/* * arch/sh/kernel/setup.c * * This file handles the architecture-dependent parts of initialization * * Copyright (C) 1999 Niibe Yutaka * Copyright (C) 2002 - 2007 Paul Mundt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Initialize loops_per_jiffy as 10000000 (1000MIPS). * This value will be used at the very early stage of serial setup. * The bigger value means no problem. */ struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { [0] = { .type = CPU_SH_NONE, .family = CPU_FAMILY_UNKNOWN, .loops_per_jiffy = 10000000, }, }; EXPORT_SYMBOL(cpu_data); /* * The machine vector. First entry in .machvec.init, or clobbered by * sh_mv= on the command line, prior to .machvec.init teardown. */ struct sh_machine_vector sh_mv = { .mv_name = "generic", }; EXPORT_SYMBOL(sh_mv); #ifdef CONFIG_VT struct screen_info screen_info; #endif extern int root_mountflags; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; static struct resource code_resource = { .name = "Kernel code", .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource data_resource = { .name = "Kernel data", .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource bss_resource = { .name = "Kernel bss", .flags = IORESOURCE_BUSY | IORESOURCE_MEM, }; unsigned long memory_start; EXPORT_SYMBOL(memory_start); unsigned long memory_end = 0; EXPORT_SYMBOL(memory_end); static struct resource mem_resources[MAX_NUMNODES]; int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; static int __init early_parse_mem(char *p) { unsigned long size; memory_start = (unsigned long)__va(__MEMORY_START); size = memparse(p, &p); if (size > __MEMORY_SIZE) { printk(KERN_ERR "Using mem= to increase the size of kernel memory " "is not allowed.\n" " Recompile the kernel with the correct value for " "CONFIG_MEMORY_SIZE.\n"); return 0; } memory_end = memory_start + size; return 0; } early_param("mem", early_parse_mem); /* * Register fully available low RAM pages with the bootmem allocator. */ static void __init register_bootmem_low_pages(void) { unsigned long curr_pfn, last_pfn, pages; /* * We are rounding up the start address of usable memory: */ curr_pfn = PFN_UP(__MEMORY_START); /* * ... and at the end of the usable range downwards: */ last_pfn = PFN_DOWN(__pa(memory_end)); if (last_pfn > max_low_pfn) last_pfn = max_low_pfn; pages = last_pfn - curr_pfn; free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); } static void __init check_for_initrd(void) { #ifdef CONFIG_BLK_DEV_INITRD unsigned long start, end; /* * Check for the rare cases where boot loaders adhere to the boot * ABI. */ if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE) goto disable; start = INITRD_START + __MEMORY_START; end = start + INITRD_SIZE; if (unlikely(end <= start)) goto disable; if (unlikely(start & ~PAGE_MASK)) { pr_err("initrd must be page aligned\n"); goto disable; } if (unlikely(start < PAGE_OFFSET)) { pr_err("initrd start < PAGE_OFFSET\n"); goto disable; } if (unlikely(end > lmb_end_of_DRAM())) { pr_err("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", end, (unsigned long)lmb_end_of_DRAM()); goto disable; } /* * If we got this far inspite of the boot loader's best efforts * to the contrary, assume we actually have a valid initrd and * fix up the root dev. */ ROOT_DEV = Root_RAM0; /* * Address sanitization */ initrd_start = (unsigned long)__va(__pa(start)); initrd_end = initrd_start + INITRD_SIZE; lmb_reserve(__pa(initrd_start), INITRD_SIZE); return; disable: pr_info("initrd disabled\n"); initrd_start = initrd_end = 0; #endif } void __cpuinit calibrate_delay(void) { struct clk *clk = clk_get(NULL, "cpu_clk"); if (IS_ERR(clk)) panic("Need a sane CPU clock definition!"); loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; printk(KERN_INFO "Calibrating delay loop (skipped)... " "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); } void __init __add_active_range(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn) { struct resource *res = &mem_resources[nid]; WARN_ON(res->name); /* max one active range per node for now */ res->name = "System RAM"; res->start = start_pfn << PAGE_SHIFT; res->end = (end_pfn << PAGE_SHIFT) - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; if (request_resource(&iomem_resource, res)) { pr_err("unable to request memory_resource 0x%lx 0x%lx\n", start_pfn, end_pfn); return; } /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); request_resource(res, &bss_resource); add_active_range(nid, start_pfn, end_pfn); } void __init setup_bootmem_allocator(unsigned long free_pfn) { unsigned long bootmap_size; unsigned long bootmap_pages, bootmem_paddr; u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT; int i; bootmap_pages = bootmem_bootmap_pages(total_pages); bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); /* * Find a proper area for the bootmem bitmap. After this * bootstrap step all allocations (until the page allocator * is intact) must be done via bootmem_alloc(). */ bootmap_size = init_bootmem_node(NODE_DATA(0), bootmem_paddr >> PAGE_SHIFT, min_low_pfn, max_low_pfn); /* Add active regions with valid PFNs. */ for (i = 0; i < lmb.memory.cnt; i++) { unsigned long start_pfn, end_pfn; start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); __add_active_range(0, start_pfn, end_pfn); } /* * Add all physical memory to the bootmem map and mark each * area as present. */ register_bootmem_low_pages(); /* Reserve the sections we're already using. */ for (i = 0; i < lmb.reserved.cnt; i++) reserve_bootmem(lmb.reserved.region[i].base, lmb_size_bytes(&lmb.reserved, i), BOOTMEM_DEFAULT); node_set_online(0); sparse_memory_present_with_active_regions(0); check_for_initrd(); reserve_crashkernel(); } #ifndef CONFIG_NEED_MULTIPLE_NODES static void __init setup_memory(void) { unsigned long start_pfn; u64 base = min_low_pfn << PAGE_SHIFT; u64 size = (max_low_pfn << PAGE_SHIFT) - base; /* * Partially used pages are not usable - thus * we are rounding upwards: */ start_pfn = PFN_UP(__pa(_end)); lmb_add(base, size); /* * Reserve the kernel text and * Reserve the bootmem bitmap. We do this in two steps (first step * was init_bootmem()), because this catches the (definitely buggy) * case of us accidentally initializing the bootmem allocator with * an invalid RAM area. */ lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) - (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET)); /* * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. */ if (CONFIG_ZERO_PAGE_OFFSET != 0) lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET); lmb_analyze(); lmb_dump_all(); setup_bootmem_allocator(start_pfn); } #else extern void __init setup_memory(void); #endif /* * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by * is_kdump_kernel() to determine if we are booting after a panic. Hence * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. */ #ifdef CONFIG_CRASH_DUMP /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. */ static int __init parse_elfcorehdr(char *arg) { if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &arg); return 0; } early_param("elfcorehdr", parse_elfcorehdr); #endif void __init __attribute__ ((weak)) plat_early_device_setup(void) { } void __init setup_arch(char **cmdline_p) { enable_mmu(); ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); printk(KERN_NOTICE "Boot params:\n" "... MOUNT_ROOT_RDONLY - %08lx\n" "... RAMDISK_FLAGS - %08lx\n" "... ORIG_ROOT_DEV - %08lx\n" "... LOADER_TYPE - %08lx\n" "... INITRD_START - %08lx\n" "... INITRD_SIZE - %08lx\n", MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, ORIG_ROOT_DEV, LOADER_TYPE, INITRD_START, INITRD_SIZE); #ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); #endif if (!MOUNT_ROOT_RDONLY) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; code_resource.start = virt_to_phys(_text); code_resource.end = virt_to_phys(_etext)-1; data_resource.start = virt_to_phys(_etext); data_resource.end = virt_to_phys(_edata)-1; bss_resource.start = virt_to_phys(__bss_start); bss_resource.end = virt_to_phys(_ebss)-1; memory_start = (unsigned long)__va(__MEMORY_START); if (!memory_end) memory_end = memory_start + __MEMORY_SIZE; #ifdef CONFIG_CMDLINE_OVERWRITE strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); #else strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); #ifdef CONFIG_CMDLINE_EXTEND strlcat(command_line, " ", sizeof(command_line)); strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line)); #endif #endif /* Save unparsed command line copy for /proc/cmdline */ memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); uncached_init(); plat_early_device_setup(); /* Let earlyprintk output early console messages */ early_platform_driver_probe("earlyprintk", 1, 1); sh_mv_setup(); /* * Find the highest page frame number we have available */ max_pfn = PFN_DOWN(__pa(memory_end)); /* * Determine low and high memory ranges: */ max_low_pfn = max_pfn; min_low_pfn = __MEMORY_START >> PAGE_SHIFT; nodes_clear(node_online_map); pmb_init(); lmb_init(); setup_memory(); sparse_init(); #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif paging_init(); ioremap_fixed_init(); /* Perform the machine specific initialisation */ if (likely(sh_mv.mv_setup)) sh_mv.mv_setup(cmdline_p); plat_smp_setup(); } /* processor boot mode configuration */ int generic_mode_pins(void) { pr_warning("generic_mode_pins(): missing mode pin configuration\n"); return 0; } int test_mode_pin(int pin) { return sh_mv.mv_mode_pins() & pin; } static const char *cpu_name[] = { [CPU_SH7201] = "SH7201", [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757", [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", [CPU_SH_NONE] = "Unknown" }; const char *get_cpu_subtype(struct sh_cpuinfo *c) { return cpu_name[c->type]; } EXPORT_SYMBOL(get_cpu_subtype); #ifdef CONFIG_PROC_FS /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ static const char *cpu_flags[] = { "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", "ptea", "llsc", "l2", "op32", "pteaex", NULL }; static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) { unsigned long i; seq_printf(m, "cpu flags\t:"); if (!c->flags) { seq_printf(m, " %s\n", cpu_flags[0]); return; } for (i = 0; cpu_flags[i]; i++) if ((c->flags & (1 << i))) seq_printf(m, " %s", cpu_flags[i+1]); seq_printf(m, "\n"); } static void show_cacheinfo(struct seq_file *m, const char *type, struct cache_info info) { unsigned int cache_size; cache_size = info.ways * info.sets * info.linesz; seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", type, cache_size >> 10, info.ways); } /* * Get CPU information for use by the procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { struct sh_cpuinfo *c = v; unsigned int cpu = c - cpu_data; if (!cpu_online(cpu)) return 0; if (cpu == 0) seq_printf(m, "machine\t\t: %s\n", get_system_type()); else seq_printf(m, "\n"); seq_printf(m, "processor\t: %d\n", cpu); seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); if (c->cut_major == -1) seq_printf(m, "cut\t\t: unknown\n"); else if (c->cut_minor == -1) seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); else seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); show_cpuflags(m, c); seq_printf(m, "cache type\t: "); /* * Check for what type of cache we have, we support both the * unified cache on the SH-2 and SH-3, as well as the harvard * style cache on the SH-4. */ if (c->icache.flags & SH_CACHE_COMBINED) { seq_printf(m, "unified\n"); show_cacheinfo(m, "cache", c->icache); } else { seq_printf(m, "split (harvard)\n"); show_cacheinfo(m, "icache", c->icache); show_cacheinfo(m, "dcache", c->dcache); } /* Optional secondary cache */ if (c->flags & CPU_HAS_L2_CACHE) show_cacheinfo(m, "scache", c->scache); seq_printf(m, "bogomips\t: %lu.%02lu\n", c->loops_per_jiffy/(500000/HZ), (c->loops_per_jiffy/(5000/HZ)) % 100); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < NR_CPUS ? cpu_data + *pos : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; #endif /* CONFIG_PROC_FS */ struct dentry *sh_debugfs_root; static int __init sh_debugfs_init(void) { sh_debugfs_root = debugfs_create_dir("sh", NULL); if (!sh_debugfs_root) return -ENOMEM; if (IS_ERR(sh_debugfs_root)) return PTR_ERR(sh_debugfs_root); return 0; } arch_initcall(sh_debugfs_init);