/* * Copyright 2013 Freescale Semiconductor, Inc. * * CPU Frequency Scaling driver for Freescale QorIQ SoCs. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include /* for get_hard_smp_processor_id() in UP configs */ /** * struct cpu_data * @parent: the parent node of cpu clock * @table: frequency table */ struct cpu_data { struct device_node *parent; struct cpufreq_frequency_table *table; }; /** * struct soc_data - SoC specific data * @freq_mask: mask the disallowed frequencies * @flag: unique flags */ struct soc_data { u32 freq_mask[4]; u32 flag; }; #define FREQ_MASK 1 /* see hardware specification for the allowed frqeuencies */ static const struct soc_data sdata[] = { { /* used by p2041 and p3041 */ .freq_mask = {0x8, 0x8, 0x2, 0x2}, .flag = FREQ_MASK, }, { /* used by p5020 */ .freq_mask = {0x8, 0x2}, .flag = FREQ_MASK, }, { /* used by p4080, p5040 */ .freq_mask = {0}, .flag = 0, }, }; /* * the minimum allowed core frequency, in Hz * for chassis v1.0, >= platform frequency * for chassis v2.0, >= platform frequency / 2 */ static u32 min_cpufreq; static const u32 *fmask; #if defined(CONFIG_ARM) static int get_cpu_physical_id(int cpu) { return topology_core_id(cpu); } #else static int get_cpu_physical_id(int cpu) { return get_hard_smp_processor_id(cpu); } #endif static u32 get_bus_freq(void) { struct device_node *soc; u32 sysfreq; soc = of_find_node_by_type(NULL, "soc"); if (!soc) return 0; if (of_property_read_u32(soc, "bus-frequency", &sysfreq)) sysfreq = 0; of_node_put(soc); return sysfreq; } static struct device_node *cpu_to_clk_node(int cpu) { struct device_node *np, *clk_np; if (!cpu_present(cpu)) return NULL; np = of_get_cpu_node(cpu, NULL); if (!np) return NULL; clk_np = of_parse_phandle(np, "clocks", 0); if (!clk_np) return NULL; of_node_put(np); return clk_np; } /* traverse cpu nodes to get cpu mask of sharing clock wire */ static void set_affected_cpus(struct cpufreq_policy *policy) { struct device_node *np, *clk_np; struct cpumask *dstp = policy->cpus; int i; np = cpu_to_clk_node(policy->cpu); if (!np) return; for_each_present_cpu(i) { clk_np = cpu_to_clk_node(i); if (!clk_np) continue; if (clk_np == np) cpumask_set_cpu(i, dstp); of_node_put(clk_np); } of_node_put(np); } /* reduce the duplicated frequencies in frequency table */ static void freq_table_redup(struct cpufreq_frequency_table *freq_table, int count) { int i, j; for (i = 1; i < count; i++) { for (j = 0; j < i; j++) { if (freq_table[j].frequency == CPUFREQ_ENTRY_INVALID || freq_table[j].frequency != freq_table[i].frequency) continue; freq_table[i].frequency = CPUFREQ_ENTRY_INVALID; break; } } } /* sort the frequencies in frequency table in descenting order */ static void freq_table_sort(struct cpufreq_frequency_table *freq_table, int count) { int i, j, ind; unsigned int freq, max_freq; struct cpufreq_frequency_table table; for (i = 0; i < count - 1; i++) { max_freq = freq_table[i].frequency; ind = i; for (j = i + 1; j < count; j++) { freq = freq_table[j].frequency; if (freq == CPUFREQ_ENTRY_INVALID || freq <= max_freq) continue; ind = j; max_freq = freq; } if (ind != i) { /* exchange the frequencies */ table.driver_data = freq_table[i].driver_data; table.frequency = freq_table[i].frequency; freq_table[i].driver_data = freq_table[ind].driver_data; freq_table[i].frequency = freq_table[ind].frequency; freq_table[ind].driver_data = table.driver_data; freq_table[ind].frequency = table.frequency; } } } static int qoriq_cpufreq_cpu_init(struct cpufreq_policy *policy) { struct device_node *np; int i, count, ret; u32 freq, mask; struct clk *clk; struct cpufreq_frequency_table *table; struct cpu_data *data; unsigned int cpu = policy->cpu; u64 u64temp; np = of_get_cpu_node(cpu, NULL); if (!np) return -ENODEV; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto err_np; policy->clk = of_clk_get(np, 0); if (IS_ERR(policy->clk)) { pr_err("%s: no clock information\n", __func__); goto err_nomem2; } data->parent = of_parse_phandle(np, "clocks", 0); if (!data->parent) { pr_err("%s: could not get clock information\n", __func__); goto err_nomem2; } count = of_property_count_strings(data->parent, "clock-names"); table = kcalloc(count + 1, sizeof(*table), GFP_KERNEL); if (!table) { pr_err("%s: no memory\n", __func__); goto err_node; } if (fmask) mask = fmask[get_cpu_physical_id(cpu)]; else mask = 0x0; for (i = 0; i < count; i++) { clk = of_clk_get(data->parent, i); freq = clk_get_rate(clk); /* * the clock is valid if its frequency is not masked * and large than minimum allowed frequency. */ if (freq < min_cpufreq || (mask & (1 << i))) table[i].frequency = CPUFREQ_ENTRY_INVALID; else table[i].frequency = freq / 1000; table[i].driver_data = i; } freq_table_redup(table, count); freq_table_sort(table, count); table[i].frequency = CPUFREQ_TABLE_END; /* set the min and max frequency properly */ ret = cpufreq_table_validate_and_show(policy, table); if (ret) { pr_err("invalid frequency table: %d\n", ret); goto err_nomem1; } data->table = table; /* update ->cpus if we have cluster, no harm if not */ set_affected_cpus(policy); policy->driver_data = data; /* Minimum transition latency is 12 platform clocks */ u64temp = 12ULL * NSEC_PER_SEC; do_div(u64temp, get_bus_freq()); policy->cpuinfo.transition_latency = u64temp + 1; of_node_put(np); return 0; err_nomem1: kfree(table); err_node: of_node_put(data->parent); err_nomem2: policy->driver_data = NULL; kfree(data); err_np: of_node_put(np); return -ENODEV; } static int __exit qoriq_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct cpu_data *data = policy->driver_data; of_node_put(data->parent); kfree(data->table); kfree(data); policy->driver_data = NULL; return 0; } static int qoriq_cpufreq_target(struct cpufreq_policy *policy, unsigned int index) { struct clk *parent; struct cpu_data *data = policy->driver_data; parent = of_clk_get(data->parent, data->table[index].driver_data); return clk_set_parent(policy->clk, parent); } static struct cpufreq_driver qoriq_cpufreq_driver = { .name = "qoriq_cpufreq", .flags = CPUFREQ_CONST_LOOPS, .init = qoriq_cpufreq_cpu_init, .exit = __exit_p(qoriq_cpufreq_cpu_exit), .verify = cpufreq_generic_frequency_table_verify, .target_index = qoriq_cpufreq_target, .get = cpufreq_generic_get, .attr = cpufreq_generic_attr, }; static const struct of_device_id node_matches[] __initconst = { { .compatible = "fsl,p2041-clockgen", .data = &sdata[0], }, { .compatible = "fsl,p3041-clockgen", .data = &sdata[0], }, { .compatible = "fsl,p5020-clockgen", .data = &sdata[1], }, { .compatible = "fsl,p4080-clockgen", .data = &sdata[2], }, { .compatible = "fsl,p5040-clockgen", .data = &sdata[2], }, { .compatible = "fsl,qoriq-clockgen-2.0", }, {} }; static int __init qoriq_cpufreq_init(void) { int ret; struct device_node *np; const struct of_device_id *match; const struct soc_data *data; np = of_find_matching_node(NULL, node_matches); if (!np) return -ENODEV; match = of_match_node(node_matches, np); data = match->data; if (data) { if (data->flag) fmask = data->freq_mask; min_cpufreq = get_bus_freq(); } else { min_cpufreq = get_bus_freq() / 2; } of_node_put(np); ret = cpufreq_register_driver(&qoriq_cpufreq_driver); if (!ret) pr_info("Freescale QorIQ CPU frequency scaling driver\n"); return ret; } module_init(qoriq_cpufreq_init); static void __exit qoriq_cpufreq_exit(void) { cpufreq_unregister_driver(&qoriq_cpufreq_driver); } module_exit(qoriq_cpufreq_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tang Yuantian "); MODULE_DESCRIPTION("cpufreq driver for Freescale QorIQ series SoCs");