehci_iso_stream *stream, struct ehci_sitd *sitd, struct ehci_iso_sched *iso_sched, unsigned index ) { struct ehci_iso_packet *uf = &iso_sched->packet [index]; u64 bufp = uf->bufp; sitd->hw_next = EHCI_LIST_END(ehci); sitd->hw_fullspeed_ep = stream->address; sitd->hw_uframe = stream->splits; sitd->hw_results = uf->transaction; sitd->hw_backpointer = EHCI_LIST_END(ehci); bufp = uf->bufp; sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); if (uf->cross) bufp += 4096; sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); sitd->index = index; } static inline void sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) { /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ sitd->sitd_next = ehci->pshadow [frame]; sitd->hw_next = ehci->periodic [frame]; ehci->pshadow [frame].sitd = sitd; sitd->frame = frame; wmb (); ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); } /* fit urb's sitds into the selected schedule slot; activate as needed */ static void sitd_link_urb( struct ehci_hcd *ehci, struct urb *urb, unsigned mod, struct ehci_iso_stream *stream ) { int packet; unsigned next_uframe; struct ehci_iso_sched *sched = urb->hcpriv; struct ehci_sitd *sitd; next_uframe = stream->next_uframe; if (list_empty(&stream->td_list)) /* usbfs ignores TT bandwidth */ ehci_to_hcd(ehci)->self.bandwidth_allocated += stream->bandwidth; if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { if (ehci->amd_pll_fix == 1) usb_amd_quirk_pll_disable(); } ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; /* fill sITDs frame by frame */ for (packet = sched->first_packet, sitd = NULL; packet < urb->number_of_packets; packet++) { /* ASSERT: we have all necessary sitds */ BUG_ON (list_empty (&sched->td_list)); /* ASSERT: no itds for this endpoint in this frame */ sitd = list_entry (sched->td_list.next, struct ehci_sitd, sitd_list); list_move_tail (&sitd->sitd_list, &stream->td_list); sitd->stream = stream; sitd->urb = urb; sitd_patch(ehci, stream, sitd, sched, packet); sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), sitd); next_uframe += stream->interval << 3; } stream->next_uframe = next_uframe & (mod - 1); /* don't need that schedule data any more */ iso_sched_free (stream, sched); urb->hcpriv = stream; ++ehci->isoc_count; enable_periodic(ehci); } /*-------------------------------------------------------------------------*/ #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ | SITD_STS_XACT | SITD_STS_MMF) /* Process and recycle a completed SITD. Return true iff its urb completed, * and hence its completion callback probably added things to the hardware * schedule. * * Note that we carefully avoid recycling this descriptor until after any * completion callback runs, so that it won't be reused quickly. That is, * assuming (a) no more than two urbs per frame on this endpoint, and also * (b) only this endpoint's completions submit URBs. It seems some silicon * corrupts things if you reuse completed descriptors very quickly... */ static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) { struct urb *urb = sitd->urb; struct usb_iso_packet_descriptor *desc; u32 t; int urb_index = -1; struct ehci_iso_stream *stream = sitd->stream; struct usb_device *dev; bool retval = false; urb_index = sitd->index; desc = &urb->iso_frame_desc [urb_index]; t = hc32_to_cpup(ehci, &sitd->hw_results); /* report transfer status */ if (unlikely(t & SITD_ERRS)) { urb->error_count++; if (t & SITD_STS_DBE) desc->status = usb_pipein (urb->pipe) ? -ENOSR /* hc couldn't read */ : -ECOMM; /* hc couldn't write */ else if (t & SITD_STS_BABBLE) desc->status = -EOVERFLOW; else /* XACT, MMF, etc */ desc->status = -EPROTO; } else if (unlikely(t & SITD_STS_ACTIVE)) { /* URB was too late */ urb->error_count++; } else { desc->status = 0; desc->actual_length = desc->length - SITD_LENGTH(t); urb->actual_length += desc->actual_length; } /* handle completion now? */ if ((urb_index + 1) != urb->number_of_packets) goto done; /* ASSERT: it's really the last sitd for this urb list_for_each_entry (sitd, &stream->td_list, sitd_list) BUG_ON (sitd->urb == urb); */ /* give urb back to the driver; completion often (re)submits */ dev = urb->dev; ehci_urb_done(ehci, urb, 0); retval = true; urb = NULL; --ehci->isoc_count; disable_periodic(ehci); ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { if (ehci->amd_pll_fix == 1) usb_amd_quirk_pll_enable(); } if (list_is_singular(&stream->td_list)) ehci_to_hcd(ehci)->self.bandwidth_allocated -= stream->bandwidth; done: sitd->urb = NULL; /* Add to the end of the free list for later reuse */ list_move_tail(&sitd->sitd_list, &stream->free_list); /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ if (list_empty(&stream->td_list)) { list_splice_tail_init(&stream->free_list, &ehci->cached_sitd_list); start_free_itds(ehci); } return retval; } static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, gfp_t mem_flags) { int status = -EINVAL; unsigned long flags; struct ehci_iso_stream *stream; /* Get iso_stream head */ stream = iso_stream_find (ehci, urb); if (stream == NULL) { ehci_dbg (ehci, "can't get iso stream\n"); return -ENOMEM; } if (urb->interval != stream->interval) { ehci_dbg (ehci, "can't change iso interval %d --> %d\n", stream->interval, urb->interval); goto done; } #ifdef EHCI_URB_TRACE ehci_dbg (ehci, "submit %p dev%s ep%d%s-iso len %d\n", urb, urb->dev->devpath, usb_pipeendpoint (urb->pipe), usb_pipein (urb->pipe) ? "in" : "out", urb->transfer_buffer_length); #endif /* allocate SITDs */ status = sitd_urb_transaction (stream, ehci, urb, mem_flags); if (status < 0) { ehci_dbg (ehci, "can't init sitds\n"); goto done; } /* schedule ... need to lock */ spin_lock_irqsave (&ehci->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { status = -ESHUTDOWN; goto done_not_linked; } status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); if (unlikely(status)) goto done_not_linked; status = iso_stream_schedule(ehci, urb, stream); if (likely(status == 0)) { sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); } else if (status > 0) { status = 0; ehci_urb_done(ehci, urb, 0); } else { usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); } done_not_linked: spin_unlock_irqrestore (&ehci->lock, flags); done: return status; } /*-------------------------------------------------------------------------*/ static void scan_isoc(struct ehci_hcd *ehci) { unsigned uf, now_frame, frame; unsigned fmask = ehci->periodic_size - 1; bool modified, live; /* * When running, scan from last scan point up to "now" * else clean up by scanning everything that's left. * Touches as few pages as possible: cache-friendly. */ if (ehci->rh_state >= EHCI_RH_RUNNING) { uf = ehci_read_frame_index(ehci); now_frame = (uf >> 3) & fmask; live = true; } else { now_frame = (ehci->last_iso_frame - 1) & fmask; live = false; } ehci->now_frame = now_frame; frame = ehci->last_iso_frame; for (;;) { union ehci_shadow q, *q_p; __hc32 type, *hw_p; restart: /* scan each element in frame's queue for completions */ q_p = &ehci->pshadow [frame]; hw_p = &ehci->periodic [frame]; q.ptr = q_p->ptr; type = Q_NEXT_TYPE(ehci, *hw_p); modified = false; while (q.ptr != NULL) { switch (hc32_to_cpu(ehci, type)) { case Q_TYPE_ITD: /* If this ITD is still active, leave it for * later processing ... check the next entry. * No need to check for activity unless the * frame is current. */ if (frame == now_frame && live) { rmb(); for (uf = 0; uf < 8; uf++) { if (q.itd->hw_transaction[uf] & ITD_ACTIVE(ehci)) break; } if (uf < 8) { q_p = &q.itd->itd_next; hw_p = &q.itd->hw_next; type = Q_NEXT_TYPE(ehci, q.itd->hw_next); q = *q_p; break; } } /* Take finished ITDs out of the schedule * and process them: recycle, maybe report * URB completion. HC won't cache the * pointer for much longer, if at all. */ *q_p = q.itd->itd_next; if (!ehci->use_dummy_qh || q.itd->hw_next != EHCI_LIST_END(ehci)) *hw_p = q.itd->hw_next; else *hw_p = ehci->dummy->qh_dma; type = Q_NEXT_TYPE(ehci, q.itd->hw_next); wmb(); modified = itd_complete (ehci, q.itd); q = *q_p; break; case Q_TYPE_SITD: /* If this SITD is still active, leave it for * later processing ... check the next entry. * No need to check for activity unless the * frame is current. */ if (((frame == now_frame) || (((frame + 1) & fmask) == now_frame)) && live && (q.sitd->hw_results & SITD_ACTIVE(ehci))) { q_p = &q.sitd->sitd_next; hw_p = &q.sitd->hw_next; type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); q = *q_p; break; } /* Take finished SITDs out of the schedule * and process them: recycle, maybe report * URB completion. */ *q_p = q.sitd->sitd_next; if (!ehci->use_dummy_qh || q.sitd->hw_next != EHCI_LIST_END(ehci)) *hw_p = q.sitd->hw_next; else *hw_p = ehci->dummy->qh_dma; type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); wmb(); modified = sitd_complete (ehci, q.sitd); q = *q_p; break; default: ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", type, frame, q.ptr); // BUG (); /* FALL THROUGH */ case Q_TYPE_QH: case Q_TYPE_FSTN: /* End of the iTDs and siTDs */ q.ptr = NULL; break; } /* assume completion callbacks modify the queue */ if (unlikely(modified && ehci->isoc_count > 0)) goto restart; } /* Stop when we have reached the current frame */ if (frame == now_frame) break; /* The last frame may still have active siTDs */ ehci->last_iso_frame = frame; frame = (frame + 1) & fmask; } }