/* * Driver for the NXP ISP1760 chip * * However, the code might contain some bugs. What doesn't work for sure is: * - ISO * - OTG e The interrupt line is configured as active low, level. * * (c) 2007 Sebastian Siewior * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "isp1760-hcd.h" static struct kmem_cache *qtd_cachep; static struct kmem_cache *qh_cachep; struct isp1760_hcd { u32 hcs_params; spinlock_t lock; struct inter_packet_info atl_ints[32]; struct inter_packet_info int_ints[32]; struct memory_chunk memory_pool[BLOCKS]; u32 atl_queued; /* periodic schedule support */ #define DEFAULT_I_TDPS 1024 unsigned periodic_size; unsigned i_thresh; unsigned long reset_done; unsigned long next_statechange; unsigned int devflags; }; static inline struct isp1760_hcd *hcd_to_priv(struct usb_hcd *hcd) { return (struct isp1760_hcd *) (hcd->hcd_priv); } /* Section 2.2 Host Controller Capability Registers */ #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */ #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */ #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */ #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */ #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */ #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */ /* Section 2.3 Host Controller Operational Registers */ #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */ #define CMD_RESET (1<<1) /* reset HC not bus */ #define CMD_RUN (1<<0) /* start/stop HC */ #define STS_PCD (1<<2) /* port change detect */ #define FLAG_CF (1<<0) /* true: we'll support "high speed" */ #define PORT_OWNER (1<<13) /* true: companion hc owns this port */ #define PORT_POWER (1<<12) /* true: has power (see PPC) */ #define PORT_USB11(x) (((x) & (3 << 10)) == (1 << 10)) /* USB 1.1 device */ #define PORT_RESET (1<<8) /* reset port */ #define PORT_SUSPEND (1<<7) /* suspend port */ #define PORT_RESUME (1<<6) /* resume it */ #define PORT_PE (1<<2) /* port enable */ #define PORT_CSC (1<<1) /* connect status change */ #define PORT_CONNECT (1<<0) /* device connected */ #define PORT_RWC_BITS (PORT_CSC) struct isp1760_qtd { u8 packet_type; void *data_buffer; u32 payload_addr; /* the rest is HCD-private */ struct list_head qtd_list; struct urb *urb; size_t length; /* isp special*/ u32 status; #define URB_ENQUEUED (1 << 1) }; struct isp1760_qh { /* first part defined by EHCI spec */ struct list_head qtd_list; u32 toggle; u32 ping; }; /* * Access functions for isp176x registers (addresses 0..0x03FF). */ static u32 reg_read32(void __iomem *base, u32 reg) { return readl(base + reg); } static void reg_write32(void __iomem *base, u32 reg, u32 val) { writel(val, base + reg); } /* * Access functions for isp176x memory (offset >= 0x0400). * * bank_reads8() reads memory locations prefetched by an earlier write to * HC_MEMORY_REG (see isp176x datasheet). Unless you want to do fancy multi- * bank optimizations, you should use the more generic mem_reads8() below. * * For access to ptd memory, use the specialized ptd_read() and ptd_write() * below. * * These functions copy via MMIO data to/from the device. memcpy_{to|from}io() * doesn't quite work because some people have to enforce 32-bit access */ static void bank_reads8(void __iomem *src_base, u32 src_offset, u32 bank_addr, __u32 *dst, u32 bytes) { __u32 __iomem *src; u32 val; __u8 *src_byteptr; __u8 *dst_byteptr; src = src_base + (bank_addr | src_offset); if (src_offset < PAYLOAD_OFFSET) { while (bytes >= 4) { *dst = le32_to_cpu(__raw_readl(src)); bytes -= 4; src++; dst++; } } else { while (bytes >= 4) { *dst = __raw_readl(src); bytes -= 4; src++; dst++; } } if (!bytes) return; /* in case we have 3, 2 or 1 by left. The dst buffer may not be fully * allocated. */ if (src_offset < PAYLOAD_OFFSET) val = le32_to_cpu(__raw_readl(src)); else val = __raw_readl(src); dst_byteptr = (void *) dst; src_byteptr = (void *) &val; while (bytes > 0) { *dst_byteptr = *src_byteptr; dst_byteptr++; src_byteptr++; bytes--; } } static void mem_reads8(void __iomem *src_base, u32 src_offset, void *dst, u32 bytes) { reg_write32(src_base, HC_MEMORY_REG, src_offset + ISP_BANK(0)); ndelay(90); bank_reads8(src_base, src_offset, ISP_BANK(0), dst, bytes); } static void mem_writes8(void __iomem *dst_base, u32 dst_offset, __u32 const *src, u32 bytes) { __u32 __iomem *dst; dst = dst_base + dst_offset; if (dst_offset < PAYLOAD_OFFSET) { while (bytes >= 4) { __raw_writel(cpu_to_le32(*src), dst); bytes -= 4; src++; dst++; } } else { while (bytes >= 4) { __raw_writel(*src, dst); bytes -= 4; src++; dst++; } } if (!bytes) return; /* in case we have 3, 2 or 1 bytes left. The buffer is allocated and the * extra bytes should not be read by the HW. */ if (dst_offset < PAYLOAD_OFFSET) __raw_writel(cpu_to_le32(*src), dst); else __raw_writel(*src, dst); } /* * Read and write ptds. 'ptd_offset' should be one of ISO_PTD_OFFSET, * INT_PTD_OFFSET, and ATL_PTD_OFFSET. 'slot' should be less than 32. */ static void ptd_read(void __iomem *base, u32 ptd_offset, u32 slot, struct ptd *ptd) { reg_write32(base, HC_MEMORY_REG, ISP_BANK(0) + ptd_offset + slot*sizeof(*ptd)); ndelay(90); bank_reads8(base, ptd_offset + slot*sizeof(*ptd), ISP_BANK(0), (void *) ptd, sizeof(*ptd)); } static void ptd_write(void __iomem *base, u32 ptd_offset, u32 slot, struct ptd *ptd) { mem_writes8(base, ptd_offset + slot*sizeof(*ptd) + sizeof(ptd->dw0), &ptd->dw1, 7*sizeof(ptd->dw1)); /* Make sure dw0 gets written last (after other dw's and after payload) since it contains the enable bit */ wmb(); mem_writes8(base, ptd_offset + slot*sizeof(*ptd), &ptd->dw0, sizeof(ptd->dw0)); } /* memory management of the 60kb on the chip from 0x1000 to 0xffff */ static void init_memory(struct isp1760_hcd *priv) { int i, curr; u32 payload_addr; payload_addr = PAYLOAD_OFFSET; for (i = 0; i < BLOCK_1_NUM; i++) { priv->memory_pool[i].start = payload_addr; priv->memory_pool[i].size = BLOCK_1_SIZE; priv->memory_pool[i].free = 1; payload_addr += priv->memory_pool[i].size; } curr = i; for (i = 0; i < BLOCK_2_NUM; i++) { priv->memory_pool[curr + i].start = payload_addr; priv->memory_pool[curr + i].size = BLOCK_2_SIZE; priv->memory_pool[curr + i].free = 1; payload_addr += priv->memory_pool[curr + i].size; } curr = i; for (i = 0; i < BLOCK_3_NUM; i++) { priv->memory_pool[curr + i].start = payload_addr; priv->memory_pool[curr + i].size = BLOCK_3_SIZE; priv->memory_pool[curr + i].free = 1; payload_addr += priv->memory_pool[curr + i].size; } WARN_ON(payload_addr - priv->memory_pool[0].start > PAYLOAD_AREA_SIZE); } static void alloc_mem(struct usb_hcd *hcd, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int i; WARN_ON(qtd->payload_addr); if (!qtd->length) return; for (i = 0; i < BLOCKS; i++) { if (priv->memory_pool[i].size >= qtd->length && priv->memory_pool[i].free) { priv->memory_pool[i].free = 0; qtd->payload_addr = priv->memory_pool[i].start; return; } } dev_err(hcd->self.controller, "%s: Cannot allocate %zu bytes of memory\n" "Current memory map:\n", __func__, qtd->length); for (i = 0; i < BLOCKS; i++) { dev_err(hcd->self.controller, "Pool %2d size %4d status: %d\n", i, priv->memory_pool[i].size, priv->memory_pool[i].free); } /* XXX maybe -ENOMEM could be possible */ BUG(); return; } static void free_mem(struct usb_hcd *hcd, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int i; if (!qtd->payload_addr) return; for (i = 0; i < BLOCKS; i++) { if (priv->memory_pool[i].start == qtd->payload_addr) { WARN_ON(priv->memory_pool[i].free); priv->memory_pool[i].free = 1; qtd->payload_addr = 0; return; } } dev_err(hcd->self.controller, "%s: Invalid pointer: %08x\n", __func__, qtd->payload_addr); BUG(); } static void isp1760_init_regs(struct usb_hcd *hcd) { reg_write32(hcd->regs, HC_BUFFER_STATUS_REG, 0); reg_write32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG, NO_TRANSFER_ACTIVE); reg_write32(hcd->regs, HC_INT_PTD_SKIPMAP_REG, NO_TRANSFER_ACTIVE); reg_write32(hcd->regs, HC_ISO_PTD_SKIPMAP_REG, NO_TRANSFER_ACTIVE); reg_write32(hcd->regs, HC_ATL_PTD_DONEMAP_REG, ~NO_TRANSFER_ACTIVE); reg_write32(hcd->regs, HC_INT_PTD_DONEMAP_REG, ~NO_TRANSFER_ACTIVE); reg_write32(hcd->regs, HC_ISO_PTD_DONEMAP_REG, ~NO_TRANSFER_ACTIVE); } static int handshake(struct usb_hcd *hcd, u32 reg, u32 mask, u32 done, int usec) { u32 result; do { result = reg_read32(hcd->regs, reg); if (result == ~0) return -ENODEV; result &= mask; if (result == done) return 0; udelay(1); usec--; } while (usec > 0); return -ETIMEDOUT; } /* reset a non-running (STS_HALT == 1) controller */ static int ehci_reset(struct usb_hcd *hcd) { int retval; struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 command = reg_read32(hcd->regs, HC_USBCMD); command |= CMD_RESET; reg_write32(hcd->regs, HC_USBCMD, command); hcd->state = HC_STATE_HALT; priv->next_statechange = jiffies; retval = handshake(hcd, HC_USBCMD, CMD_RESET, 0, 250 * 1000); return retval; } static void qh_destroy(struct isp1760_qh *qh) { WARN_ON(!list_empty(&qh->qtd_list)); kmem_cache_free(qh_cachep, qh); } static struct isp1760_qh *isp1760_qh_alloc(gfp_t flags) { struct isp1760_qh *qh; qh = kmem_cache_zalloc(qh_cachep, flags); if (!qh) return qh; INIT_LIST_HEAD(&qh->qtd_list); return qh; } /* magic numbers that can affect system performance */ #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ #define EHCI_TUNE_RL_TT 0 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ #define EHCI_TUNE_MULT_TT 1 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ /* one-time init, only for memory state */ static int priv_init(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 hcc_params; spin_lock_init(&priv->lock); /* * hw default: 1K periodic list heads, one per frame. * periodic_size can shrink by USBCMD update if hcc_params allows. */ priv->periodic_size = DEFAULT_I_TDPS; /* controllers may cache some of the periodic schedule ... */ hcc_params = reg_read32(hcd->regs, HC_HCCPARAMS); /* full frame cache */ if (HCC_ISOC_CACHE(hcc_params)) priv->i_thresh = 8; else /* N microframes cached */ priv->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); return 0; } static int isp1760_hc_setup(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int result; u32 scratch, hwmode; /* Setup HW Mode Control: This assumes a level active-low interrupt */ hwmode = HW_DATA_BUS_32BIT; if (priv->devflags & ISP1760_FLAG_BUS_WIDTH_16) hwmode &= ~HW_DATA_BUS_32BIT; if (priv->devflags & ISP1760_FLAG_ANALOG_OC) hwmode |= HW_ANA_DIGI_OC; if (priv->devflags & ISP1760_FLAG_DACK_POL_HIGH) hwmode |= HW_DACK_POL_HIGH; if (priv->devflags & ISP1760_FLAG_DREQ_POL_HIGH) hwmode |= HW_DREQ_POL_HIGH; if (priv->devflags & ISP1760_FLAG_INTR_POL_HIGH) hwmode |= HW_INTR_HIGH_ACT; if (priv->devflags & ISP1760_FLAG_INTR_EDGE_TRIG) hwmode |= HW_INTR_EDGE_TRIG; /* * We have to set this first in case we're in 16-bit mode. * Write it twice to ensure correct upper bits if switching * to 16-bit mode. */ reg_write32(hcd->regs, HC_HW_MODE_CTRL, hwmode); reg_write32(hcd->regs, HC_HW_MODE_CTRL, hwmode); reg_write32(hcd->regs, HC_SCRATCH_REG, 0xdeadbabe); /* Change bus pattern */ scratch = reg_read32(hcd->regs, HC_CHIP_ID_REG); scratch = reg_read32(hcd->regs, HC_SCRATCH_REG); if (scratch != 0xdeadbabe) { dev_err(hcd->self.controller, "Scratch test failed.\n"); return -ENODEV; } /* pre reset */ isp1760_init_regs(hcd); /* reset */ reg_write32(hcd->regs, HC_RESET_REG, SW_RESET_RESET_ALL); mdelay(100); reg_write32(hcd->regs, HC_RESET_REG, SW_RESET_RESET_HC); mdelay(100); result = ehci_reset(hcd); if (result) return result; /* Step 11 passed */ dev_info(hcd->self.controller, "bus width: %d, oc: %s\n", (priv->devflags & ISP1760_FLAG_BUS_WIDTH_16) ? 16 : 32, (priv->devflags & ISP1760_FLAG_ANALOG_OC) ? "analog" : "digital"); /* ATL reset */ reg_write32(hcd->regs, HC_HW_MODE_CTRL, hwmode | ALL_ATX_RESET); mdelay(10); reg_write32(hcd->regs, HC_HW_MODE_CTRL, hwmode); reg_write32(hcd->regs, HC_INTERRUPT_REG, INTERRUPT_ENABLE_MASK); reg_write32(hcd->regs, HC_INTERRUPT_ENABLE, INTERRUPT_ENABLE_MASK); /* * PORT 1 Control register of the ISP1760 is the OTG control * register on ISP1761. Since there is no OTG or device controller * support in this driver, we use port 1 as a "normal" USB host port on * both chips. */ reg_write32(hcd->regs, HC_PORT1_CTRL, PORT1_POWER | PORT1_INIT2); mdelay(10); priv->hcs_params = reg_read32(hcd->regs, HC_HCSPARAMS); return priv_init(hcd); } static void isp1760_init_maps(struct usb_hcd *hcd) { /*set last maps, for iso its only 1, else 32 tds bitmap*/ reg_write32(hcd->regs, HC_ATL_PTD_LASTPTD_REG, 0x80000000); reg_write32(hcd->regs, HC_INT_PTD_LASTPTD_REG, 0x80000000); reg_write32(hcd->regs, HC_ISO_PTD_LASTPTD_REG, 0x00000001); } static void isp1760_enable_interrupts(struct usb_hcd *hcd) { reg_write32(hcd->regs, HC_ATL_IRQ_MASK_AND_REG, 0); reg_write32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG, 0); reg_write32(hcd->regs, HC_INT_IRQ_MASK_AND_REG, 0); reg_write32(hcd->regs, HC_INT_IRQ_MASK_OR_REG, 0); reg_write32(hcd->regs, HC_ISO_IRQ_MASK_AND_REG, 0); reg_write32(hcd->regs, HC_ISO_IRQ_MASK_OR_REG, 0xffffffff); /* step 23 passed */ } static int isp1760_run(struct usb_hcd *hcd) { int retval; u32 temp; u32 command; u32 chipid; hcd->uses_new_polling = 1; hcd->state = HC_STATE_RUNNING; isp1760_enable_interrupts(hcd); temp = reg_read32(hcd->regs, HC_HW_MODE_CTRL); reg_write32(hcd->regs, HC_HW_MODE_CTRL, temp | HW_GLOBAL_INTR_EN); command = reg_read32(hcd->regs, HC_USBCMD); command &= ~(CMD_LRESET|CMD_RESET); command |= CMD_RUN; reg_write32(hcd->regs, HC_USBCMD, command); retval = handshake(hcd, HC_USBCMD, CMD_RUN, CMD_RUN, 250 * 1000); if (retval) return retval; /* * XXX * Spec says to write FLAG_CF as last config action, priv code grabs * the semaphore while doing so. */ down_write(&ehci_cf_port_reset_rwsem); reg_write32(hcd->regs, HC_CONFIGFLAG, FLAG_CF); retval = handshake(hcd, HC_CONFIGFLAG, FLAG_CF, FLAG_CF, 250 * 1000); up_write(&ehci_cf_port_reset_rwsem); if (retval) return retval; chipid = reg_read32(hcd->regs, HC_CHIP_ID_REG); dev_info(hcd->self.controller, "USB ISP %04x HW rev. %d started\n", chipid & 0xffff, chipid >> 16); /* PTD Register Init Part 2, Step 28 */ /* enable INTs */ isp1760_init_maps(hcd); /* GRR this is run-once init(), being done every time the HC starts. * So long as they're part of class devices, we can't do it init() * since the class device isn't created that early. */ return 0; } static u32 base_to_chip(u32 base) { return ((base - 0x400) >> 3); } static int last_qtd_of_urb(struct isp1760_qtd *qtd, struct isp1760_qh *qh) { struct urb *urb; if (list_is_last(&qtd->qtd_list, &qh->qtd_list)) return 1; urb = qtd->urb; qtd = list_entry(qtd->qtd_list.next, typeof(*qtd), qtd_list); return (qtd->urb != urb); } static void transform_into_atl(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { u32 maxpacket; u32 multi; u32 pid_code; u32 rl = RL_COUNTER; u32 nak = NAK_COUNTER; memset(ptd, 0, sizeof(*ptd)); /* according to 3.6.2, max packet len can not be > 0x400 */ maxpacket = usb_maxpacket(qtd->urb->dev, qtd->urb->pipe, usb_pipeout(qtd->urb->pipe)); multi = 1 + ((maxpacket >> 11) & 0x3); maxpacket &= 0x7ff; /* DW0 */ ptd->dw0 = PTD_VALID; ptd->dw0 |= PTD_LENGTH(qtd->length); ptd->dw0 |= PTD_MAXPACKET(maxpacket); ptd->dw0 |= PTD_ENDPOINT(usb_pipeendpoint(qtd->urb->pipe)); /* DW1 */ ptd->dw1 = usb_pipeendpoint(qtd->urb->pipe) >> 1; ptd->dw1 |= PTD_DEVICE_ADDR(usb_pipedevice(qtd->urb->pipe)); pid_code = qtd->packet_type; ptd->dw1 |= PTD_PID_TOKEN(pid_code); if (usb_pipebulk(qtd->urb->pipe)) ptd->dw1 |= PTD_TRANS_BULK; else if (usb_pipeint(qtd->urb->pipe)) ptd->dw1 |= PTD_TRANS_INT; if (qtd->urb->dev->speed != USB_SPEED_HIGH) { /* split transaction */ ptd->dw1 |= PTD_TRANS_SPLIT; if (qtd->urb->dev->speed == USB_SPEED_LOW) ptd->dw1 |= PTD_SE_USB_LOSPEED; ptd->dw1 |= PTD_PORT_NUM(qtd->urb->dev->ttport); ptd->dw1 |= PTD_HUB_NUM(qtd->urb->dev->tt->hub->devnum); /* SE bit for Split INT transfers */ if (usb_pipeint(qtd->urb->pipe) && (qtd->urb->dev->speed == USB_SPEED_LOW)) ptd->dw1 |= 2 << 16; ptd->dw3 = 0; rl = 0; nak = 0; } else { ptd->dw0 |= PTD_MULTI(multi); if (usb_pipecontrol(qtd->urb->pipe) || usb_pipebulk(qtd->urb->pipe)) ptd->dw3 = qh->ping; else ptd->dw3 = 0; } /* DW2 */ ptd->dw2 = 0; ptd->dw2 |= PTD_DATA_START_ADDR(base_to_chip(qtd->payload_addr)); ptd->dw2 |= PTD_RL_CNT(rl); ptd->dw3 |= PTD_NAC_CNT(nak); /* DW3 */ ptd->dw3 |= qh->toggle; if (usb_pipecontrol(qtd->urb->pipe)) { if (qtd->data_buffer == qtd->urb->setup_packet) ptd->dw3 &= ~PTD_DATA_TOGGLE(1); else if (last_qtd_of_urb(qtd, qh)) ptd->dw3 |= PTD_DATA_TOGGLE(1); } ptd->dw3 |= PTD_ACTIVE; /* Cerr */ ptd->dw3 |= PTD_CERR(ERR_COUNTER); } static void transform_add_int(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { u32 usof; u32 period; /* * Most of this is guessing. ISP1761 datasheet is quite unclear, and * the algorithm from the original Philips driver code, which was * pretty much used in this driver before as well, is quite horrendous * and, i believe, incorrect. The code below follows the datasheet and * USB2.0 spec as far as I can tell, and plug/unplug seems to be much * more reliable this way (fingers crossed...). */ if (qtd->urb->dev->speed == USB_SPEED_HIGH) { /* urb->interval is in units of microframes (1/8 ms) */ period = qtd->urb->interval >> 3; if (qtd->urb->interval > 4) usof = 0x01; /* One bit set => interval 1 ms * uFrame-match */ else if (qtd->urb->interval > 2) usof = 0x22; /* Two bits set => interval 1/2 ms */ else if (qtd->urb->interval > 1) usof = 0x55; /* Four bits set => interval 1/4 ms */ else usof = 0xff; /* All bits set => interval 1/8 ms */ } else { /* urb->interval is in units of frames (1 ms) */ period = qtd->urb->interval; usof = 0x0f; /* Execute Start Split on any of the four first uFrames */ /* * First 8 bits in dw5 is uSCS and "specifies which uSOF the * complete split needs to be sent. Valid only for IN." Also, * "All bits can be set to one for every transfer." (p 82, * ISP1761 data sheet.) 0x1c is from Philips driver. Where did * that number come from? 0xff seems to work fine... */ /* ptd->dw5 = 0x1c; */ ptd->dw5 = 0xff; /* Execute Complete Split on any uFrame */ } period = period >> 1;/* Ensure equal or shorter period than requested */ period &= 0xf8; /* Mask off too large values and lowest unused 3 bits */ ptd->dw2 |= period; ptd->dw4 = usof; } static void transform_into_int(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { transform_into_atl(qh, qtd, ptd); transform_add_int(qh, qtd, ptd); } static int check_error(struct usb_hcd *hcd, struct ptd *ptd) { int error = 0; if (ptd->dw3 & DW3_HALT_BIT) { error = -EPIPE; if (ptd->dw3 & DW3_ERROR_BIT) pr_err("error bit is set in DW3\n"); } if (ptd->dw3 & DW3_QTD_ACTIVE) { dev_err(hcd->self.controller, "Transfer active bit is set DW3\n" "nak counter: %d, rl: %d\n", (ptd->dw3 >> 19) & 0xf, (ptd->dw2 >> 25) & 0xf); } return error; } static void check_int_err_status(struct usb_hcd *hcd, u32 dw4) { u32 i; dw4 >>= 8; for (i = 0; i < 8; i++) { switch (dw4 & 0x7) { case INT_UNDERRUN: dev_err(hcd->self.controller, "Underrun (%d)\n", i); break; case INT_EXACT: dev_err(hcd->self.controller, "Transaction error (%d)\n", i); break; case INT_BABBLE: dev_err(hcd->self.controller, "Babble error (%d)\n", i); break; } dw4 >>= 3; } } static void enqueue_one_qtd(struct usb_hcd *hcd, struct isp1760_qtd *qtd) { if (qtd->length && (qtd->length <= MAX_PAYLOAD_SIZE)) { switch (qtd->packet_type) { case IN_PID: break; case OUT_PID: case SETUP_PID: mem_writes8(hcd->regs, qtd->payload_addr, qtd->data_buffer, qtd->length); } } } static void enqueue_one_atl_qtd(struct usb_hcd *hcd, struct isp1760_qh *qh, u32 slot, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct ptd ptd; alloc_mem(hcd, qtd); transform_into_atl(qh, qtd, &ptd); ptd_write(hcd->regs, ATL_PTD_OFFSET, slot, &ptd); enqueue_one_qtd(hcd, qtd); priv->atl_ints[slot].qh = qh; priv->atl_ints[slot].qtd = qtd; qtd->status |= URB_ENQUEUED; qtd->status |= slot << 16; } static void enqueue_one_int_qtd(struct usb_hcd *hcd, struct isp1760_qh *qh, u32 slot, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct ptd ptd; alloc_mem(hcd, qtd); transform_into_int(qh, qtd, &ptd); ptd_write(hcd->regs, INT_PTD_OFFSET, slot, &ptd); enqueue_one_qtd(hcd, qtd); priv->int_ints[slot].qh = qh; priv->int_ints[slot].qtd = qtd; qtd->status |= URB_ENQUEUED; qtd->status |= slot << 16; } static void enqueue_an_ATL_packet(struct usb_hcd *hcd, struct isp1760_qh *qh, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 skip_map, or_map; u32 slot; u32 buffstatus; /* * When this function is called from the interrupt handler to enqueue * a follow-up packet, the SKIP register gets written and read back * almost immediately. With ISP1761, this register requires a delay of * 195ns between a write and subsequent read (see section 15.1.1.3). */ mmiowb(); ndelay(195); skip_map = reg_read32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG); BUG_ON(!skip_map); slot = __ffs(skip_map); enqueue_one_atl_qtd(hcd, qh, slot, qtd); or_map = reg_read32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG); or_map |= (1 << slot); reg_write32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG, or_map); skip_map &= ~(1 << slot); reg_write32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG, skip_map); priv->atl_queued++; if (priv->atl_queued == 2) reg_write32(hcd->regs, HC_INTERRUPT_ENABLE, INTERRUPT_ENABLE_SOT_MASK); buffstatus = reg_read32(hcd->regs, HC_BUFFER_STATUS_REG); buffstatus |= ATL_BUFFER; reg_write32(hcd->regs, HC_BUFFER_STATUS_REG, buffstatus); } static void enqueue_an_INT_packet(struct usb_hcd *hcd, struct isp1760_qh *qh, struct isp1760_qtd *qtd) { u32 skip_map, or_map; u32 slot; u32 buffstatus; /* * When this function is called from the interrupt handler to enqueue * a follow-up packet, the SKIP register gets written and read back * almost immediately. With ISP1761, this register requires a delay of * 195ns between a write and subsequent read (see section 15.1.1.3). */ mmiowb(); ndelay(195); skip_map = reg_read32(hcd->regs, HC_INT_PTD_SKIPMAP_REG); BUG_ON(!skip_map); slot = __ffs(skip_map); enqueue_one_int_qtd(hcd, qh, slot, qtd); or_map = reg_read32(hcd->regs, HC_INT_IRQ_MASK_OR_REG); or_map |= (1 << slot); reg_write32(hcd->regs, HC_INT_IRQ_MASK_OR_REG, or_map); skip_map &= ~(1 << slot); reg_write32(hcd->regs, HC_INT_PTD_SKIPMAP_REG, skip_map); buffstatus = reg_read32(hcd->regs, HC_BUFFER_STATUS_REG); buffstatus |= INT_BUFFER; reg_write32(hcd->regs, HC_BUFFER_STATUS_REG, buffstatus); } static void isp1760_urb_done(struct usb_hcd *hcd, struct urb *urb) __releases(priv->lock) __acquires(priv->lock) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!urb->unlinked) { if (urb->status == -EINPROGRESS) urb->status = 0; } if (usb_pipein(urb->pipe) && usb_pipetype(urb->pipe) != PIPE_CONTROL) { void *ptr; for (ptr = urb->transfer_buffer; ptr < urb->transfer_buffer + urb->transfer_buffer_length; ptr += PAGE_SIZE) flush_dcache_page(virt_to_page(ptr)); } /* complete() can reenter this HCD */ usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&priv->lock); usb_hcd_giveback_urb(hcd, urb, urb->status); spin_lock(&priv->lock); } static struct isp1760_qtd *qtd_alloc(gfp_t flags, struct urb *urb, u8 packet_type) { struct isp1760_qtd *qtd; qtd = kmem_cache_zalloc(qtd_cachep, flags); if (!qtd) return NULL; INIT_LIST_HEAD(&qtd->qtd_list); qtd->urb = urb; qtd->packet_type = packet_type; return qtd; } static void qtd_free(struct isp1760_qtd *qtd) { WARN_ON(qtd->payload_addr); kmem_cache_free(qtd_cachep, qtd); } static struct isp1760_qtd *clean_this_qtd(struct isp1760_qtd *qtd, struct isp1760_qh *qh) { struct isp1760_qtd *tmp_qtd; if (list_is_last(&qtd->qtd_list, &qh->qtd_list)) tmp_qtd = NULL; else tmp_qtd = list_entry(qtd->qtd_list.next, struct isp1760_qtd, qtd_list); list_del(&qtd->qtd_list); qtd_free(qtd); return tmp_qtd; } /* * Remove this QTD from the QH list and free its memory. If this QTD * isn't the last one than remove also his successor(s). * Returns the QTD which is part of an new URB and should be enqueued. */ static struct isp1760_qtd *clean_up_qtdlist(struct isp1760_qtd *qtd, struct isp1760_qh *qh) { struct urb *urb; urb = qtd->urb; do { qtd = clean_this_qtd(qtd, qh); } while (qtd && (qtd->urb == urb)); return qtd; } static void do_atl_int(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 done_map, skip_map; struct ptd ptd; struct urb *urb; u32 slot; u32 length; u32 or_map; u32 status = -EINVAL; int error; struct isp1760_qtd *qtd; struct isp1760_qh *qh; u32 rl; u32 nakcount; done_map = reg_read32(hcd->regs, HC_ATL_PTD_DONEMAP_REG); skip_map = reg_read32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG); or_map = reg_read32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG); or_map &= ~done_map; reg_write32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG, or_map); while (done_map) { status = 0; priv->atl_queued--; slot = __ffs(done_map); done_map &= ~(1 << slot); skip_map |= (1 << slot); qtd = priv->atl_ints[slot].qtd; qh = priv->atl_ints[slot].qh; /* urb unlinked? */ if (!qh) continue; ptd_read(hcd->regs, ATL_PTD_OFFSET, slot, &ptd); rl = (ptd.dw2 >> 25) & 0x0f; nakcount = (ptd.dw3 >> 19) & 0xf; /* Transfer Error, *but* active and no HALT -> reload */ if ((ptd.dw3 & DW3_ERROR_BIT) && (ptd.dw3 & DW3_QTD_ACTIVE) && !(ptd.dw3 & DW3_HALT_BIT)) { /* according to ppriv code, we have to * reload this one if trasfered bytes != requested bytes * else act like everything went smooth.. * XXX This just doesn't feel right and hasn't * triggered so far. */ length = PTD_XFERRED_LENGTH(ptd.dw3); dev_err(hcd->self.controller, "Should reload now... transferred %d " "of %zu\n", length, qtd->length); BUG(); } if (!nakcount && (ptd.dw3 & DW3_QTD_ACTIVE)) { u32 buffstatus; /* * NAKs are handled in HW by the chip. Usually if the * device is not able to send data fast enough. * This happens mostly on slower hardware. */ /* RL counter = ERR counter */ ptd.dw3 &= ~(0xf << 19); ptd.dw3 |= rl << 19; ptd.dw3 &= ~(3 << (55 - 32)); ptd.dw3 |= ERR_COUNTER << (55 - 32); /* * It is not needed to write skip map back because it * is unchanged. Just make sure that this entry is * unskipped once it gets written to the HW. */ skip_map &= ~(1 << slot); or_map = reg_read32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG); or_map |= 1 << slot; reg_write32(hcd->regs, HC_ATL_IRQ_MASK_OR_REG, or_map); ptd.dw0 |= PTD_VALID; ptd_write(hcd->regs, ATL_PTD_OFFSET, slot, &ptd); priv->atl_queued++; if (priv->atl_queued == 2) reg_write32(hcd->regs, HC_INTERRUPT_ENABLE, INTERRUPT_ENABLE_SOT_MASK); buffstatus = reg_read32(hcd->regs, HC_BUFFER_STATUS_REG); buffstatus |= ATL_BUFFER; reg_write32(hcd->regs, HC_BUFFER_STATUS_REG, buffstatus); continue; } error = check_error(hcd, &ptd); if (error) { status = error; priv->atl_ints[slot].qh->toggle = 0; priv->atl_ints[slot].qh->ping = 0; qtd->urb->status = -EPIPE; #if 0 printk(KERN_ERR "Error in %s().\n", __func__); printk(KERN_ERR "IN dw0: %08x dw1: %08x dw2: %08x " "dw3: %08x dw4: %08x dw5: %08x dw6: " "%08x dw7: %08x\n", ptd.dw0, ptd.dw1, ptd.dw2, ptd.dw3, ptd.dw4, ptd.dw5, ptd.dw6, ptd.dw7); #endif } else { priv->atl_ints[slot].qh->toggle = ptd.dw3 & (1 << 25); priv->atl_ints[slot].qh->ping = ptd.dw3 & (1 << 26); } length = PTD_XFERRED_LENGTH(ptd.dw3); if (length) { switch (DW1_GET_PID(ptd.dw1)) { case IN_PID: mem_reads8(hcd->regs, qtd->payload_addr, qtd->data_buffer, length); case OUT_PID: qtd->urb->actual_length += length; case SETUP_PID: break; } } priv->atl_ints[slot].qtd = NULL; priv->atl_ints[slot].qh = NULL; free_mem(hcd, qtd); reg_write32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG, skip_map); if (qtd->urb->status == -EPIPE) { /* HALT was received */ urb = qtd->urb; qtd = clean_up_qtdlist(qtd, qh); isp1760_urb_done(hcd, urb); } else if (usb_pipebulk(qtd->urb->pipe) && (length < qtd->length)) { /* short BULK received */ if (qtd->urb->transfer_flags & URB_SHORT_NOT_OK) { qtd->urb->status = -EREMOTEIO; dev_dbg(hcd->self.controller, "short bulk, %d instead %zu " "with URB_SHORT_NOT_OK flag.\n", length, qtd->length); } if (qtd->urb->status == -EINPROGRESS) qtd->urb->status = 0; urb = qtd->urb; qtd = clean_up_qtdlist(qtd, qh); isp1760_urb_done(hcd, urb); } else if (last_qtd_of_urb(qtd, qh)) { /* that was the last qtd of that URB */ if (qtd->urb->status == -EINPROGRESS) qtd->urb->status = 0; urb = qtd->urb; qtd = clean_up_qtdlist(qtd, qh); isp1760_urb_done(hcd, urb); } else { /* next QTD of this URB */ qtd = clean_this_qtd(qtd, qh); BUG_ON(!qtd); } if (qtd) enqueue_an_ATL_packet(hcd, qh, qtd); skip_map = reg_read32(hcd->regs, HC_ATL_PTD_SKIPMAP_REG); } if (priv->atl_queued <= 1) reg_write32(hcd->regs, HC_INTERRUPT_ENABLE, INTERRUPT_ENABLE_MASK); } static void do_intl_int(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 done_map, skip_map; struct ptd ptd; struct urb *urb; u32 length; u32 or_map; int error; u32 slot; struct isp1760_qtd *qtd; struct isp1760_qh *qh; done_map = reg_read32(hcd->regs, HC_INT_PTD_DONEMAP_REG); skip_map = reg_read32(hcd->regs, HC_INT_PTD_SKIPMAP_REG); or_map = reg_read32(hcd->regs, HC_INT_IRQ_MASK_OR_REG); or_map &= ~done_map; reg_write32(hcd->regs, HC_INT_IRQ_MASK_OR_REG, or_map); while (done_map) { slot = __ffs(done_map); done_map &= ~(1 << slot); skip_map |= (1 << slot); qtd = priv->int_ints[slot].qtd; qh = priv->int_ints[slot].qh; /* urb unlinked? */ if (!qh) continue; ptd_read(hcd->regs, INT_PTD_OFFSET, slot, &ptd); check_int_err_status(hcd, ptd.dw4); error = check_error(hcd, &ptd); if (error) { #if 0 printk(KERN_ERR "Error in %s().\n", __func__); printk(KERN_ERR "IN dw0: %08x dw1: %08x dw2: %08x " "dw3: %08x dw4: %08x dw5: %08x dw6: " "%08x dw7: %08x\n", ptd.dw0, ptd.dw1, ptd.dw2, ptd.dw3, ptd.dw4, ptd.dw5, ptd.dw6, ptd.dw7); #endif qtd->urb->status = -EPIPE; priv->int_ints[slot].qh->toggle = 0; priv->int_ints[slot].qh->ping = 0; } else { priv->int_ints[slot].qh->toggle = ptd.dw3 & (1 << 25); priv->int_ints[slot].qh->ping = ptd.dw3 & (1 << 26); } if (qtd->urb->dev->speed != USB_SPEED_HIGH) length = PTD_XFERRED_LENGTH_LO(ptd.dw3); else length = PTD_XFERRED_LENGTH(ptd.dw3); if (length) { switch (DW1_GET_PID(ptd.dw1)) { case IN_PID: mem_reads8(hcd->regs, qtd->payload_addr, qtd->data_buffer, length); case OUT_PID: qtd->urb->actual_length += length; case SETUP_PID: break; } } priv->int_ints[slot].qtd = NULL; priv->int_ints[slot].qh = NULL; reg_write32(hcd->regs, HC_INT_PTD_SKIPMAP_REG, skip_map); free_mem(hcd, qtd); if (qtd->urb->status == -EPIPE) { /* HALT received */ urb = qtd->urb; qtd = clean_up_qtdlist(qtd, qh); isp1760_urb_done(hcd, urb); } else if (last_qtd_of_urb(qtd, qh)) { if (qtd->urb->status == -EINPROGRESS) qtd->urb->status = 0; urb = qtd->urb; qtd = clean_up_qtdlist(qtd, qh); isp1760_urb_done(hcd, urb); } else { /* next QTD of this URB */ qtd = clean_this_qtd(qtd, qh); BUG_ON(!qtd); } if (qtd) enqueue_an_INT_packet(hcd, qh, qtd); skip_map = reg_read32(hcd->regs, HC_INT_PTD_SKIPMAP_REG); } } static int qtd_fill(struct isp1760_qtd *qtd, void *databuffer, size_t len) { qtd->data_buffer = databuffer; if (len > MAX_PAYLOAD_SIZE) len = MAX_PAYLOAD_SIZE; qtd->length = len; return qtd->length; } static void qtd_list_free(struct list_head *qtd_list) { struct isp1760_qtd *qtd, *qtd_next; list_for_each_entry_safe(qtd, qtd_next, qtd_list, qtd_list) { list_del(&qtd->qtd_list); qtd_free(qtd); } } /* * Packetize urb->transfer_buffer into list of packets of size wMaxPacketSize. * Also calculate the PID type (SETUP/IN/OUT) for each packet. */ #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) static void packetize_urb(struct usb_hcd *hcd, struct urb *urb, struct list_head *head, gfp_t flags) { struct isp1760_qtd *qtd; void *buf; int len, maxpacketsize; u8 packet_type; /* * URBs map to sequences of QTDs: one logical transaction */ if (!urb->transfer_buffer && urb->transfer_buffer_length) { /* XXX This looks like usb storage / SCSI bug */ dev_err(hcd->self.controller, "buf is null, dma is %08lx len is %d\n", (long unsigned)urb->transfer_dma, urb->transfer_buffer_length); WARN_ON(1); } if (usb_pipein(urb->pipe)) packet_type = IN_PID; else packet_type = OUT_PID; if (usb_pipecontrol(urb->pipe)) { qtd = qtd_alloc(flags, urb, SETUP_PID); if (!qtd) goto cleanup; qtd_fill(qtd, urb->setup_packet, sizeof(struct usb_ctrlrequest)); list_add_tail(&qtd->qtd_list, head); /* for zero length DATA stages, STATUS is always IN */ if (urb->transfer_buffer_length == 0) packet_type = IN_PID; } maxpacketsize = max_packet(usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); /* * buffer gets wrapped in one or more qtds; * last one may be "short" (including zero len) * and may serve as a control status ack */ buf = urb->transfer_buffer; len = urb->transfer_buffer_length; for (;;) { int this_qtd_len; qtd = qtd_alloc(flags, urb, packet_type); if (!qtd) goto cleanup; this_qtd_len = qtd_fill(qtd, buf, len); list_add_tail(&qtd->qtd_list, head); len -= this_qtd_len; buf += this_qtd_len; if (len <= 0) break; } /* * control requests may need a terminating data "status" ack; * bulk ones may need a terminating short packet (zero length). */ if (urb->transfer_buffer_length != 0) { int one_more = 0; if (usb_pipecontrol(urb->pipe)) { one_more = 1; if (packet_type == IN_PID) packet_type = OUT_PID; else packet_type = IN_PID; } else if (usb_pipebulk(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) && !(urb->transfer_buffer_length % maxpacketsize)) { one_more = 1; } if (one_more) { qtd = qtd_alloc(flags, urb, packet_type); if (!qtd) goto cleanup; /* never any data in such packets */ qtd_fill(qtd, NULL, 0); list_add_tail(&qtd->qtd_list, head); } } return; cleanup: qtd_list_free(head); } static int enqueue_qtdlist(struct usb_hcd *hcd, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags, packet_enqueue *p) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct isp1760_qtd *qtd; struct isp1760_qh *qh = NULL; unsigned long flags; int qh_empty; int rc; spin_lock_irqsave(&priv->lock, flags); if (!HCD_HW_ACCESSIBLE(hcd)) { rc = -ESHUTDOWN; goto done; } rc = usb_hcd_link_urb_to_ep(hcd, urb); if (rc) goto done; qh = urb->ep->hcpriv; if (!qh) { qh = isp1760_qh_alloc(GFP_ATOMIC); if (!qh) { usb_hcd_unlink_urb_from_ep(hcd, urb); rc = -ENOMEM; goto done; } if (!usb_pipecontrol(urb->pipe)) usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !usb_pipein(urb->pipe), 1); urb->ep->hcpriv = qh; } qh_empty = list_empty(&qh->qtd_list); list_splice_tail(qtd_list, &qh->qtd_list); if (qh_empty) { qtd = list_entry(qtd_list->next, struct isp1760_qtd, qtd_list); p(hcd, qh, qtd); } done: spin_unlock_irqrestore(&priv->lock, flags); if (!qh) qtd_list_free(qtd_list); return rc; } static int isp1760_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct list_head qtd_list; packet_enqueue *pe; INIT_LIST_HEAD(&qtd_list); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: case PIPE_BULK: pe = enqueue_an_ATL_packet; break; case PIPE_INTERRUPT: pe = enqueue_an_INT_packet; break; case PIPE_ISOCHRONOUS: dev_err(hcd->self.controller, "PIPE_ISOCHRONOUS ain't supported\n"); default: return -EPIPE; } packetize_urb(hcd, urb, &qtd_list, mem_flags); if (list_empty(&qtd_list)) return -ENOMEM; return enqueue_qtdlist(hcd, urb, &qtd_list, mem_flags, pe); } static int isp1760_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct inter_packet_info *ints; u32 i; u32 reg_base, or_reg, skip_reg; unsigned long flags; struct ptd ptd; packet_enqueue *pe; switch (usb_pipetype(urb->pipe)) { case PIPE_ISOCHRONOUS: return -EPIPE; break; case PIPE_INTERRUPT: ints = priv->int_ints; reg_base = INT_PTD_OFFSET; or_reg = HC_INT_IRQ_MASK_OR_REG; skip_reg = HC_INT_PTD_SKIPMAP_REG; pe = enqueue_an_INT_packet; break; default: ints = priv->atl_ints; reg_base = ATL_PTD_OFFSET; or_reg = HC_ATL_IRQ_MASK_OR_REG; skip_reg = HC_ATL_PTD_SKIPMAP_REG; pe = enqueue_an_ATL_packet; break; } memset(&ptd, 0, sizeof(ptd)); spin_lock_irqsave(&priv->lock, flags); for (i = 0; i < 32; i++) { if (!ints[i].qh) continue; WARN_ON(!ints[i].qtd); if (ints[i].qtd->urb == urb) { u32 skip_map; u32 or_map; struct isp1760_qtd *qtd; struct isp1760_qh *qh; skip_map = reg_read32(hcd->regs, skip_reg); skip_map |= 1 << i; reg_write32(hcd->regs, skip_reg, skip_map); or_map = reg_read32(hcd->regs, or_reg); or_map &= ~(1 << i); reg_write32(hcd->regs, or_reg, or_map); ptd_write(hcd->regs, reg_base, i, &ptd); qtd = ints[i].qtd; qh = ints[i].qh; free_mem(hcd, qtd); qtd = clean_up_qtdlist(qtd, qh); ints[i].qh = NULL; ints[i].qtd = NULL; isp1760_urb_done(hcd, urb); if (qtd) pe(hcd, qh, qtd); break; } else { struct isp1760_qtd *qtd; list_for_each_entry(qtd, &ints[i].qtd->qtd_list, qtd_list) { if (qtd->urb == urb) { clean_up_qtdlist(qtd, ints[i].qh); isp1760_urb_done(hcd, urb); qtd = NULL; break; } } /* We found the urb before the last slot */ if (!qtd) break; } } spin_unlock_irqrestore(&priv->lock, flags); return 0; } static irqreturn_t isp1760_irq(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 imask; irqreturn_t irqret = IRQ_NONE; spin_lock(&priv->lock); if (!(hcd->state & HC_STATE_RUNNING)) goto leave; imask = reg_read32(hcd->regs, HC_INTERRUPT_REG); if (unlikely(!imask)) goto leave; reg_write32(hcd->regs, HC_INTERRUPT_REG, imask); if (imask & (HC_ATL_INT | HC_SOT_INT)) do_atl_int(hcd); if (imask & HC_INTL_INT) do_intl_int(hcd); irqret = IRQ_HANDLED; leave: spin_unlock(&priv->lock); return irqret; } static int isp1760_hub_status_data(struct usb_hcd *hcd, char *buf) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 temp, status = 0; u32 mask; int retval = 1; unsigned long flags; /* if !USB_SUSPEND, root hub timers won't get shut down ... */ if (!HC_IS_RUNNING(hcd->state)) return 0; /* init status to no-changes */ buf[0] = 0; mask = PORT_CSC; spin_lock_irqsave(&priv->lock, flags); temp = reg_read32(hcd->regs, HC_PORTSC1); if (temp & PORT_OWNER) { if (temp & PORT_CSC) { temp &= ~PORT_CSC; reg_write32(hcd->regs, HC_PORTSC1, temp); goto done; } } /* * Return status information even for ports with OWNER set. * Otherwise khubd wouldn't see the disconnect event when a * high-speed device is switched over to the companion * controller by the user. */ if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && time_after_eq(jiffies, priv->reset_done))) { buf [0] |= 1 << (0 + 1); status = STS_PCD; } /* FIXME autosuspend idle root hubs */ done: spin_unlock_irqrestore(&priv->lock, flags); return status ? retval : 0; } static void isp1760_hub_descriptor(struct isp1760_hcd *priv, struct usb_hub_descriptor *desc) { int ports = HCS_N_PORTS(priv->hcs_params); u16 temp; desc->bDescriptorType = 0x29; /* priv 1.0, 2.3.9 says 20ms max */ desc->bPwrOn2PwrGood = 10; desc->bHubContrCurrent = 0; desc->bNbrPorts = ports; temp = 1 + (ports / 8); desc->bDescLength = 7 + 2 * temp; /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ memset(&desc->u.hs.DeviceRemovable[0], 0, temp); memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); /* per-port overcurrent reporting */ temp = 0x0008; if (HCS_PPC(priv->hcs_params)) /* per-port power control */ temp |= 0x0001; else /* no power switching */ temp |= 0x0002; desc->wHubCharacteristics = cpu_to_le16(temp); } #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) static int check_reset_complete(struct usb_hcd *hcd, int index, int port_status) { if (!(port_status & PORT_CONNECT)) return port_status; /* if reset finished and it's still not enabled -- handoff */ if (!(port_status & PORT_PE)) { dev_err(hcd->self.controller, "port %d full speed --> companion\n", index + 1); port_status |= PORT_OWNER; port_status &= ~PORT_RWC_BITS; reg_write32(hcd->regs, HC_PORTSC1, port_status); } else dev_err(hcd->self.controller, "port %d high speed\n", index + 1); return port_status; } static int isp1760_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int ports = HCS_N_PORTS(priv->hcs_params); u32 temp, status; unsigned long flags; int retval = 0; unsigned selector; /* * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. * HCS_INDICATOR may say we can change LEDs to off/amber/green. * (track current state ourselves) ... blink for diagnostics, * power, "this is the one", etc. EHCI spec supports this. */ spin_lock_irqsave(&priv->lock, flags); switch (typeReq) { case ClearHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case ClearPortFeature: if (!wIndex || wIndex > ports) goto error; wIndex--; temp = reg_read32(hcd->regs, HC_PORTSC1); /* * Even if OWNER is set, so the port is owned by the * companion controller, khubd needs to be able to clear * the port-change status bits (especially * USB_PORT_STAT_C_CONNECTION). */ switch (wValue) { case USB_PORT_FEAT_ENABLE: reg_write32(hcd->regs, HC_PORTSC1, temp & ~PORT_PE); break; case USB_PORT_FEAT_C_ENABLE: /* XXX error? */ break; case USB_PORT_FEAT_SUSPEND: if (temp & PORT_RESET) goto error; if (temp & PORT_SUSPEND) { if ((temp & PORT_PE) == 0) goto error; /* resume signaling for 20 msec */ temp &= ~(PORT_RWC_BITS); reg_write32(hcd->regs, HC_PORTSC1, temp | PORT_RESUME); priv->reset_done = jiffies + msecs_to_jiffies(20); } break; case USB_PORT_FEAT_C_SUSPEND: /* we auto-clear this feature */ break; case USB_PORT_FEAT_POWER: if (HCS_PPC(priv->hcs_params)) reg_write32(hcd->regs, HC_PORTSC1, temp & ~PORT_POWER); break; case USB_PORT_FEAT_C_CONNECTION: reg_write32(hcd->regs, HC_PORTSC1, temp | PORT_CSC); break; case USB_PORT_FEAT_C_OVER_CURRENT: /* XXX error ?*/ break; case USB_PORT_FEAT_C_RESET: /* GetPortStatus clears reset */ break; default: goto error; } reg_read32(hcd->regs, HC_USBCMD); break; case GetHubDescriptor: isp1760_hub_descriptor(priv, (struct usb_hub_descriptor *) buf); break; case GetHubStatus: /* no hub-wide feature/status flags */ memset(buf, 0, 4); break; case GetPortStatus: if (!wIndex || wIndex > ports) goto error; wIndex--; status = 0; temp = reg_read32(hcd->regs, HC_PORTSC1); /* wPortChange bits */ if (temp & PORT_CSC) status |= USB_PORT_STAT_C_CONNECTION << 16; /* whoever resumes must GetPortStatus to complete it!! */ if (temp & PORT_RESUME) { dev_err(hcd->self.controller, "Port resume should be skipped.\n"); /* Remote Wakeup received? */ if (!priv->reset_done) { /* resume signaling for 20 msec */ priv->reset_done = jiffies + msecs_to_jiffies(20); /* check the port again */ mod_timer(&hcd->rh_timer, priv->reset_done); } /* resume completed? */ else if (time_after_eq(jiffies, priv->reset_done)) { status |= USB_PORT_STAT_C_SUSPEND << 16; priv->reset_done = 0; /* stop resume signaling */ temp = reg_read32(hcd->regs, HC_PORTSC1); reg_write32(hcd->regs, HC_PORTSC1, temp & ~(PORT_RWC_BITS | PORT_RESUME)); retval = handshake(hcd, HC_PORTSC1, PORT_RESUME, 0, 2000 /* 2msec */); if (retval != 0) { dev_err(hcd->self.controller, "port %d resume error %d\n", wIndex + 1, retval); goto error; } temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); } } /* whoever resets must GetPortStatus to complete it!! */ if ((temp & PORT_RESET) && time_after_eq(jiffies, priv->reset_done)) { status |= USB_PORT_STAT_C_RESET << 16; priv->reset_done = 0; /* force reset to complete */ reg_write32(hcd->regs, HC_PORTSC1, temp & ~PORT_RESET); /* REVISIT: some hardware needs 550+ usec to clear * this bit; seems too long to spin routinely... */ retval = handshake(hcd, HC_PORTSC1, PORT_RESET, 0, 750); if (retval != 0) { dev_err(hcd->self.controller, "port %d reset error %d\n", wIndex + 1, retval); goto error; } /* see what we found out */ temp = check_reset_complete(hcd, wIndex, reg_read32(hcd->regs, HC_PORTSC1)); } /* * Even if OWNER is set, there's no harm letting khubd * see the wPortStatus values (they should all be 0 except * for PORT_POWER anyway). */ if (temp & PORT_OWNER) dev_err(hcd->self.controller, "PORT_OWNER is set\n"); if (temp & PORT_CONNECT) { status |= USB_PORT_STAT_CONNECTION; /* status may be from integrated TT */ status |= USB_PORT_STAT_HIGH_SPEED; } if (temp & PORT_PE) status |= USB_PORT_STAT_ENABLE; if (temp & (PORT_SUSPEND|PORT_RESUME)) status |= USB_PORT_STAT_SUSPEND; if (temp & PORT_RESET) status |= USB_PORT_STAT_RESET; if (temp & PORT_POWER) status |= USB_PORT_STAT_POWER; put_unaligned(cpu_to_le32(status), (__le32 *) buf); break; case SetHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case SetPortFeature: selector = wIndex >> 8; wIndex &= 0xff; if (!wIndex || wIndex > ports) goto error; wIndex--; temp = reg_read32(hcd->regs, HC_PORTSC1); if (temp & PORT_OWNER) break; /* temp &= ~PORT_RWC_BITS; */ switch (wValue) { case USB_PORT_FEAT_ENABLE: reg_write32(hcd->regs, HC_PORTSC1, temp | PORT_PE); break; case USB_PORT_FEAT_SUSPEND: if ((temp & PORT_PE) == 0 || (temp & PORT_RESET) != 0) goto error; reg_write32(hcd->regs, HC_PORTSC1, temp | PORT_SUSPEND); break; case USB_PORT_FEAT_POWER: if (HCS_PPC(priv->hcs_params)) reg_write32(hcd->regs, HC_PORTSC1, temp | PORT_POWER); break; case USB_PORT_FEAT_RESET: if (temp & PORT_RESUME) goto error; /* line status bits may report this as low speed, * which can be fine if this root hub has a * transaction translator built in. */ if ((temp & (PORT_PE|PORT_CONNECT)) == PORT_CONNECT && PORT_USB11(temp)) { temp |= PORT_OWNER; } else { temp |= PORT_RESET; temp &= ~PORT_PE; /* * caller must wait, then call GetPortStatus * usb 2.0 spec says 50 ms resets on root */ priv->reset_done = jiffies + msecs_to_jiffies(50); } reg_write32(hcd->regs, HC_PORTSC1, temp); break; default: goto error; } reg_read32(hcd->regs, HC_USBCMD); break; default: error: /* "stall" on error */ retval = -EPIPE; } spin_unlock_irqrestore(&priv->lock, flags); return retval; } static void isp1760_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct isp1760_qh *qh; struct isp1760_qtd *qtd; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); qh = ep->hcpriv; if (!qh) goto out; ep->hcpriv = NULL; do { /* more than entry might get removed */ if (list_empty(&qh->qtd_list)) break; qtd = list_first_entry(&qh->qtd_list, struct isp1760_qtd, qtd_list); if (qtd->status & URB_ENQUEUED) { spin_unlock_irqrestore(&priv->lock, flags); isp1760_urb_dequeue(hcd, qtd->urb, -ECONNRESET); spin_lock_irqsave(&priv->lock, flags); } else { struct urb *urb; urb = qtd->urb; clean_up_qtdlist(qtd, qh); urb->status = -ECONNRESET; isp1760_urb_done(hcd, urb); } } while (1); qh_destroy(qh); /* remove requests and leak them. * ATL are pretty fast done, INT could take a while... * The latter shoule be removed */ out: spin_unlock_irqrestore(&priv->lock, flags); } static int isp1760_get_frame(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 fr; fr = reg_read32(hcd->regs, HC_FRINDEX); return (fr >> 3) % priv->periodic_size; } static void isp1760_stop(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 temp; isp1760_hub_control(hcd, ClearPortFeature, USB_PORT_FEAT_POWER, 1, NULL, 0); mdelay(20); spin_lock_irq(&priv->lock); ehci_reset(hcd); /* Disable IRQ */ temp = reg_read32(hcd->regs, HC_HW_MODE_CTRL); reg_write32(hcd->regs, HC_HW_MODE_CTRL, temp &= ~HW_GLOBAL_INTR_EN); spin_unlock_irq(&priv->lock); reg_write32(hcd->regs, HC_CONFIGFLAG, 0); } static void isp1760_shutdown(struct usb_hcd *hcd) { u32 command, temp; isp1760_stop(hcd); temp = reg_read32(hcd->regs, HC_HW_MODE_CTRL); reg_write32(hcd->regs, HC_HW_MODE_CTRL, temp &= ~HW_GLOBAL_INTR_EN); command = reg_read32(hcd->regs, HC_USBCMD); command &= ~CMD_RUN; reg_write32(hcd->regs, HC_USBCMD, command); } static const struct hc_driver isp1760_hc_driver = { .description = "isp1760-hcd", .product_desc = "NXP ISP1760 USB Host Controller", .hcd_priv_size = sizeof(struct isp1760_hcd), .irq = isp1760_irq, .flags = HCD_MEMORY | HCD_USB2, .reset = isp1760_hc_setup, .start = isp1760_run, .stop = isp1760_stop, .shutdown = isp1760_shutdown, .urb_enqueue = isp1760_urb_enqueue, .urb_dequeue = isp1760_urb_dequeue, .endpoint_disable = isp1760_endpoint_disable, .get_frame_number = isp1760_get_frame, .hub_status_data = isp1760_hub_status_data, .hub_control = isp1760_hub_control, }; int __init init_kmem_once(void) { qtd_cachep = kmem_cache_create("isp1760_qtd", sizeof(struct isp1760_qtd), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!qtd_cachep) return -ENOMEM; qh_cachep = kmem_cache_create("isp1760_qh", sizeof(struct isp1760_qh), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!qh_cachep) { kmem_cache_destroy(qtd_cachep); return -ENOMEM; } return 0; } void deinit_kmem_cache(void) { kmem_cache_destroy(qtd_cachep); kmem_cache_destroy(qh_cachep); } struct usb_hcd *isp1760_register(phys_addr_t res_start, resource_size_t res_len, int irq, unsigned long irqflags, struct device *dev, const char *busname, unsigned int devflags) { struct usb_hcd *hcd; struct isp1760_hcd *priv; int ret; if (usb_disabled()) return ERR_PTR(-ENODEV); /* prevent usb-core allocating DMA pages */ dev->dma_mask = NULL; hcd = usb_create_hcd(&isp1760_hc_driver, dev, dev_name(dev)); if (!hcd) return ERR_PTR(-ENOMEM); priv = hcd_to_priv(hcd); priv->devflags = devflags; init_memory(priv); hcd->regs = ioremap(res_start, res_len); if (!hcd->regs) { ret = -EIO; goto err_put; } hcd->irq = irq; hcd->rsrc_start = res_start; hcd->rsrc_len = res_len; ret = usb_add_hcd(hcd, irq, irqflags); if (ret) goto err_unmap; return hcd; err_unmap: iounmap(hcd->regs); err_put: usb_put_hcd(hcd); return ERR_PTR(ret); } MODULE_DESCRIPTION("Driver for the ISP1760 USB-controller from NXP"); MODULE_AUTHOR("Sebastian Siewior "); MODULE_LICENSE("GPL v2");