/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "radeon.h" #include "trinityd.h" #include "r600_dpm.h" #include "trinity_dpm.h" #include #define TRINITY_MAX_DEEPSLEEP_DIVIDER_ID 5 #define TRINITY_MINIMUM_ENGINE_CLOCK 800 #define SCLK_MIN_DIV_INTV_SHIFT 12 #define TRINITY_DISPCLK_BYPASS_THRESHOLD 10000 #ifndef TRINITY_MGCG_SEQUENCE #define TRINITY_MGCG_SEQUENCE 100 static const u32 trinity_mgcg_shls_default[] = { /* Register, Value, Mask */ 0x0000802c, 0xc0000000, 0xffffffff, 0x00003fc4, 0xc0000000, 0xffffffff, 0x00005448, 0x00000100, 0xffffffff, 0x000055e4, 0x00000100, 0xffffffff, 0x0000160c, 0x00000100, 0xffffffff, 0x00008984, 0x06000100, 0xffffffff, 0x0000c164, 0x00000100, 0xffffffff, 0x00008a18, 0x00000100, 0xffffffff, 0x0000897c, 0x06000100, 0xffffffff, 0x00008b28, 0x00000100, 0xffffffff, 0x00009144, 0x00800200, 0xffffffff, 0x00009a60, 0x00000100, 0xffffffff, 0x00009868, 0x00000100, 0xffffffff, 0x00008d58, 0x00000100, 0xffffffff, 0x00009510, 0x00000100, 0xffffffff, 0x0000949c, 0x00000100, 0xffffffff, 0x00009654, 0x00000100, 0xffffffff, 0x00009030, 0x00000100, 0xffffffff, 0x00009034, 0x00000100, 0xffffffff, 0x00009038, 0x00000100, 0xffffffff, 0x0000903c, 0x00000100, 0xffffffff, 0x00009040, 0x00000100, 0xffffffff, 0x0000a200, 0x00000100, 0xffffffff, 0x0000a204, 0x00000100, 0xffffffff, 0x0000a208, 0x00000100, 0xffffffff, 0x0000a20c, 0x00000100, 0xffffffff, 0x00009744, 0x00000100, 0xffffffff, 0x00003f80, 0x00000100, 0xffffffff, 0x0000a210, 0x00000100, 0xffffffff, 0x0000a214, 0x00000100, 0xffffffff, 0x000004d8, 0x00000100, 0xffffffff, 0x00009664, 0x00000100, 0xffffffff, 0x00009698, 0x00000100, 0xffffffff, 0x000004d4, 0x00000200, 0xffffffff, 0x000004d0, 0x00000000, 0xffffffff, 0x000030cc, 0x00000104, 0xffffffff, 0x0000d0c0, 0x00000100, 0xffffffff, 0x0000d8c0, 0x00000100, 0xffffffff, 0x0000951c, 0x00010000, 0xffffffff, 0x00009160, 0x00030002, 0xffffffff, 0x00009164, 0x00050004, 0xffffffff, 0x00009168, 0x00070006, 0xffffffff, 0x00009178, 0x00070000, 0xffffffff, 0x0000917c, 0x00030002, 0xffffffff, 0x00009180, 0x00050004, 0xffffffff, 0x0000918c, 0x00010006, 0xffffffff, 0x00009190, 0x00090008, 0xffffffff, 0x00009194, 0x00070000, 0xffffffff, 0x00009198, 0x00030002, 0xffffffff, 0x0000919c, 0x00050004, 0xffffffff, 0x000091a8, 0x00010006, 0xffffffff, 0x000091ac, 0x00090008, 0xffffffff, 0x000091b0, 0x00070000, 0xffffffff, 0x000091b4, 0x00030002, 0xffffffff, 0x000091b8, 0x00050004, 0xffffffff, 0x000091c4, 0x00010006, 0xffffffff, 0x000091c8, 0x00090008, 0xffffffff, 0x000091cc, 0x00070000, 0xffffffff, 0x000091d0, 0x00030002, 0xffffffff, 0x000091d4, 0x00050004, 0xffffffff, 0x000091e0, 0x00010006, 0xffffffff, 0x000091e4, 0x00090008, 0xffffffff, 0x000091e8, 0x00000000, 0xffffffff, 0x000091ec, 0x00070000, 0xffffffff, 0x000091f0, 0x00030002, 0xffffffff, 0x000091f4, 0x00050004, 0xffffffff, 0x00009200, 0x00010006, 0xffffffff, 0x00009204, 0x00090008, 0xffffffff, 0x00009208, 0x00070000, 0xffffffff, 0x0000920c, 0x00030002, 0xffffffff, 0x00009210, 0x00050004, 0xffffffff, 0x0000921c, 0x00010006, 0xffffffff, 0x00009220, 0x00090008, 0xffffffff, 0x00009294, 0x00000000, 0xffffffff }; static const u32 trinity_mgcg_shls_enable[] = { /* Register, Value, Mask */ 0x0000802c, 0xc0000000, 0xffffffff, 0x000008f8, 0x00000000, 0xffffffff, 0x000008fc, 0x00000000, 0x000133FF, 0x000008f8, 0x00000001, 0xffffffff, 0x000008fc, 0x00000000, 0xE00B03FC, 0x00009150, 0x96944200, 0xffffffff }; static const u32 trinity_mgcg_shls_disable[] = { /* Register, Value, Mask */ 0x0000802c, 0xc0000000, 0xffffffff, 0x00009150, 0x00600000, 0xffffffff, 0x000008f8, 0x00000000, 0xffffffff, 0x000008fc, 0xffffffff, 0x000133FF, 0x000008f8, 0x00000001, 0xffffffff, 0x000008fc, 0xffffffff, 0xE00B03FC }; #endif #ifndef TRINITY_SYSLS_SEQUENCE #define TRINITY_SYSLS_SEQUENCE 100 static const u32 trinity_sysls_default[] = { /* Register, Value, Mask */ 0x000055e8, 0x00000000, 0xffffffff, 0x0000d0bc, 0x00000000, 0xffffffff, 0x0000d8bc, 0x00000000, 0xffffffff, 0x000015c0, 0x000c1401, 0xffffffff, 0x0000264c, 0x000c0400, 0xffffffff, 0x00002648, 0x000c0400, 0xffffffff, 0x00002650, 0x000c0400, 0xffffffff, 0x000020b8, 0x000c0400, 0xffffffff, 0x000020bc, 0x000c0400, 0xffffffff, 0x000020c0, 0x000c0c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680fff, 0xffffffff, 0x00002f50, 0x00000404, 0xffffffff, 0x000004c8, 0x00000001, 0xffffffff, 0x0000641c, 0x00000000, 0xffffffff, 0x00000c7c, 0x00000000, 0xffffffff, 0x00006dfc, 0x00000000, 0xffffffff }; static const u32 trinity_sysls_disable[] = { /* Register, Value, Mask */ 0x0000d0c0, 0x00000000, 0xffffffff, 0x0000d8c0, 0x00000000, 0xffffffff, 0x000055e8, 0x00000000, 0xffffffff, 0x0000d0bc, 0x00000000, 0xffffffff, 0x0000d8bc, 0x00000000, 0xffffffff, 0x000015c0, 0x00041401, 0xffffffff, 0x0000264c, 0x00040400, 0xffffffff, 0x00002648, 0x00040400, 0xffffffff, 0x00002650, 0x00040400, 0xffffffff, 0x000020b8, 0x00040400, 0xffffffff, 0x000020bc, 0x00040400, 0xffffffff, 0x000020c0, 0x00040c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680000, 0xffffffff, 0x00002f50, 0x00000404, 0xffffffff, 0x000004c8, 0x00000001, 0xffffffff, 0x0000641c, 0x00007ffd, 0xffffffff, 0x00000c7c, 0x0000ff00, 0xffffffff, 0x00006dfc, 0x0000007f, 0xffffffff }; static const u32 trinity_sysls_enable[] = { /* Register, Value, Mask */ 0x000055e8, 0x00000001, 0xffffffff, 0x0000d0bc, 0x00000100, 0xffffffff, 0x0000d8bc, 0x00000100, 0xffffffff, 0x000015c0, 0x000c1401, 0xffffffff, 0x0000264c, 0x000c0400, 0xffffffff, 0x00002648, 0x000c0400, 0xffffffff, 0x00002650, 0x000c0400, 0xffffffff, 0x000020b8, 0x000c0400, 0xffffffff, 0x000020bc, 0x000c0400, 0xffffffff, 0x000020c0, 0x000c0c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680fff, 0xffffffff, 0x00002f50, 0x00000903, 0xffffffff, 0x000004c8, 0x00000000, 0xffffffff, 0x0000641c, 0x00000000, 0xffffffff, 0x00000c7c, 0x00000000, 0xffffffff, 0x00006dfc, 0x00000000, 0xffffffff }; #endif static const u32 trinity_override_mgpg_sequences[] = { /* Register, Value */ 0x00000200, 0xE030032C, 0x00000204, 0x00000FFF, 0x00000200, 0xE0300058, 0x00000204, 0x00030301, 0x00000200, 0xE0300054, 0x00000204, 0x500010FF, 0x00000200, 0xE0300074, 0x00000204, 0x00030301, 0x00000200, 0xE0300070, 0x00000204, 0x500010FF, 0x00000200, 0xE0300090, 0x00000204, 0x00030301, 0x00000200, 0xE030008C, 0x00000204, 0x500010FF, 0x00000200, 0xE03000AC, 0x00000204, 0x00030301, 0x00000200, 0xE03000A8, 0x00000204, 0x500010FF, 0x00000200, 0xE03000C8, 0x00000204, 0x00030301, 0x00000200, 0xE03000C4, 0x00000204, 0x500010FF, 0x00000200, 0xE03000E4, 0x00000204, 0x00030301, 0x00000200, 0xE03000E0, 0x00000204, 0x500010FF, 0x00000200, 0xE0300100, 0x00000204, 0x00030301, 0x00000200, 0xE03000FC, 0x00000204, 0x500010FF, 0x00000200, 0xE0300058, 0x00000204, 0x00030303, 0x00000200, 0xE0300054, 0x00000204, 0x600010FF, 0x00000200, 0xE0300074, 0x00000204, 0x00030303, 0x00000200, 0xE0300070, 0x00000204, 0x600010FF, 0x00000200, 0xE0300090, 0x00000204, 0x00030303, 0x00000200, 0xE030008C, 0x00000204, 0x600010FF, 0x00000200, 0xE03000AC, 0x00000204, 0x00030303, 0x00000200, 0xE03000A8, 0x00000204, 0x600010FF, 0x00000200, 0xE03000C8, 0x00000204, 0x00030303, 0x00000200, 0xE03000C4, 0x00000204, 0x600010FF, 0x00000200, 0xE03000E4, 0x00000204, 0x00030303, 0x00000200, 0xE03000E0, 0x00000204, 0x600010FF, 0x00000200, 0xE0300100, 0x00000204, 0x00030303, 0x00000200, 0xE03000FC, 0x00000204, 0x600010FF, 0x00000200, 0xE0300058, 0x00000204, 0x00030303, 0x00000200, 0xE0300054, 0x00000204, 0x700010FF, 0x00000200, 0xE0300074, 0x00000204, 0x00030303, 0x00000200, 0xE0300070, 0x00000204, 0x700010FF, 0x00000200, 0xE0300090, 0x00000204, 0x00030303, 0x00000200, 0xE030008C, 0x00000204, 0x700010FF, 0x00000200, 0xE03000AC, 0x00000204, 0x00030303, 0x00000200, 0xE03000A8, 0x00000204, 0x700010FF, 0x00000200, 0xE03000C8, 0x00000204, 0x00030303, 0x00000200, 0xE03000C4, 0x00000204, 0x700010FF, 0x00000200, 0xE03000E4, 0x00000204, 0x00030303, 0x00000200, 0xE03000E0, 0x00000204, 0x700010FF, 0x00000200, 0xE0300100, 0x00000204, 0x00030303, 0x00000200, 0xE03000FC, 0x00000204, 0x700010FF, 0x00000200, 0xE0300058, 0x00000204, 0x00010303, 0x00000200, 0xE0300054, 0x00000204, 0x800010FF, 0x00000200, 0xE0300074, 0x00000204, 0x00010303, 0x00000200, 0xE0300070, 0x00000204, 0x800010FF, 0x00000200, 0xE0300090, 0x00000204, 0x00010303, 0x00000200, 0xE030008C, 0x00000204, 0x800010FF, 0x00000200, 0xE03000AC, 0x00000204, 0x00010303, 0x00000200, 0xE03000A8, 0x00000204, 0x800010FF, 0x00000200, 0xE03000C4, 0x00000204, 0x800010FF, 0x00000200, 0xE03000C8, 0x00000204, 0x00010303, 0x00000200, 0xE03000E4, 0x00000204, 0x00010303, 0x00000200, 0xE03000E0, 0x00000204, 0x800010FF, 0x00000200, 0xE0300100, 0x00000204, 0x00010303, 0x00000200, 0xE03000FC, 0x00000204, 0x800010FF, 0x00000200, 0x0001f198, 0x00000204, 0x0003ffff, 0x00000200, 0x0001f19C, 0x00000204, 0x3fffffff, 0x00000200, 0xE030032C, 0x00000204, 0x00000000, }; static void trinity_program_clk_gating_hw_sequence(struct radeon_device *rdev, const u32 *seq, u32 count); static void trinity_override_dynamic_mg_powergating(struct radeon_device *rdev); static void trinity_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps); struct trinity_ps *trinity_get_ps(struct radeon_ps *rps) { struct trinity_ps *ps = rps->ps_priv; return ps; } struct trinity_power_info *trinity_get_pi(struct radeon_device *rdev) { struct trinity_power_info *pi = rdev->pm.dpm.priv; return pi; } static void trinity_gfx_powergating_initialize(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 p, u; u32 value; struct atom_clock_dividers dividers; u32 xclk = radeon_get_xclk(rdev); u32 sssd = 1; int ret; u32 hw_rev = (RREG32(HW_REV) & ATI_REV_ID_MASK) >> ATI_REV_ID_SHIFT; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, 25000, false, ÷rs); if (ret) return; value = RREG32_SMC(GFX_POWER_GATING_CNTL); value &= ~(SSSD_MASK | PDS_DIV_MASK); if (sssd) value |= SSSD(1); value |= PDS_DIV(dividers.post_div); WREG32_SMC(GFX_POWER_GATING_CNTL, value); r600_calculate_u_and_p(500, xclk, 16, &p, &u); WREG32(CG_PG_CTRL, SP(p) | SU(u)); WREG32_P(CG_GIPOTS, CG_GIPOT(p), ~CG_GIPOT_MASK); /* XXX double check hw_rev */ if (pi->override_dynamic_mgpg && (hw_rev == 0)) trinity_override_dynamic_mg_powergating(rdev); } #define CGCG_CGTT_LOCAL0_MASK 0xFFFF33FF #define CGCG_CGTT_LOCAL1_MASK 0xFFFB0FFE #define CGTS_SM_CTRL_REG_DISABLE 0x00600000 #define CGTS_SM_CTRL_REG_ENABLE 0x96944200 static void trinity_mg_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 local0; u32 local1; if (enable) { local0 = RREG32_CG(CG_CGTT_LOCAL_0); local1 = RREG32_CG(CG_CGTT_LOCAL_1); WREG32_CG(CG_CGTT_LOCAL_0, (0x00380000 & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); WREG32_CG(CG_CGTT_LOCAL_1, (0x0E000000 & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); WREG32(CGTS_SM_CTRL_REG, CGTS_SM_CTRL_REG_ENABLE); } else { WREG32(CGTS_SM_CTRL_REG, CGTS_SM_CTRL_REG_DISABLE); local0 = RREG32_CG(CG_CGTT_LOCAL_0); local1 = RREG32_CG(CG_CGTT_LOCAL_1); WREG32_CG(CG_CGTT_LOCAL_0, CGCG_CGTT_LOCAL0_MASK | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); WREG32_CG(CG_CGTT_LOCAL_1, CGCG_CGTT_LOCAL1_MASK | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); } } static void trinity_mg_clockgating_initialize(struct radeon_device *rdev) { u32 count; const u32 *seq = NULL; seq = &trinity_mgcg_shls_default[0]; count = sizeof(trinity_mgcg_shls_default) / (3 * sizeof(u32)); trinity_program_clk_gating_hw_sequence(rdev, seq, count); } static void trinity_gfx_clockgating_enable(struct radeon_device *rdev, bool enable) { if (enable) { WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); } else { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); RREG32(GB_ADDR_CONFIG); } } static void trinity_program_clk_gating_hw_sequence(struct radeon_device *rdev, const u32 *seq, u32 count) { u32 i, length = count * 3; for (i = 0; i < length; i += 3) WREG32_P(seq[i], seq[i+1], ~seq[i+2]); } static void trinity_program_override_mgpg_sequences(struct radeon_device *rdev, const u32 *seq, u32 count) { u32 i, length = count * 2; for (i = 0; i < length; i += 2) WREG32(seq[i], seq[i+1]); } static void trinity_override_dynamic_mg_powergating(struct radeon_device *rdev) { u32 count; const u32 *seq = NULL; seq = &trinity_override_mgpg_sequences[0]; count = sizeof(trinity_override_mgpg_sequences) / (2 * sizeof(u32)); trinity_program_override_mgpg_sequences(rdev, seq, count); } static void trinity_ls_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 count; const u32 *seq = NULL; if (enable) { seq = &trinity_sysls_enable[0]; count = sizeof(trinity_sysls_enable) / (3 * sizeof(u32)); } else { seq = &trinity_sysls_disable[0]; count = sizeof(trinity_sysls_disable) / (3 * sizeof(u32)); } trinity_program_clk_gating_hw_sequence(rdev, seq, count); } static void trinity_gfx_powergating_enable(struct radeon_device *rdev, bool enable) { if (enable) { if (RREG32_SMC(CC_SMU_TST_EFUSE1_MISC) & RB_BACKEND_DISABLE_MASK) WREG32_SMC(SMU_SCRATCH_A, (RREG32_SMC(SMU_SCRATCH_A) | 0x01)); WREG32_P(SCLK_PWRMGT_CNTL, DYN_PWR_DOWN_EN, ~DYN_PWR_DOWN_EN); } else { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_PWR_DOWN_EN); RREG32(GB_ADDR_CONFIG); } } static void trinity_gfx_dynamic_mgpg_enable(struct radeon_device *rdev, bool enable) { u32 value; if (enable) { value = RREG32_SMC(PM_I_CNTL_1); value &= ~DS_PG_CNTL_MASK; value |= DS_PG_CNTL(1); WREG32_SMC(PM_I_CNTL_1, value); value = RREG32_SMC(SMU_S_PG_CNTL); value &= ~DS_PG_EN_MASK; value |= DS_PG_EN(1); WREG32_SMC(SMU_S_PG_CNTL, value); } else { value = RREG32_SMC(SMU_S_PG_CNTL); value &= ~DS_PG_EN_MASK; WREG32_SMC(SMU_S_PG_CNTL, value); value = RREG32_SMC(PM_I_CNTL_1); value &= ~DS_PG_CNTL_MASK; WREG32_SMC(PM_I_CNTL_1, value); } trinity_gfx_dynamic_mgpg_config(rdev); } static void trinity_enable_clock_power_gating(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->enable_gfx_clock_gating) sumo_gfx_clockgating_initialize(rdev); if (pi->enable_mg_clock_gating) trinity_mg_clockgating_initialize(rdev); if (pi->enable_gfx_power_gating) trinity_gfx_powergating_initialize(rdev); if (pi->enable_mg_clock_gating) { trinity_ls_clockgating_enable(rdev, true); trinity_mg_clockgating_enable(rdev, true); } if (pi->enable_gfx_clock_gating) trinity_gfx_clockgating_enable(rdev, true); if (pi->enable_gfx_dynamic_mgpg) trinity_gfx_dynamic_mgpg_enable(rdev, true); if (pi->enable_gfx_power_gating) trinity_gfx_powergating_enable(rdev, true); } static void trinity_disable_clock_power_gating(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->enable_gfx_power_gating) trinity_gfx_powergating_enable(rdev, false); if (pi->enable_gfx_dynamic_mgpg) trinity_gfx_dynamic_mgpg_enable(rdev, false); if (pi->enable_gfx_clock_gating) trinity_gfx_clockgating_enable(rdev, false); if (pi->enable_mg_clock_gating) { trinity_mg_clockgating_enable(rdev, false); trinity_ls_clockgating_enable(rdev, false); } } static void trinity_set_divider_value(struct radeon_device *rdev, u32 index, u32 sclk) { struct atom_clock_dividers dividers; int ret; u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, sclk, false, ÷rs); if (ret) return; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); value &= ~CLK_DIVIDER_MASK; value |= CLK_DIVIDER(dividers.post_div); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, sclk/2, false, ÷rs); if (ret) return; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_PG_CNTL + ix); value &= ~PD_SCLK_DIVIDER_MASK; value |= PD_SCLK_DIVIDER(dividers.post_div); WREG32_SMC(SMU_SCLK_DPM_STATE_0_PG_CNTL + ix, value); } static void trinity_set_ds_dividers(struct radeon_device *rdev, u32 index, u32 divider) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); value &= ~DS_DIV_MASK; value |= DS_DIV(divider); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); } static void trinity_set_ss_dividers(struct radeon_device *rdev, u32 index, u32 divider) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); value &= ~DS_SH_DIV_MASK; value |= DS_SH_DIV(divider); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); } static void trinity_set_vid(struct radeon_device *rdev, u32 index, u32 vid) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid); u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); value &= ~VID_MASK; value |= VID(vid_7bit); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); value &= ~LVRT_MASK; value |= LVRT(0); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); } static void trinity_set_allos_gnb_slow(struct radeon_device *rdev, u32 index, u32 gnb_slow) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix); value &= ~GNB_SLOW_MASK; value |= GNB_SLOW(gnb_slow); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix, value); } static void trinity_set_force_nbp_state(struct radeon_device *rdev, u32 index, u32 force_nbp_state) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix); value &= ~FORCE_NBPS1_MASK; value |= FORCE_NBPS1(force_nbp_state); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix, value); } static void trinity_set_display_wm(struct radeon_device *rdev, u32 index, u32 wm) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); value &= ~DISPLAY_WM_MASK; value |= DISPLAY_WM(wm); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); } static void trinity_set_vce_wm(struct radeon_device *rdev, u32 index, u32 wm) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); value &= ~VCE_WM_MASK; value |= VCE_WM(wm); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); } static void trinity_set_at(struct radeon_device *rdev, u32 index, u32 at) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_AT + ix); value &= ~AT_MASK; value |= AT(at); WREG32_SMC(SMU_SCLK_DPM_STATE_0_AT + ix, value); } static void trinity_program_power_level(struct radeon_device *rdev, struct trinity_pl *pl, u32 index) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (index >= SUMO_MAX_HARDWARE_POWERLEVELS) return; trinity_set_divider_value(rdev, index, pl->sclk); trinity_set_vid(rdev, index, pl->vddc_index); trinity_set_ss_dividers(rdev, index, pl->ss_divider_index); trinity_set_ds_dividers(rdev, index, pl->ds_divider_index); trinity_set_allos_gnb_slow(rdev, index, pl->allow_gnb_slow); trinity_set_force_nbp_state(rdev, index, pl->force_nbp_state); trinity_set_display_wm(rdev, index, pl->display_wm); trinity_set_vce_wm(rdev, index, pl->vce_wm); trinity_set_at(rdev, index, pi->at[index]); } static void trinity_power_level_enable_disable(struct radeon_device *rdev, u32 index, bool enable) { u32 value; u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); value &= ~STATE_VALID_MASK; if (enable) value |= STATE_VALID(1); WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); } static bool trinity_dpm_enabled(struct radeon_device *rdev) { if (RREG32_SMC(SMU_SCLK_DPM_CNTL) & SCLK_DPM_EN(1)) return true; else return false; } static void trinity_start_dpm(struct radeon_device *rdev) { u32 value = RREG32_SMC(SMU_SCLK_DPM_CNTL); value &= ~(SCLK_DPM_EN_MASK | SCLK_DPM_BOOT_STATE_MASK | VOLTAGE_CHG_EN_MASK); value |= SCLK_DPM_EN(1) | SCLK_DPM_BOOT_STATE(0) | VOLTAGE_CHG_EN(1); WREG32_SMC(SMU_SCLK_DPM_CNTL, value); WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); WREG32_P(CG_CG_VOLTAGE_CNTL, 0, ~EN); trinity_dpm_config(rdev, true); } static void trinity_wait_for_dpm_enabled(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(SCLK_PWRMGT_CNTL) & DYNAMIC_PM_EN) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_STATE_MASK) == 0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) == 0) break; udelay(1); } } static void trinity_stop_dpm(struct radeon_device *rdev) { u32 sclk_dpm_cntl; WREG32_P(CG_CG_VOLTAGE_CNTL, EN, ~EN); sclk_dpm_cntl = RREG32_SMC(SMU_SCLK_DPM_CNTL); sclk_dpm_cntl &= ~(SCLK_DPM_EN_MASK | VOLTAGE_CHG_EN_MASK); WREG32_SMC(SMU_SCLK_DPM_CNTL, sclk_dpm_cntl); trinity_dpm_config(rdev, false); } static void trinity_start_am(struct radeon_device *rdev) { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~(RESET_SCLK_CNT | RESET_BUSY_CNT)); } static void trinity_reset_am(struct radeon_device *rdev) { WREG32_P(SCLK_PWRMGT_CNTL, RESET_SCLK_CNT | RESET_BUSY_CNT, ~(RESET_SCLK_CNT | RESET_BUSY_CNT)); } static void trinity_wait_for_level_0(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) == 0) break; udelay(1); } } static void trinity_enable_power_level_0(struct radeon_device *rdev) { trinity_power_level_enable_disable(rdev, 0, true); } static void trinity_force_level_0(struct radeon_device *rdev) { trinity_dpm_force_state(rdev, 0); } static void trinity_unforce_levels(struct radeon_device *rdev) { trinity_dpm_no_forced_level(rdev); } static void trinity_program_power_levels_0_to_n(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct trinity_ps *new_ps = trinity_get_ps(new_rps); struct trinity_ps *old_ps = trinity_get_ps(old_rps); u32 i; u32 n_current_state_levels = (old_ps == NULL) ? 1 : old_ps->num_levels; for (i = 0; i < new_ps->num_levels; i++) { trinity_program_power_level(rdev, &new_ps->levels[i], i); trinity_power_level_enable_disable(rdev, i, true); } for (i = new_ps->num_levels; i < n_current_state_levels; i++) trinity_power_level_enable_disable(rdev, i, false); } static void trinity_program_bootup_state(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 i; trinity_program_power_level(rdev, &pi->boot_pl, 0); trinity_power_level_enable_disable(rdev, 0, true); for (i = 1; i < 8; i++) trinity_power_level_enable_disable(rdev, i, false); } static void trinity_setup_uvd_clock_table(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_ps *ps = trinity_get_ps(rps); u32 uvdstates = (ps->vclk_low_divider | ps->vclk_high_divider << 8 | ps->dclk_low_divider << 16 | ps->dclk_high_divider << 24); WREG32_SMC(SMU_UVD_DPM_STATES, uvdstates); } static void trinity_setup_uvd_dpm_interval(struct radeon_device *rdev, u32 interval) { u32 p, u; u32 tp = RREG32_SMC(PM_TP); u32 val; u32 xclk = radeon_get_xclk(rdev); r600_calculate_u_and_p(interval, xclk, 16, &p, &u); val = (p + tp - 1) / tp; WREG32_SMC(SMU_UVD_DPM_CNTL, val); } static bool trinity_uvd_clocks_zero(struct radeon_ps *rps) { if ((rps->vclk == 0) && (rps->dclk == 0)) return true; else return false; } static bool trinity_uvd_clocks_equal(struct radeon_ps *rps1, struct radeon_ps *rps2) { struct trinity_ps *ps1 = trinity_get_ps(rps1); struct trinity_ps *ps2 = trinity_get_ps(rps2); if ((rps1->vclk == rps2->vclk) && (rps1->dclk == rps2->dclk) && (ps1->vclk_low_divider == ps2->vclk_low_divider) && (ps1->vclk_high_divider == ps2->vclk_high_divider) && (ps1->dclk_low_divider == ps2->dclk_low_divider) && (ps1->dclk_high_divider == ps2->dclk_high_divider)) return true; else return false; } static void trinity_setup_uvd_clocks(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->enable_gfx_power_gating) { trinity_gfx_powergating_enable(rdev, false); } if (pi->uvd_dpm) { if (trinity_uvd_clocks_zero(new_rps) && !trinity_uvd_clocks_zero(old_rps)) { trinity_setup_uvd_dpm_interval(rdev, 0); } else if (!trinity_uvd_clocks_zero(new_rps)) { trinity_setup_uvd_clock_table(rdev, new_rps); if (trinity_uvd_clocks_zero(old_rps)) { u32 tmp = RREG32(CG_MISC_REG); tmp &= 0xfffffffd; WREG32(CG_MISC_REG, tmp); radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk); trinity_setup_uvd_dpm_interval(rdev, 3000); } } trinity_uvd_dpm_config(rdev); } else { if (trinity_uvd_clocks_zero(new_rps) || trinity_uvd_clocks_equal(new_rps, old_rps)) return; radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk); } if (pi->enable_gfx_power_gating) { trinity_gfx_powergating_enable(rdev, true); } } static void trinity_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct trinity_ps *new_ps = trinity_get_ps(new_rps); struct trinity_ps *current_ps = trinity_get_ps(new_rps); if (new_ps->levels[new_ps->num_levels - 1].sclk >= current_ps->levels[current_ps->num_levels - 1].sclk) return; trinity_setup_uvd_clocks(rdev, new_rps, old_rps); } static void trinity_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct trinity_ps *new_ps = trinity_get_ps(new_rps); struct trinity_ps *current_ps = trinity_get_ps(old_rps); if (new_ps->levels[new_ps->num_levels - 1].sclk < current_ps->levels[current_ps->num_levels - 1].sclk) return; trinity_setup_uvd_clocks(rdev, new_rps, old_rps); } static void trinity_program_ttt(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 value = RREG32_SMC(SMU_SCLK_DPM_TTT); value &= ~(HT_MASK | LT_MASK); value |= HT((pi->thermal_auto_throttling + 49) * 8); value |= LT((pi->thermal_auto_throttling + 49 - pi->sys_info.htc_hyst_lmt) * 8); WREG32_SMC(SMU_SCLK_DPM_TTT, value); } static void trinity_enable_att(struct radeon_device *rdev) { u32 value = RREG32_SMC(SMU_SCLK_DPM_TT_CNTL); value &= ~SCLK_TT_EN_MASK; value |= SCLK_TT_EN(1); WREG32_SMC(SMU_SCLK_DPM_TT_CNTL, value); } static void trinity_program_sclk_dpm(struct radeon_device *rdev) { u32 p, u; u32 tp = RREG32_SMC(PM_TP); u32 ni; u32 xclk = radeon_get_xclk(rdev); u32 value; r600_calculate_u_and_p(400, xclk, 16, &p, &u); ni = (p + tp - 1) / tp; value = RREG32_SMC(PM_I_CNTL_1); value &= ~SCLK_DPM_MASK; value |= SCLK_DPM(ni); WREG32_SMC(PM_I_CNTL_1, value); } static int trinity_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } WREG32_P(CG_THERMAL_INT_CTRL, DIG_THERM_INTH(49 + (high_temp / 1000)), ~DIG_THERM_INTH_MASK); WREG32_P(CG_THERMAL_INT_CTRL, DIG_THERM_INTL(49 + (low_temp / 1000)), ~DIG_THERM_INTL_MASK); rdev->pm.dpm.thermal.min_temp = low_temp; rdev->pm.dpm.thermal.max_temp = high_temp; return 0; } static void trinity_update_current_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_ps *new_ps = trinity_get_ps(rps); struct trinity_power_info *pi = trinity_get_pi(rdev); pi->current_rps = *rps; pi->current_ps = *new_ps; pi->current_rps.ps_priv = &pi->current_ps; } static void trinity_update_requested_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_ps *new_ps = trinity_get_ps(rps); struct trinity_power_info *pi = trinity_get_pi(rdev); pi->requested_rps = *rps; pi->requested_ps = *new_ps; pi->requested_rps.ps_priv = &pi->requested_ps; } void trinity_dpm_enable_bapm(struct radeon_device *rdev, bool enable) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->enable_bapm) { trinity_acquire_mutex(rdev); trinity_dpm_bapm_enable(rdev, enable); trinity_release_mutex(rdev); } } int trinity_dpm_enable(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); trinity_acquire_mutex(rdev); if (trinity_dpm_enabled(rdev)) { trinity_release_mutex(rdev); return -EINVAL; } trinity_program_bootup_state(rdev); sumo_program_vc(rdev, 0x00C00033); trinity_start_am(rdev); if (pi->enable_auto_thermal_throttling) { trinity_program_ttt(rdev); trinity_enable_att(rdev); } trinity_program_sclk_dpm(rdev); trinity_start_dpm(rdev); trinity_wait_for_dpm_enabled(rdev); trinity_dpm_bapm_enable(rdev, false); trinity_release_mutex(rdev); trinity_update_current_ps(rdev, rdev->pm.dpm.boot_ps); return 0; } int trinity_dpm_late_enable(struct radeon_device *rdev) { int ret; trinity_acquire_mutex(rdev); trinity_enable_clock_power_gating(rdev); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { ret = trinity_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) { trinity_release_mutex(rdev); return ret; } rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); } trinity_release_mutex(rdev); return 0; } void trinity_dpm_disable(struct radeon_device *rdev) { trinity_acquire_mutex(rdev); if (!trinity_dpm_enabled(rdev)) { trinity_release_mutex(rdev); return; } trinity_dpm_bapm_enable(rdev, false); trinity_disable_clock_power_gating(rdev); sumo_clear_vc(rdev); trinity_wait_for_level_0(rdev); trinity_stop_dpm(rdev); trinity_reset_am(rdev); trinity_release_mutex(rdev); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { rdev->irq.dpm_thermal = false; radeon_irq_set(rdev); } trinity_update_current_ps(rdev, rdev->pm.dpm.boot_ps); } static void trinity_get_min_sclk_divider(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); pi->min_sclk_did = (RREG32_SMC(CC_SMU_MISC_FUSES) & MinSClkDid_MASK) >> MinSClkDid_SHIFT; } static void trinity_setup_nbp_sim(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct trinity_ps *new_ps = trinity_get_ps(rps); u32 nbpsconfig; if (pi->sys_info.nb_dpm_enable) { nbpsconfig = RREG32_SMC(NB_PSTATE_CONFIG); nbpsconfig &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK | DpmXNbPsLo_MASK | DpmXNbPsHi_MASK); nbpsconfig |= (Dpm0PgNbPsLo(new_ps->Dpm0PgNbPsLo) | Dpm0PgNbPsHi(new_ps->Dpm0PgNbPsHi) | DpmXNbPsLo(new_ps->DpmXNbPsLo) | DpmXNbPsHi(new_ps->DpmXNbPsHi)); WREG32_SMC(NB_PSTATE_CONFIG, nbpsconfig); } } int trinity_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct radeon_ps *rps = &pi->current_rps; struct trinity_ps *ps = trinity_get_ps(rps); int i, ret; if (ps->num_levels <= 1) return 0; if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { /* not supported by the hw */ return -EINVAL; } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { ret = trinity_dpm_n_levels_disabled(rdev, ps->num_levels - 1); if (ret) return ret; } else { for (i = 0; i < ps->num_levels; i++) { ret = trinity_dpm_n_levels_disabled(rdev, 0); if (ret) return ret; } } rdev->pm.dpm.forced_level = level; return 0; } int trinity_dpm_pre_set_power_state(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; struct radeon_ps *new_ps = &requested_ps; trinity_update_requested_ps(rdev, new_ps); trinity_apply_state_adjust_rules(rdev, &pi->requested_rps, &pi->current_rps); return 0; } int trinity_dpm_set_power_state(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; struct radeon_ps *old_ps = &pi->current_rps; trinity_acquire_mutex(rdev); if (pi->enable_dpm) { if (pi->enable_bapm) trinity_dpm_bapm_enable(rdev, rdev->pm.dpm.ac_power); trinity_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps); trinity_enable_power_level_0(rdev); trinity_force_level_0(rdev); trinity_wait_for_level_0(rdev); trinity_setup_nbp_sim(rdev, new_ps); trinity_program_power_levels_0_to_n(rdev, new_ps, old_ps); trinity_force_level_0(rdev); trinity_unforce_levels(rdev); trinity_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps); } trinity_release_mutex(rdev); return 0; } void trinity_dpm_post_set_power_state(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; trinity_update_current_ps(rdev, new_ps); } void trinity_dpm_setup_asic(struct radeon_device *rdev) { trinity_acquire_mutex(rdev); sumo_program_sstp(rdev); sumo_take_smu_control(rdev, true); trinity_get_min_sclk_divider(rdev); trinity_release_mutex(rdev); } void trinity_dpm_reset_asic(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); trinity_acquire_mutex(rdev); if (pi->enable_dpm) { trinity_enable_power_level_0(rdev); trinity_force_level_0(rdev); trinity_wait_for_level_0(rdev); trinity_program_bootup_state(rdev); trinity_force_level_0(rdev); trinity_unforce_levels(rdev); } trinity_release_mutex(rdev); } static u16 trinity_convert_voltage_index_to_value(struct radeon_device *rdev, u32 vid_2bit) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit); u32 svi_mode = (RREG32_SMC(PM_CONFIG) & SVI_Mode) ? 1 : 0; u32 step = (svi_mode == 0) ? 1250 : 625; u32 delta = vid_7bit * step + 50; if (delta > 155000) return 0; return (155000 - delta) / 100; } static void trinity_patch_boot_state(struct radeon_device *rdev, struct trinity_ps *ps) { struct trinity_power_info *pi = trinity_get_pi(rdev); ps->num_levels = 1; ps->nbps_flags = 0; ps->bapm_flags = 0; ps->levels[0] = pi->boot_pl; } static u8 trinity_calculate_vce_wm(struct radeon_device *rdev, u32 sclk) { if (sclk < 20000) return 1; return 0; } static void trinity_construct_boot_state(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); pi->boot_pl.sclk = pi->sys_info.bootup_sclk; pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index; pi->boot_pl.ds_divider_index = 0; pi->boot_pl.ss_divider_index = 0; pi->boot_pl.allow_gnb_slow = 1; pi->boot_pl.force_nbp_state = 0; pi->boot_pl.display_wm = 0; pi->boot_pl.vce_wm = 0; pi->current_ps.num_levels = 1; pi->current_ps.levels[0] = pi->boot_pl; } static u8 trinity_get_sleep_divider_id_from_clock(struct radeon_device *rdev, u32 sclk, u32 min_sclk_in_sr) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 i; u32 temp; u32 min = (min_sclk_in_sr > TRINITY_MINIMUM_ENGINE_CLOCK) ? min_sclk_in_sr : TRINITY_MINIMUM_ENGINE_CLOCK; if (sclk < min) return 0; if (!pi->enable_sclk_ds) return 0; for (i = TRINITY_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { temp = sclk / sumo_get_sleep_divider_from_id(i); if (temp >= min || i == 0) break; } return (u8)i; } static u32 trinity_get_valid_engine_clock(struct radeon_device *rdev, u32 lower_limit) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 i; for (i = 0; i < pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries; i++) { if (pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency >= lower_limit) return pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency; } if (i == pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries) DRM_ERROR("engine clock out of range!"); return 0; } static void trinity_patch_thermal_state(struct radeon_device *rdev, struct trinity_ps *ps, struct trinity_ps *current_ps) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ u32 current_vddc; u32 current_sclk; u32 current_index = 0; if (current_ps) { current_vddc = current_ps->levels[current_index].vddc_index; current_sclk = current_ps->levels[current_index].sclk; } else { current_vddc = pi->boot_pl.vddc_index; current_sclk = pi->boot_pl.sclk; } ps->levels[0].vddc_index = current_vddc; if (ps->levels[0].sclk > current_sclk) ps->levels[0].sclk = current_sclk; ps->levels[0].ds_divider_index = trinity_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, sclk_in_sr); ps->levels[0].ss_divider_index = ps->levels[0].ds_divider_index; ps->levels[0].allow_gnb_slow = 1; ps->levels[0].force_nbp_state = 0; ps->levels[0].display_wm = 0; ps->levels[0].vce_wm = trinity_calculate_vce_wm(rdev, ps->levels[0].sclk); } static u8 trinity_calculate_display_wm(struct radeon_device *rdev, struct trinity_ps *ps, u32 index) { if (ps == NULL || ps->num_levels <= 1) return 0; else if (ps->num_levels == 2) { if (index == 0) return 0; else return 1; } else { if (index == 0) return 0; else if (ps->levels[index].sclk < 30000) return 0; else return 1; } } static u32 trinity_get_uvd_clock_index(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 i = 0; for (i = 0; i < 4; i++) { if ((rps->vclk == pi->sys_info.uvd_clock_table_entries[i].vclk) && (rps->dclk == pi->sys_info.uvd_clock_table_entries[i].dclk)) break; } if (i >= 4) { DRM_ERROR("UVD clock index not found!\n"); i = 3; } return i; } static void trinity_adjust_uvd_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct trinity_ps *ps = trinity_get_ps(rps); struct trinity_power_info *pi = trinity_get_pi(rdev); u32 high_index = 0; u32 low_index = 0; if (pi->uvd_dpm && r600_is_uvd_state(rps->class, rps->class2)) { high_index = trinity_get_uvd_clock_index(rdev, rps); switch(high_index) { case 3: case 2: low_index = 1; break; case 1: case 0: default: low_index = 0; break; } ps->vclk_low_divider = pi->sys_info.uvd_clock_table_entries[high_index].vclk_did; ps->dclk_low_divider = pi->sys_info.uvd_clock_table_entries[high_index].dclk_did; ps->vclk_high_divider = pi->sys_info.uvd_clock_table_entries[low_index].vclk_did; ps->dclk_high_divider = pi->sys_info.uvd_clock_table_entries[low_index].dclk_did; } } static void trinity_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct trinity_ps *ps = trinity_get_ps(new_rps); struct trinity_ps *current_ps = trinity_get_ps(old_rps); struct trinity_power_info *pi = trinity_get_pi(rdev); u32 min_voltage = 0; /* ??? */ u32 min_sclk = pi->sys_info.min_sclk; /* XXX check against disp reqs */ u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ u32 i; bool force_high; u32 num_active_displays = rdev->pm.dpm.new_active_crtc_count; if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return trinity_patch_thermal_state(rdev, ps, current_ps); trinity_adjust_uvd_state(rdev, new_rps); for (i = 0; i < ps->num_levels; i++) { if (ps->levels[i].vddc_index < min_voltage) ps->levels[i].vddc_index = min_voltage; if (ps->levels[i].sclk < min_sclk) ps->levels[i].sclk = trinity_get_valid_engine_clock(rdev, min_sclk); ps->levels[i].ds_divider_index = sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, sclk_in_sr); ps->levels[i].ss_divider_index = ps->levels[i].ds_divider_index; ps->levels[i].allow_gnb_slow = 1; ps->levels[i].force_nbp_state = 0; ps->levels[i].display_wm = trinity_calculate_display_wm(rdev, ps, i); ps->levels[i].vce_wm = trinity_calculate_vce_wm(rdev, ps->levels[0].sclk); } if ((new_rps->class & (ATOM_PPLIB_CLASSIFICATION_HDSTATE | ATOM_PPLIB_CLASSIFICATION_SDSTATE)) || ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)) ps->bapm_flags |= TRINITY_POWERSTATE_FLAGS_BAPM_DISABLE; if (pi->sys_info.nb_dpm_enable) { ps->Dpm0PgNbPsLo = 0x1; ps->Dpm0PgNbPsHi = 0x0; ps->DpmXNbPsLo = 0x2; ps->DpmXNbPsHi = 0x1; if ((new_rps->class & (ATOM_PPLIB_CLASSIFICATION_HDSTATE | ATOM_PPLIB_CLASSIFICATION_SDSTATE)) || ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)) { force_high = ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) || ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) && (pi->sys_info.uma_channel_number == 1))); force_high = (num_active_displays >= 3) || force_high; ps->Dpm0PgNbPsLo = force_high ? 0x2 : 0x3; ps->Dpm0PgNbPsHi = 0x1; ps->DpmXNbPsLo = force_high ? 0x2 : 0x3; ps->DpmXNbPsHi = 0x2; ps->levels[ps->num_levels - 1].allow_gnb_slow = 0; } } } static void trinity_cleanup_asic(struct radeon_device *rdev) { sumo_take_smu_control(rdev, false); } #if 0 static void trinity_pre_display_configuration_change(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->voltage_drop_in_dce) trinity_dce_enable_voltage_adjustment(rdev, false); } #endif static void trinity_add_dccac_value(struct radeon_device *rdev) { u32 gpu_cac_avrg_cntl_window_size; u32 num_active_displays = rdev->pm.dpm.new_active_crtc_count; u64 disp_clk = rdev->clock.default_dispclk / 100; u32 dc_cac_value; gpu_cac_avrg_cntl_window_size = (RREG32_SMC(GPU_CAC_AVRG_CNTL) & WINDOW_SIZE_MASK) >> WINDOW_SIZE_SHIFT; dc_cac_value = (u32)((14213 * disp_clk * disp_clk * (u64)num_active_displays) >> (32 - gpu_cac_avrg_cntl_window_size)); WREG32_SMC(DC_CAC_VALUE, dc_cac_value); } void trinity_dpm_display_configuration_changed(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); if (pi->voltage_drop_in_dce) trinity_dce_enable_voltage_adjustment(rdev, true); trinity_add_dccac_value(rdev); } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void trinity_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { struct trinity_ps *ps = trinity_get_ps(rps); rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { rdev->pm.dpm.boot_ps = rps; trinity_patch_boot_state(rdev, ps); } if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void trinity_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct trinity_ps *ps = trinity_get_ps(rps); struct trinity_pl *pl = &ps->levels[index]; u32 sclk; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; pl->sclk = sclk; pl->vddc_index = clock_info->sumo.vddcIndex; ps->num_levels = index + 1; if (pi->enable_sclk_ds) { pl->ds_divider_index = 5; pl->ss_divider_index = 5; } } static int trinity_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct sumo_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) * state_array->ucNumEntries, GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); for (i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; if (!rdev->pm.power_state[i].clock_info) return -EINVAL; ps = kzalloc(sizeof(struct sumo_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (clock_array_index >= clock_info_array->ucNumEntries) continue; if (k >= SUMO_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); trinity_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], k, clock_info); k++; } trinity_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } rdev->pm.dpm.num_ps = state_array->ucNumEntries; return 0; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; }; static u32 trinity_convert_did_to_freq(struct radeon_device *rdev, u8 did) { struct trinity_power_info *pi = trinity_get_pi(rdev); u32 divider; if (did >= 8 && did <= 0x3f) divider = did * 25; else if (did > 0x3f && did <= 0x5f) divider = (did - 64) * 50 + 1600; else if (did > 0x5f && did <= 0x7e) divider = (did - 96) * 100 + 3200; else if (did == 0x7f) divider = 128 * 100; else return 10000; return ((pi->sys_info.dentist_vco_freq * 100) + (divider - 1)) / divider; } static int trinity_parse_sys_info_table(struct radeon_device *rdev) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; int i; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); if (crev != 7) { DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_7.ulBootUpEngineClock); pi->sys_info.min_sclk = le32_to_cpu(igp_info->info_7.ulMinEngineClock); pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_7.ulBootUpUMAClock); pi->sys_info.dentist_vco_freq = le32_to_cpu(igp_info->info_7.ulDentistVCOFreq); pi->sys_info.bootup_nb_voltage_index = le16_to_cpu(igp_info->info_7.usBootUpNBVoltage); if (igp_info->info_7.ucHtcTmpLmt == 0) pi->sys_info.htc_tmp_lmt = 203; else pi->sys_info.htc_tmp_lmt = igp_info->info_7.ucHtcTmpLmt; if (igp_info->info_7.ucHtcHystLmt == 0) pi->sys_info.htc_hyst_lmt = 5; else pi->sys_info.htc_hyst_lmt = igp_info->info_7.ucHtcHystLmt; if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) { DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n"); } if (pi->enable_nbps_policy) pi->sys_info.nb_dpm_enable = igp_info->info_7.ucNBDPMEnable; else pi->sys_info.nb_dpm_enable = 0; for (i = 0; i < TRINITY_NUM_NBPSTATES; i++) { pi->sys_info.nbp_mclk[i] = le32_to_cpu(igp_info->info_7.ulNbpStateMemclkFreq[i]); pi->sys_info.nbp_nclk[i] = le32_to_cpu(igp_info->info_7.ulNbpStateNClkFreq[i]); } pi->sys_info.nbp_voltage_index[0] = le16_to_cpu(igp_info->info_7.usNBP0Voltage); pi->sys_info.nbp_voltage_index[1] = le16_to_cpu(igp_info->info_7.usNBP1Voltage); pi->sys_info.nbp_voltage_index[2] = le16_to_cpu(igp_info->info_7.usNBP2Voltage); pi->sys_info.nbp_voltage_index[3] = le16_to_cpu(igp_info->info_7.usNBP3Voltage); if (!pi->sys_info.nb_dpm_enable) { for (i = 1; i < TRINITY_NUM_NBPSTATES; i++) { pi->sys_info.nbp_mclk[i] = pi->sys_info.nbp_mclk[0]; pi->sys_info.nbp_nclk[i] = pi->sys_info.nbp_nclk[0]; pi->sys_info.nbp_voltage_index[i] = pi->sys_info.nbp_voltage_index[0]; } } pi->sys_info.uma_channel_number = igp_info->info_7.ucUMAChannelNumber; sumo_construct_sclk_voltage_mapping_table(rdev, &pi->sys_info.sclk_voltage_mapping_table, igp_info->info_7.sAvail_SCLK); sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table, igp_info->info_7.sAvail_SCLK); pi->sys_info.uvd_clock_table_entries[0].vclk_did = igp_info->info_7.ucDPMState0VclkFid; pi->sys_info.uvd_clock_table_entries[1].vclk_did = igp_info->info_7.ucDPMState1VclkFid; pi->sys_info.uvd_clock_table_entries[2].vclk_did = igp_info->info_7.ucDPMState2VclkFid; pi->sys_info.uvd_clock_table_entries[3].vclk_did = igp_info->info_7.ucDPMState3VclkFid; pi->sys_info.uvd_clock_table_entries[0].dclk_did = igp_info->info_7.ucDPMState0DclkFid; pi->sys_info.uvd_clock_table_entries[1].dclk_did = igp_info->info_7.ucDPMState1DclkFid; pi->sys_info.uvd_clock_table_entries[2].dclk_did = igp_info->info_7.ucDPMState2DclkFid; pi->sys_info.uvd_clock_table_entries[3].dclk_did = igp_info->info_7.ucDPMState3DclkFid; for (i = 0; i < 4; i++) { pi->sys_info.uvd_clock_table_entries[i].vclk = trinity_convert_did_to_freq(rdev, pi->sys_info.uvd_clock_table_entries[i].vclk_did); pi->sys_info.uvd_clock_table_entries[i].dclk = trinity_convert_did_to_freq(rdev, pi->sys_info.uvd_clock_table_entries[i].dclk_did); } } return 0; } int trinity_dpm_init(struct radeon_device *rdev) { struct trinity_power_info *pi; int ret, i; pi = kzalloc(sizeof(struct trinity_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) pi->at[i] = TRINITY_AT_DFLT; pi->enable_bapm = false; pi->enable_nbps_policy = true; pi->enable_sclk_ds = true; pi->enable_gfx_power_gating = true; pi->enable_gfx_clock_gating = true; pi->enable_mg_clock_gating = false; pi->enable_gfx_dynamic_mgpg = false; pi->override_dynamic_mgpg = false; pi->enable_auto_thermal_throttling = true; pi->voltage_drop_in_dce = false; /* need to restructure dpm/modeset interaction */ pi->uvd_dpm = true; /* ??? */ ret = trinity_parse_sys_info_table(rdev); if (ret) return ret; trinity_construct_boot_state(rdev); ret = trinity_parse_power_table(rdev); if (ret) return ret; pi->thermal_auto_throttling = pi->sys_info.htc_tmp_lmt; pi->enable_dpm = true; return 0; } void trinity_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { int i; struct trinity_ps *ps = trinity_get_ps(rps); r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->num_levels; i++) { struct trinity_pl *pl = &ps->levels[i]; printk("\t\tpower level %d sclk: %u vddc: %u\n", i, pl->sclk, trinity_convert_voltage_index_to_value(rdev, pl->vddc_index)); } r600_dpm_print_ps_status(rdev, rps); } void trinity_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { struct radeon_ps *rps = rdev->pm.dpm.current_ps; struct trinity_ps *ps = trinity_get_ps(rps); struct trinity_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) >> CURRENT_STATE_SHIFT; if (current_index >= ps->num_levels) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { pl = &ps->levels[current_index]; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); seq_printf(m, "power level %d sclk: %u vddc: %u\n", current_index, pl->sclk, trinity_convert_voltage_index_to_value(rdev, pl->vddc_index)); } } void trinity_dpm_fini(struct radeon_device *rdev) { int i; trinity_cleanup_asic(rdev); /* ??? */ for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); } u32 trinity_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct trinity_power_info *pi = trinity_get_pi(rdev); struct trinity_ps *requested_state = trinity_get_ps(&pi->requested_rps); if (low) return requested_state->levels[0].sclk; else return requested_state->levels[requested_state->num_levels - 1].sclk; } u32 trinity_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct trinity_power_info *pi = trinity_get_pi(rdev); return pi->sys_info.bootup_uma_clk; }