/* i915_dma.c -- DMA support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "drm.h" #include "drm_crtc_helper.h" #include "drm_fb_helper.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include #include #include #include #include #include extern int intel_max_stolen; /* from AGP driver */ /** * Sets up the hardware status page for devices that need a physical address * in the register. */ static int i915_init_phys_hws(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; /* Program Hardware Status Page */ dev_priv->status_page_dmah = drm_pci_alloc(dev, PAGE_SIZE, PAGE_SIZE); if (!dev_priv->status_page_dmah) { DRM_ERROR("Can not allocate hardware status page\n"); return -ENOMEM; } dev_priv->render_ring.status_page.page_addr = dev_priv->status_page_dmah->vaddr; dev_priv->dma_status_page = dev_priv->status_page_dmah->busaddr; memset(dev_priv->render_ring.status_page.page_addr, 0, PAGE_SIZE); if (IS_I965G(dev)) dev_priv->dma_status_page |= (dev_priv->dma_status_page >> 28) & 0xf0; I915_WRITE(HWS_PGA, dev_priv->dma_status_page); DRM_DEBUG_DRIVER("Enabled hardware status page\n"); return 0; } /** * Frees the hardware status page, whether it's a physical address or a virtual * address set up by the X Server. */ static void i915_free_hws(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (dev_priv->status_page_dmah) { drm_pci_free(dev, dev_priv->status_page_dmah); dev_priv->status_page_dmah = NULL; } if (dev_priv->render_ring.status_page.gfx_addr) { dev_priv->render_ring.status_page.gfx_addr = 0; drm_core_ioremapfree(&dev_priv->hws_map, dev); } /* Need to rewrite hardware status page */ I915_WRITE(HWS_PGA, 0x1ffff000); } void i915_kernel_lost_context(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_master_private *master_priv; struct intel_ring_buffer *ring = &dev_priv->render_ring; /* * We should never lose context on the ring with modesetting * as we don't expose it to userspace */ if (drm_core_check_feature(dev, DRIVER_MODESET)) return; ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR; ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR; ring->space = ring->head - (ring->tail + 8); if (ring->space < 0) ring->space += ring->size; if (!dev->primary->master) return; master_priv = dev->primary->master->driver_priv; if (ring->head == ring->tail && master_priv->sarea_priv) master_priv->sarea_priv->perf_boxes |= I915_BOX_RING_EMPTY; } static int i915_dma_cleanup(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; /* Make sure interrupts are disabled here because the uninstall ioctl * may not have been called from userspace and after dev_private * is freed, it's too late. */ if (dev->irq_enabled) drm_irq_uninstall(dev); mutex_lock(&dev->struct_mutex); intel_cleanup_ring_buffer(dev, &dev_priv->render_ring); if (HAS_BSD(dev)) intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring); mutex_unlock(&dev->struct_mutex); /* Clear the HWS virtual address at teardown */ if (I915_NEED_GFX_HWS(dev)) i915_free_hws(dev); return 0; } static int i915_initialize(struct drm_device * dev, drm_i915_init_t * init) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; master_priv->sarea = drm_getsarea(dev); if (master_priv->sarea) { master_priv->sarea_priv = (drm_i915_sarea_t *) ((u8 *)master_priv->sarea->handle + init->sarea_priv_offset); } else { DRM_DEBUG_DRIVER("sarea not found assuming DRI2 userspace\n"); } if (init->ring_size != 0) { if (dev_priv->render_ring.gem_object != NULL) { i915_dma_cleanup(dev); DRM_ERROR("Client tried to initialize ringbuffer in " "GEM mode\n"); return -EINVAL; } dev_priv->render_ring.size = init->ring_size; dev_priv->render_ring.map.offset = init->ring_start; dev_priv->render_ring.map.size = init->ring_size; dev_priv->render_ring.map.type = 0; dev_priv->render_ring.map.flags = 0; dev_priv->render_ring.map.mtrr = 0; drm_core_ioremap_wc(&dev_priv->render_ring.map, dev); if (dev_priv->render_ring.map.handle == NULL) { i915_dma_cleanup(dev); DRM_ERROR("can not ioremap virtual address for" " ring buffer\n"); return -ENOMEM; } } dev_priv->render_ring.virtual_start = dev_priv->render_ring.map.handle; dev_priv->cpp = init->cpp; dev_priv->back_offset = init->back_offset; dev_priv->front_offset = init->front_offset; dev_priv->current_page = 0; if (master_priv->sarea_priv) master_priv->sarea_priv->pf_current_page = 0; /* Allow hardware batchbuffers unless told otherwise. */ dev_priv->allow_batchbuffer = 1; return 0; } static int i915_dma_resume(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct intel_ring_buffer *ring; DRM_DEBUG_DRIVER("%s\n", __func__); ring = &dev_priv->render_ring; if (ring->map.handle == NULL) { DRM_ERROR("can not ioremap virtual address for" " ring buffer\n"); return -ENOMEM; } /* Program Hardware Status Page */ if (!ring->status_page.page_addr) { DRM_ERROR("Can not find hardware status page\n"); return -EINVAL; } DRM_DEBUG_DRIVER("hw status page @ %p\n", ring->status_page.page_addr); if (ring->status_page.gfx_addr != 0) ring->setup_status_page(dev, ring); else I915_WRITE(HWS_PGA, dev_priv->dma_status_page); DRM_DEBUG_DRIVER("Enabled hardware status page\n"); return 0; } static int i915_dma_init(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_init_t *init = data; int retcode = 0; switch (init->func) { case I915_INIT_DMA: retcode = i915_initialize(dev, init); break; case I915_CLEANUP_DMA: retcode = i915_dma_cleanup(dev); break; case I915_RESUME_DMA: retcode = i915_dma_resume(dev); break; default: retcode = -EINVAL; break; } return retcode; } /* Implement basically the same security restrictions as hardware does * for MI_BATCH_NON_SECURE. These can be made stricter at any time. * * Most of the calculations below involve calculating the size of a * particular instruction. It's important to get the size right as * that tells us where the next instruction to check is. Any illegal * instruction detected will be given a size of zero, which is a * signal to abort the rest of the buffer. */ static int do_validate_cmd(int cmd) { switch (((cmd >> 29) & 0x7)) { case 0x0: switch ((cmd >> 23) & 0x3f) { case 0x0: return 1; /* MI_NOOP */ case 0x4: return 1; /* MI_FLUSH */ default: return 0; /* disallow everything else */ } break; case 0x1: return 0; /* reserved */ case 0x2: return (cmd & 0xff) + 2; /* 2d commands */ case 0x3: if (((cmd >> 24) & 0x1f) <= 0x18) return 1; switch ((cmd >> 24) & 0x1f) { case 0x1c: return 1; case 0x1d: switch ((cmd >> 16) & 0xff) { case 0x3: return (cmd & 0x1f) + 2; case 0x4: return (cmd & 0xf) + 2; default: return (cmd & 0xffff) + 2; } case 0x1e: if (cmd & (1 << 23)) return (cmd & 0xffff) + 1; else return 1; case 0x1f: if ((cmd & (1 << 23)) == 0) /* inline vertices */ return (cmd & 0x1ffff) + 2; else if (cmd & (1 << 17)) /* indirect random */ if ((cmd & 0xffff) == 0) return 0; /* unknown length, too hard */ else return (((cmd & 0xffff) + 1) / 2) + 1; else return 2; /* indirect sequential */ default: return 0; } default: return 0; } return 0; } static int validate_cmd(int cmd) { int ret = do_validate_cmd(cmd); /* printk("validate_cmd( %x ): %d\n", cmd, ret); */ return ret; } static int i915_emit_cmds(struct drm_device * dev, int *buffer, int dwords) { drm_i915_private_t *dev_priv = dev->dev_private; int i; if ((dwords+1) * sizeof(int) >= dev_priv->render_ring.size - 8) return -EINVAL; BEGIN_LP_RING((dwords+1)&~1); for (i = 0; i < dwords;) { int cmd, sz; cmd = buffer[i]; if ((sz = validate_cmd(cmd)) == 0 || i + sz > dwords) return -EINVAL; OUT_RING(cmd); while (++i, --sz) { OUT_RING(buffer[i]); } } if (dwords & 1) OUT_RING(0); ADVANCE_LP_RING(); return 0; } int i915_emit_box(struct drm_device *dev, struct drm_clip_rect *boxes, int i, int DR1, int DR4) { struct drm_clip_rect box = boxes[i]; if (box.y2 <= box.y1 || box.x2 <= box.x1 || box.y2 <= 0 || box.x2 <= 0) { DRM_ERROR("Bad box %d,%d..%d,%d\n", box.x1, box.y1, box.x2, box.y2); return -EINVAL; } if (IS_I965G(dev)) { BEGIN_LP_RING(4); OUT_RING(GFX_OP_DRAWRECT_INFO_I965); OUT_RING((box.x1 & 0xffff) | (box.y1 << 16)); OUT_RING(((box.x2 - 1) & 0xffff) | ((box.y2 - 1) << 16)); OUT_RING(DR4); ADVANCE_LP_RING(); } else { BEGIN_LP_RING(6); OUT_RING(GFX_OP_DRAWRECT_INFO); OUT_RING(DR1); OUT_RING((box.x1 & 0xffff) | (box.y1 << 16)); OUT_RING(((box.x2 - 1) & 0xffff) | ((box.y2 - 1) << 16)); OUT_RING(DR4); OUT_RING(0); ADVANCE_LP_RING(); } return 0; } /* XXX: Emitting the counter should really be moved to part of the IRQ * emit. For now, do it in both places: */ static void i915_emit_breadcrumb(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; dev_priv->counter++; if (dev_priv->counter > 0x7FFFFFFFUL) dev_priv->counter = 0; if (master_priv->sarea_priv) master_priv->sarea_priv->last_enqueue = dev_priv->counter; BEGIN_LP_RING(4); OUT_RING(MI_STORE_DWORD_INDEX); OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT); OUT_RING(dev_priv->counter); OUT_RING(0); ADVANCE_LP_RING(); } static int i915_dispatch_cmdbuffer(struct drm_device * dev, drm_i915_cmdbuffer_t *cmd, struct drm_clip_rect *cliprects, void *cmdbuf) { int nbox = cmd->num_cliprects; int i = 0, count, ret; if (cmd->sz & 0x3) { DRM_ERROR("alignment"); return -EINVAL; } i915_kernel_lost_context(dev); count = nbox ? nbox : 1; for (i = 0; i < count; i++) { if (i < nbox) { ret = i915_emit_box(dev, cliprects, i, cmd->DR1, cmd->DR4); if (ret) return ret; } ret = i915_emit_cmds(dev, cmdbuf, cmd->sz / 4); if (ret) return ret; } i915_emit_breadcrumb(dev); return 0; } static int i915_dispatch_batchbuffer(struct drm_device * dev, drm_i915_batchbuffer_t * batch, struct drm_clip_rect *cliprects) { int nbox = batch->num_cliprects; int i = 0, count; if ((batch->start | batch->used) & 0x7) { DRM_ERROR("alignment"); return -EINVAL; } i915_kernel_lost_context(dev); count = nbox ? nbox : 1; for (i = 0; i < count; i++) { if (i < nbox) { int ret = i915_emit_box(dev, cliprects, i, batch->DR1, batch->DR4); if (ret) return ret; } if (!IS_I830(dev) && !IS_845G(dev)) { BEGIN_LP_RING(2); if (IS_I965G(dev)) { OUT_RING(MI_BATCH_BUFFER_START | (2 << 6) | MI_BATCH_NON_SECURE_I965); OUT_RING(batch->start); } else { OUT_RING(MI_BATCH_BUFFER_START | (2 << 6)); OUT_RING(batch->start | MI_BATCH_NON_SECURE); } ADVANCE_LP_RING(); } else { BEGIN_LP_RING(4); OUT_RING(MI_BATCH_BUFFER); OUT_RING(batch->start | MI_BATCH_NON_SECURE); OUT_RING(batch->start + batch->used - 4); OUT_RING(0); ADVANCE_LP_RING(); } } if (IS_G4X(dev) || IS_IRONLAKE(dev)) { BEGIN_LP_RING(2); OUT_RING(MI_FLUSH | MI_NO_WRITE_FLUSH | MI_INVALIDATE_ISP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); } i915_emit_breadcrumb(dev); return 0; } static int i915_dispatch_flip(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return -EINVAL; DRM_DEBUG_DRIVER("%s: page=%d pfCurrentPage=%d\n", __func__, dev_priv->current_page, master_priv->sarea_priv->pf_current_page); i915_kernel_lost_context(dev); BEGIN_LP_RING(2); OUT_RING(MI_FLUSH | MI_READ_FLUSH); OUT_RING(0); ADVANCE_LP_RING(); BEGIN_LP_RING(6); OUT_RING(CMD_OP_DISPLAYBUFFER_INFO | ASYNC_FLIP); OUT_RING(0); if (dev_priv->current_page == 0) { OUT_RING(dev_priv->back_offset); dev_priv->current_page = 1; } else { OUT_RING(dev_priv->front_offset); dev_priv->current_page = 0; } OUT_RING(0); ADVANCE_LP_RING(); BEGIN_LP_RING(2); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_PLANE_A_FLIP); OUT_RING(0); ADVANCE_LP_RING(); master_priv->sarea_priv->last_enqueue = dev_priv->counter++; BEGIN_LP_RING(4); OUT_RING(MI_STORE_DWORD_INDEX); OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT); OUT_RING(dev_priv->counter); OUT_RING(0); ADVANCE_LP_RING(); master_priv->sarea_priv->pf_current_page = dev_priv->current_page; return 0; } static int i915_quiescent(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; i915_kernel_lost_context(dev); return intel_wait_ring_buffer(dev, &dev_priv->render_ring, dev_priv->render_ring.size - 8); } static int i915_flush_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret; RING_LOCK_TEST_WITH_RETURN(dev, file_priv); mutex_lock(&dev->struct_mutex); ret = i915_quiescent(dev); mutex_unlock(&dev->struct_mutex); return ret; } static int i915_batchbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; drm_i915_sarea_t *sarea_priv = (drm_i915_sarea_t *) master_priv->sarea_priv; drm_i915_batchbuffer_t *batch = data; int ret; struct drm_clip_rect *cliprects = NULL; if (!dev_priv->allow_batchbuffer) { DRM_ERROR("Batchbuffer ioctl disabled\n"); return -EINVAL; } DRM_DEBUG_DRIVER("i915 batchbuffer, start %x used %d cliprects %d\n", batch->start, batch->used, batch->num_cliprects); RING_LOCK_TEST_WITH_RETURN(dev, file_priv); if (batch->num_cliprects < 0) return -EINVAL; if (batch->num_cliprects) { cliprects = kcalloc(batch->num_cliprects, sizeof(struct drm_clip_rect), GFP_KERNEL); if (cliprects == NULL) return -ENOMEM; ret = copy_from_user(cliprects, batch->cliprects, batch->num_cliprects * sizeof(struct drm_clip_rect)); if (ret != 0) { ret = -EFAULT; goto fail_free; } } mutex_lock(&dev->struct_mutex); ret = i915_dispatch_batchbuffer(dev, batch, cliprects); mutex_unlock(&dev->struct_mutex); if (sarea_priv) sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); fail_free: kfree(cliprects); return ret; } static int i915_cmdbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; drm_i915_sarea_t *sarea_priv = (drm_i915_sarea_t *) master_priv->sarea_priv; drm_i915_cmdbuffer_t *cmdbuf = data; struct drm_clip_rect *cliprects = NULL; void *batch_data; int ret; DRM_DEBUG_DRIVER("i915 cmdbuffer, buf %p sz %d cliprects %d\n", cmdbuf->buf, cmdbuf->sz, cmdbuf->num_cliprects); RING_LOCK_TEST_WITH_RETURN(dev, file_priv); if (cmdbuf->num_cliprects < 0) return -EINVAL; batch_data = kmalloc(cmdbuf->sz, GFP_KERNEL); if (batch_data == NULL) return -ENOMEM; ret = copy_from_user(batch_data, cmdbuf->buf, cmdbuf->sz); if (ret != 0) { ret = -EFAULT; goto fail_batch_free; } if (cmdbuf->num_cliprects) { cliprects = kcalloc(cmdbuf->num_cliprects, sizeof(struct drm_clip_rect), GFP_KERNEL); if (cliprects == NULL) { ret = -ENOMEM; goto fail_batch_free; } ret = copy_from_user(cliprects, cmdbuf->cliprects, cmdbuf->num_cliprects * sizeof(struct drm_clip_rect)); if (ret != 0) { ret = -EFAULT; goto fail_clip_free; } } mutex_lock(&dev->struct_mutex); ret = i915_dispatch_cmdbuffer(dev, cmdbuf, cliprects, batch_data); mutex_unlock(&dev->struct_mutex); if (ret) { DRM_ERROR("i915_dispatch_cmdbuffer failed\n"); goto fail_clip_free; } if (sarea_priv) sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); fail_clip_free: kfree(cliprects); fail_batch_free: kfree(batch_data); return ret; } static int i915_flip_bufs(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret; DRM_DEBUG_DRIVER("%s\n", __func__); RING_LOCK_TEST_WITH_RETURN(dev, file_priv); mutex_lock(&dev->struct_mutex); ret = i915_dispatch_flip(dev); mutex_unlock(&dev->struct_mutex); return ret; } static int i915_getparam(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_getparam_t *param = data; int value; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } switch (param->param) { case I915_PARAM_IRQ_ACTIVE: value = dev->pdev->irq ? 1 : 0; break; case I915_PARAM_ALLOW_BATCHBUFFER: value = dev_priv->allow_batchbuffer ? 1 : 0; break; case I915_PARAM_LAST_DISPATCH: value = READ_BREADCRUMB(dev_priv); break; case I915_PARAM_CHIPSET_ID: value = dev->pci_device; break; case I915_PARAM_HAS_GEM: value = dev_priv->has_gem; break; case I915_PARAM_NUM_FENCES_AVAIL: value = dev_priv->num_fence_regs - dev_priv->fence_reg_start; break; case I915_PARAM_HAS_OVERLAY: value = dev_priv->overlay ? 1 : 0; break; case I915_PARAM_HAS_PAGEFLIPPING: value = 1; break; case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */ value = dev_priv->has_gem; break; case I915_PARAM_HAS_BSD: value = HAS_BSD(dev); break; default: DRM_DEBUG_DRIVER("Unknown parameter %d\n", param->param); return -EINVAL; } if (DRM_COPY_TO_USER(param->value, &value, sizeof(int))) { DRM_ERROR("DRM_COPY_TO_USER failed\n"); return -EFAULT; } return 0; } static int i915_setparam(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_setparam_t *param = data; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } switch (param->param) { case I915_SETPARAM_USE_MI_BATCHBUFFER_START: break; case I915_SETPARAM_TEX_LRU_LOG_GRANULARITY: dev_priv->tex_lru_log_granularity = param->value; break; case I915_SETPARAM_ALLOW_BATCHBUFFER: dev_priv->allow_batchbuffer = param->value; break; case I915_SETPARAM_NUM_USED_FENCES: if (param->value > dev_priv->num_fence_regs || param->value < 0) return -EINVAL; /* Userspace can use first N regs */ dev_priv->fence_reg_start = param->value; break; default: DRM_DEBUG_DRIVER("unknown parameter %d\n", param->param); return -EINVAL; } return 0; } static int i915_set_status_page(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_hws_addr_t *hws = data; struct intel_ring_buffer *ring = &dev_priv->render_ring; if (!I915_NEED_GFX_HWS(dev)) return -EINVAL; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } if (drm_core_check_feature(dev, DRIVER_MODESET)) { WARN(1, "tried to set status page when mode setting active\n"); return 0; } DRM_DEBUG_DRIVER("set status page addr 0x%08x\n", (u32)hws->addr); ring->status_page.gfx_addr = hws->addr & (0x1ffff<<12); dev_priv->hws_map.offset = dev->agp->base + hws->addr; dev_priv->hws_map.size = 4*1024; dev_priv->hws_map.type = 0; dev_priv->hws_map.flags = 0; dev_priv->hws_map.mtrr = 0; drm_core_ioremap_wc(&dev_priv->hws_map, dev); if (dev_priv->hws_map.handle == NULL) { i915_dma_cleanup(dev); ring->status_page.gfx_addr = 0; DRM_ERROR("can not ioremap virtual address for" " G33 hw status page\n"); return -ENOMEM; } ring->status_page.page_addr = dev_priv->hws_map.handle; memset(ring->status_page.page_addr, 0, PAGE_SIZE); I915_WRITE(HWS_PGA, ring->status_page.gfx_addr); DRM_DEBUG_DRIVER("load hws HWS_PGA with gfx mem 0x%x\n", ring->status_page.gfx_addr); DRM_DEBUG_DRIVER("load hws at %p\n", ring->status_page.page_addr); return 0; } static int i915_get_bridge_dev(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0,0)); if (!dev_priv->bridge_dev) { DRM_ERROR("bridge device not found\n"); return -1; } return 0; } #define MCHBAR_I915 0x44 #define MCHBAR_I965 0x48 #define MCHBAR_SIZE (4*4096) #define DEVEN_REG 0x54 #define DEVEN_MCHBAR_EN (1 << 28) /* Allocate space for the MCH regs if needed, return nonzero on error */ static int intel_alloc_mchbar_resource(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915; u32 temp_lo, temp_hi = 0; u64 mchbar_addr; int ret; if (IS_I965G(dev)) pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi); pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo); mchbar_addr = ((u64)temp_hi << 32) | temp_lo; /* If ACPI doesn't have it, assume we need to allocate it ourselves */ #ifdef CONFIG_PNP if (mchbar_addr && pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) return 0; #endif /* Get some space for it */ dev_priv->mch_res.name = "i915 MCHBAR"; dev_priv->mch_res.flags = IORESOURCE_MEM; ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus, &dev_priv->mch_res, MCHBAR_SIZE, MCHBAR_SIZE, PCIBIOS_MIN_MEM, 0, pcibios_align_resource, dev_priv->bridge_dev); if (ret) { DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret); dev_priv->mch_res.start = 0; return ret; } if (IS_I965G(dev)) pci_write_config_dword(dev_priv->bridge_dev, reg + 4, upper_32_bits(dev_priv->mch_res.start)); pci_write_config_dword(dev_priv->bridge_dev, reg, lower_32_bits(dev_priv->mch_res.start)); return 0; } /* Setup MCHBAR if possible, return true if we should disable it again */ static void intel_setup_mchbar(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915; u32 temp; bool enabled; dev_priv->mchbar_need_disable = false; if (IS_I915G(dev) || IS_I915GM(dev)) { pci_read_config_dword(dev_priv->bridge_dev, DEVEN_REG, &temp); enabled = !!(temp & DEVEN_MCHBAR_EN); } else { pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp); enabled = temp & 1; } /* If it's already enabled, don't have to do anything */ if (enabled) return; if (intel_alloc_mchbar_resource(dev)) return; dev_priv->mchbar_need_disable = true; /* Space is allocated or reserved, so enable it. */ if (IS_I915G(dev) || IS_I915GM(dev)) { pci_write_config_dword(dev_priv->bridge_dev, DEVEN_REG, temp | DEVEN_MCHBAR_EN); } else { pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp); pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1); } } static void intel_teardown_mchbar(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915; u32 temp; if (dev_priv->mchbar_need_disable) { if (IS_I915G(dev) || IS_I915GM(dev)) { pci_read_config_dword(dev_priv->bridge_dev, DEVEN_REG, &temp); temp &= ~DEVEN_MCHBAR_EN; pci_write_config_dword(dev_priv->bridge_dev, DEVEN_REG, temp); } else { pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp); temp &= ~1; pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp); } } if (dev_priv->mch_res.start) release_resource(&dev_priv->mch_res); } /** * i915_probe_agp - get AGP bootup configuration * @pdev: PCI device * @aperture_size: returns AGP aperture configured size * @preallocated_size: returns size of BIOS preallocated AGP space * * Since Intel integrated graphics are UMA, the BIOS has to set aside * some RAM for the framebuffer at early boot. This code figures out * how much was set aside so we can use it for our own purposes. */ static int i915_probe_agp(struct drm_device *dev, uint32_t *aperture_size, uint32_t *preallocated_size, uint32_t *start) { struct drm_i915_private *dev_priv = dev->dev_private; u16 tmp = 0; unsigned long overhead; unsigned long stolen; /* Get the fb aperture size and "stolen" memory amount. */ pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &tmp); *aperture_size = 1024 * 1024; *preallocated_size = 1024 * 1024; switch (dev->pdev->device) { case PCI_DEVICE_ID_INTEL_82830_CGC: case PCI_DEVICE_ID_INTEL_82845G_IG: case PCI_DEVICE_ID_INTEL_82855GM_IG: case PCI_DEVICE_ID_INTEL_82865_IG: if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) *aperture_size *= 64; else *aperture_size *= 128; break; default: /* 9xx supports large sizes, just look at the length */ *aperture_size = pci_resource_len(dev->pdev, 2); break; } /* * Some of the preallocated space is taken by the GTT * and popup. GTT is 1K per MB of aperture size, and popup is 4K. */ if (IS_G4X(dev) || IS_PINEVIEW(dev) || IS_IRONLAKE(dev) || IS_GEN6(dev)) overhead = 4096; else overhead = (*aperture_size / 1024) + 4096; if (IS_GEN6(dev)) { /* SNB has memory control reg at 0x50.w */ pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &tmp); switch (tmp & SNB_GMCH_GMS_STOLEN_MASK) { case INTEL_855_GMCH_GMS_DISABLED: DRM_ERROR("video memory is disabled\n"); return -1; case SNB_GMCH_GMS_STOLEN_32M: stolen = 32 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_64M: stolen = 64 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_96M: stolen = 96 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_128M: stolen = 128 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_160M: stolen = 160 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_192M: stolen = 192 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_224M: stolen = 224 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_256M: stolen = 256 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_288M: stolen = 288 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_320M: stolen = 320 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_352M: stolen = 352 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_384M: stolen = 384 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_416M: stolen = 416 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_448M: stolen = 448 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_480M: stolen = 480 * 1024 * 1024; break; case SNB_GMCH_GMS_STOLEN_512M: stolen = 512 * 1024 * 1024; break; default: DRM_ERROR("unexpected GMCH_GMS value: 0x%02x\n", tmp & SNB_GMCH_GMS_STOLEN_MASK); return -1; } } else { switch (tmp & INTEL_GMCH_GMS_MASK) { case INTEL_855_GMCH_GMS_DISABLED: DRM_ERROR("video memory is disabled\n"); return -1; case INTEL_855_GMCH_GMS_STOLEN_1M: stolen = 1 * 1024 * 1024; break; case INTEL_855_GMCH_GMS_STOLEN_4M: stolen = 4 * 1024 * 1024; break; case INTEL_855_GMCH_GMS_STOLEN_8M: stolen = 8 * 1024 * 1024; break; case INTEL_855_GMCH_GMS_STOLEN_16M: stolen = 16 * 1024 * 1024; break; case INTEL_855_GMCH_GMS_STOLEN_32M: stolen = 32 * 1024 * 1024; break; case INTEL_915G_GMCH_GMS_STOLEN_48M: stolen = 48 * 1024 * 1024; break; case INTEL_915G_GMCH_GMS_STOLEN_64M: stolen = 64 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_128M: stolen = 128 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_256M: stolen = 256 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_96M: stolen = 96 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_160M: stolen = 160 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_224M: stolen = 224 * 1024 * 1024; break; case INTEL_GMCH_GMS_STOLEN_352M: stolen = 352 * 1024 * 1024; break; default: DRM_ERROR("unexpected GMCH_GMS value: 0x%02x\n", tmp & INTEL_GMCH_GMS_MASK); return -1; } } *preallocated_size = stolen - overhead; *start = overhead; return 0; } #define PTE_ADDRESS_MASK 0xfffff000 #define PTE_ADDRESS_MASK_HIGH 0x000000f0 /* i915+ */ #define PTE_MAPPING_TYPE_UNCACHED (0 << 1) #define PTE_MAPPING_TYPE_DCACHE (1 << 1) /* i830 only */ #define PTE_MAPPING_TYPE_CACHED (3 << 1) #define PTE_MAPPING_TYPE_MASK (3 << 1) #define PTE_VALID (1 << 0) /** * i915_gtt_to_phys - take a GTT address and turn it into a physical one * @dev: drm device * @gtt_addr: address to translate * * Some chip functions require allocations from stolen space but need the * physical address of the memory in question. We use this routine * to get a physical address suitable for register programming from a given * GTT address. */ static unsigned long i915_gtt_to_phys(struct drm_device *dev, unsigned long gtt_addr) { unsigned long *gtt; unsigned long entry, phys; int gtt_bar = IS_I9XX(dev) ? 0 : 1; int gtt_offset, gtt_size; if (IS_I965G(dev)) { if (IS_G4X(dev) || IS_IRONLAKE(dev) || IS_GEN6(dev)) { gtt_offset = 2*1024*1024; gtt_size = 2*1024*1024; } else { gtt_offset = 512*1024; gtt_size = 512*1024; } } else { gtt_bar = 3; gtt_offset = 0; gtt_size = pci_resource_len(dev->pdev, gtt_bar); } gtt = ioremap_wc(pci_resource_start(dev->pdev, gtt_bar) + gtt_offset, gtt_size); if (!gtt) { DRM_ERROR("ioremap of GTT failed\n"); return 0; } entry = *(volatile u32 *)(gtt + (gtt_addr / 1024)); DRM_DEBUG_DRIVER("GTT addr: 0x%08lx, PTE: 0x%08lx\n", gtt_addr, entry); /* Mask out these reserved bits on this hardware. */ if (!IS_I9XX(dev) || IS_I915G(dev) || IS_I915GM(dev) || IS_I945G(dev) || IS_I945GM(dev)) { entry &= ~PTE_ADDRESS_MASK_HIGH; } /* If it's not a mapping type we know, then bail. */ if ((entry & PTE_MAPPING_TYPE_MASK) != PTE_MAPPING_TYPE_UNCACHED && (entry & PTE_MAPPING_TYPE_MASK) != PTE_MAPPING_TYPE_CACHED) { iounmap(gtt); return 0; } if (!(entry & PTE_VALID)) { DRM_ERROR("bad GTT entry in stolen space\n"); iounmap(gtt); return 0; } iounmap(gtt); phys =(entry & PTE_ADDRESS_MASK) | ((uint64_t)(entry & PTE_ADDRESS_MASK_HIGH) << (32 - 4)); DRM_DEBUG_DRIVER("GTT addr: 0x%08lx, phys addr: 0x%08lx\n", gtt_addr, phys); return phys; } static void i915_warn_stolen(struct drm_device *dev) { DRM_ERROR("not enough stolen space for compressed buffer, disabling\n"); DRM_ERROR("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n"); } static void i915_setup_compression(struct drm_device *dev, int size) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_mm_node *compressed_fb, *uninitialized_var(compressed_llb); unsigned long cfb_base; unsigned long ll_base = 0; /* Leave 1M for line length buffer & misc. */ compressed_fb = drm_mm_search_free(&dev_priv->vram, size, 4096, 0); if (!compressed_fb) { dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; i915_warn_stolen(dev); return; } compressed_fb = drm_mm_get_block(compressed_fb, size, 4096); if (!compressed_fb) { i915_warn_stolen(dev); dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; return; } cfb_base = i915_gtt_to_phys(dev, compressed_fb->start); if (!cfb_base) { DRM_ERROR("failed to get stolen phys addr, disabling FBC\n"); drm_mm_put_block(compressed_fb); } if (!(IS_GM45(dev) || IS_IRONLAKE_M(dev))) { compressed_llb = drm_mm_search_free(&dev_priv->vram, 4096, 4096, 0); if (!compressed_llb) { i915_warn_stolen(dev); return; } compressed_llb = drm_mm_get_block(compressed_llb, 4096, 4096); if (!compressed_llb) { i915_warn_stolen(dev); return; } ll_base = i915_gtt_to_phys(dev, compressed_llb->start); if (!ll_base) { DRM_ERROR("failed to get stolen phys addr, disabling FBC\n"); drm_mm_put_block(compressed_fb); drm_mm_put_block(compressed_llb); } } dev_priv->cfb_size = size; intel_disable_fbc(dev); dev_priv->compressed_fb = compressed_fb; if (IS_IRONLAKE_M(dev)) I915_WRITE(ILK_DPFC_CB_BASE, compressed_fb->start); else if (IS_GM45(dev)) { I915_WRITE(DPFC_CB_BASE, compressed_fb->start); } else { I915_WRITE(FBC_CFB_BASE, cfb_base); I915_WRITE(FBC_LL_BASE, ll_base); dev_priv->compressed_llb = compressed_llb; } DRM_DEBUG_KMS("FBC base 0x%08lx, ll base 0x%08lx, size %dM\n", cfb_base, ll_base, size >> 20); } static void i915_cleanup_compression(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; drm_mm_put_block(dev_priv->compressed_fb); if (dev_priv->compressed_llb) drm_mm_put_block(dev_priv->compressed_llb); } /* true = enable decode, false = disable decoder */ static unsigned int i915_vga_set_decode(void *cookie, bool state) { struct drm_device *dev = cookie; intel_modeset_vga_set_state(dev, state); if (state) return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM | VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; else return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; } static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state) { struct drm_device *dev = pci_get_drvdata(pdev); pm_message_t pmm = { .event = PM_EVENT_SUSPEND }; if (state == VGA_SWITCHEROO_ON) { printk(KERN_INFO "i915: switched on\n"); /* i915 resume handler doesn't set to D0 */ pci_set_power_state(dev->pdev, PCI_D0); i915_resume(dev); drm_kms_helper_poll_enable(dev); } else { printk(KERN_ERR "i915: switched off\n"); drm_kms_helper_poll_disable(dev); i915_suspend(dev, pmm); } } static bool i915_switcheroo_can_switch(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); bool can_switch; spin_lock(&dev->count_lock); can_switch = (dev->open_count == 0); spin_unlock(&dev->count_lock); return can_switch; } static int i915_load_modeset_init(struct drm_device *dev, unsigned long prealloc_start, unsigned long prealloc_size, unsigned long agp_size) { struct drm_i915_private *dev_priv = dev->dev_private; int fb_bar = IS_I9XX(dev) ? 2 : 0; int ret = 0; dev->mode_config.fb_base = pci_resource_start(dev->pdev, fb_bar) & 0xff000000; /* Basic memrange allocator for stolen space (aka vram) */ drm_mm_init(&dev_priv->vram, 0, prealloc_size); DRM_INFO("set up %ldM of stolen space\n", prealloc_size / (1024*1024)); /* We're off and running w/KMS */ dev_priv->mm.suspended = 0; /* Let GEM Manage from end of prealloc space to end of aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently * prefetches past the end of the object, and we've seen multiple * hangs with the GPU head pointer stuck in a batchbuffer bound * at the last page of the aperture. One page should be enough to * keep any prefetching inside of the aperture. */ i915_gem_do_init(dev, prealloc_size, agp_size - 4096); mutex_lock(&dev->struct_mutex); ret = i915_gem_init_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); if (ret) goto out; /* Try to set up FBC with a reasonable compressed buffer size */ if (I915_HAS_FBC(dev) && i915_powersave) { int cfb_size; /* Try to get an 8M buffer... */ if (prealloc_size > (9*1024*1024)) cfb_size = 8*1024*1024; else /* fall back to 7/8 of the stolen space */ cfb_size = prealloc_size * 7 / 8; i915_setup_compression(dev, cfb_size); } /* Allow hardware batchbuffers unless told otherwise. */ dev_priv->allow_batchbuffer = 1; ret = intel_init_bios(dev); if (ret) DRM_INFO("failed to find VBIOS tables\n"); /* if we have > 1 VGA cards, then disable the radeon VGA resources */ ret = vga_client_register(dev->pdev, dev, NULL, i915_vga_set_decode); if (ret) goto cleanup_ringbuffer; ret = vga_switcheroo_register_client(dev->pdev, i915_switcheroo_set_state, i915_switcheroo_can_switch); if (ret) goto cleanup_vga_client; /* IIR "flip pending" bit means done if this bit is set */ if (IS_GEN3(dev) && (I915_READ(ECOSKPD) & ECO_FLIP_DONE)) dev_priv->flip_pending_is_done = true; intel_modeset_init(dev); ret = drm_irq_install(dev); if (ret) goto cleanup_vga_switcheroo; /* Always safe in the mode setting case. */ /* FIXME: do pre/post-mode set stuff in core KMS code */ dev->vblank_disable_allowed = 1; /* * Initialize the hardware status page IRQ location. */ I915_WRITE(INSTPM, (1 << 5) | (1 << 21)); ret = intel_fbdev_init(dev); if (ret) goto cleanup_irq; drm_kms_helper_poll_init(dev); return 0; cleanup_irq: drm_irq_uninstall(dev); cleanup_vga_switcheroo: vga_switcheroo_unregister_client(dev->pdev); cleanup_vga_client: vga_client_register(dev->pdev, NULL, NULL, NULL); cleanup_ringbuffer: mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); out: return ret; } int i915_master_create(struct drm_device *dev, struct drm_master *master) { struct drm_i915_master_private *master_priv; master_priv = kzalloc(sizeof(*master_priv), GFP_KERNEL); if (!master_priv) return -ENOMEM; master->driver_priv = master_priv; return 0; } void i915_master_destroy(struct drm_device *dev, struct drm_master *master) { struct drm_i915_master_private *master_priv = master->driver_priv; if (!master_priv) return; kfree(master_priv); master->driver_priv = NULL; } static void i915_pineview_get_mem_freq(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 tmp; tmp = I915_READ(CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = I915_READ(CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void i915_ironlake_get_mem_freq(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u16 ddrpll, csipll; ddrpll = I915_READ16(DDRMPLL1); csipll = I915_READ16(CSIPLL0); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } dev_priv->r_t = dev_priv->mem_freq; switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } if (dev_priv->fsb_freq == 3200) { dev_priv->c_m = 0; } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { dev_priv->c_m = 1; } else { dev_priv->c_m = 2; } } struct v_table { u8 vid; unsigned long vd; /* in .1 mil */ unsigned long vm; /* in .1 mil */ u8 pvid; }; static struct v_table v_table[] = { { 0, 16125, 15000, 0x7f, }, { 1, 16000, 14875, 0x7e, }, { 2, 15875, 14750, 0x7d, }, { 3, 15750, 14625, 0x7c, }, { 4, 15625, 14500, 0x7b, }, { 5, 15500, 14375, 0x7a, }, { 6, 15375, 14250, 0x79, }, { 7, 15250, 14125, 0x78, }, { 8, 15125, 14000, 0x77, }, { 9, 15000, 13875, 0x76, }, { 10, 14875, 13750, 0x75, }, { 11, 14750, 13625, 0x74, }, { 12, 14625, 13500, 0x73, }, { 13, 14500, 13375, 0x72, }, { 14, 14375, 13250, 0x71, }, { 15, 14250, 13125, 0x70, }, { 16, 14125, 13000, 0x6f, }, { 17, 14000, 12875, 0x6e, }, { 18, 13875, 12750, 0x6d, }, { 19, 13750, 12625, 0x6c, }, { 20, 13625, 12500, 0x6b, }, { 21, 13500, 12375, 0x6a, }, { 22, 13375, 12250, 0x69, }, { 23, 13250, 12125, 0x68, }, { 24, 13125, 12000, 0x67, }, { 25, 13000, 11875, 0x66, }, { 26, 12875, 11750, 0x65, }, { 27, 12750, 11625, 0x64, }, { 28, 12625, 11500, 0x63, }, { 29, 12500, 11375, 0x62, }, { 30, 12375, 11250, 0x61, }, { 31, 12250, 11125, 0x60, }, { 32, 12125, 11000, 0x5f, }, { 33, 12000, 10875, 0x5e, }, { 34, 11875, 10750, 0x5d, }, { 35, 11750, 10625, 0x5c, }, { 36, 11625, 10500, 0x5b, }, { 37, 11500, 10375, 0x5a, }, { 38, 11375, 10250, 0x59, }, { 39, 11250, 10125, 0x58, }, { 40, 11125, 10000, 0x57, }, { 41, 11000, 9875, 0x56, }, { 42, 10875, 9750, 0x55, }, { 43, 10750, 9625, 0x54, }, { 44, 10625, 9500, 0x53, }, { 45, 10500, 9375, 0x52, }, { 46, 10375, 9250, 0x51, }, { 47, 10250, 9125, 0x50, }, { 48, 10125, 9000, 0x4f, }, { 49, 10000, 8875, 0x4e, }, { 50, 9875, 8750, 0x4d, }, { 51, 9750, 8625, 0x4c, }, { 52, 9625, 8500, 0x4b, }, { 53, 9500, 8375, 0x4a, }, { 54, 9375, 8250, 0x49, }, { 55, 9250, 8125, 0x48, }, { 56, 9125, 8000, 0x47, }, { 57, 9000, 7875, 0x46, }, { 58, 8875, 7750, 0x45, }, { 59, 8750, 7625, 0x44, }, { 60, 8625, 7500, 0x43, }, { 61, 8500, 7375, 0x42, }, { 62, 8375, 7250, 0x41, }, { 63, 8250, 7125, 0x40, }, { 64, 8125, 7000, 0x3f, }, { 65, 8000, 6875, 0x3e, }, { 66, 7875, 6750, 0x3d, }, { 67, 7750, 6625, 0x3c, }, { 68, 7625, 6500, 0x3b, }, { 69, 7500, 6375, 0x3a, }, { 70, 7375, 6250, 0x39, }, { 71, 7250, 6125, 0x38, }, { 72, 7125, 6000, 0x37, }, { 73, 7000, 5875, 0x36, }, { 74, 6875, 5750, 0x35, }, { 75, 6750, 5625, 0x34, }, { 76, 6625, 5500, 0x33, }, { 77, 6500, 5375, 0x32, }, { 78, 6375, 5250, 0x31, }, { 79, 6250, 5125, 0x30, }, { 80, 6125, 5000, 0x2f, }, { 81, 6000, 4875, 0x2e, }, { 82, 5875, 4750, 0x2d, }, { 83, 5750, 4625, 0x2c, }, { 84, 5625, 4500, 0x2b, }, { 85, 5500, 4375, 0x2a, }, { 86, 5375, 4250, 0x29, }, { 87, 5250, 4125, 0x28, }, { 88, 5125, 4000, 0x27, }, { 89, 5000, 3875, 0x26, }, { 90, 4875, 3750, 0x25, }, { 91, 4750, 3625, 0x24, }, { 92, 4625, 3500, 0x23, }, { 93, 4500, 3375, 0x22, }, { 94, 4375, 3250, 0x21, }, { 95, 4250, 3125, 0x20, }, { 96, 4125, 3000, 0x1f, }, { 97, 4125, 3000, 0x1e, }, { 98, 4125, 3000, 0x1d, }, { 99, 4125, 3000, 0x1c, }, { 100, 4125, 3000, 0x1b, }, { 101, 4125, 3000, 0x1a, }, { 102, 4125, 3000, 0x19, }, { 103, 4125, 3000, 0x18, }, { 104, 4125, 3000, 0x17, }, { 105, 4125, 3000, 0x16, }, { 106, 4125, 3000, 0x15, }, { 107, 4125, 3000, 0x14, }, { 108, 4125, 3000, 0x13, }, { 109, 4125, 3000, 0x12, }, { 110, 4125, 3000, 0x11, }, { 111, 4125, 3000, 0x10, }, { 112, 4125, 3000, 0x0f, }, { 113, 4125, 3000, 0x0e, }, { 114, 4125, 3000, 0x0d, }, { 115, 4125, 3000, 0x0c, }, { 116, 4125, 3000, 0x0b, }, { 117, 4125, 3000, 0x0a, }, { 118, 4125, 3000, 0x09, }, { 119, 4125, 3000, 0x08, }, { 120, 1125, 0, 0x07, }, { 121, 1000, 0, 0x06, }, { 122, 875, 0, 0x05, }, { 123, 750, 0, 0x04, }, { 124, 625, 0, 0x03, }, { 125, 500, 0, 0x02, }, { 126, 375, 0, 0x01, }, { 127, 0, 0, 0x00, }, }; struct cparams { int i; int t; int m; int c; }; static struct cparams cparams[] = { { 1, 1333, 301, 28664 }, { 1, 1066, 294, 24460 }, { 1, 800, 294, 25192 }, { 0, 1333, 276, 27605 }, { 0, 1066, 276, 27605 }, { 0, 800, 231, 23784 }, }; unsigned long i915_chipset_val(struct drm_i915_private *dev_priv) { u64 total_count, diff, ret; u32 count1, count2, count3, m = 0, c = 0; unsigned long now = jiffies_to_msecs(jiffies), diff1; int i; diff1 = now - dev_priv->last_time1; count1 = I915_READ(DMIEC); count2 = I915_READ(DDREC); count3 = I915_READ(CSIEC); total_count = count1 + count2 + count3; /* FIXME: handle per-counter overflow */ if (total_count < dev_priv->last_count1) { diff = ~0UL - dev_priv->last_count1; diff += total_count; } else { diff = total_count - dev_priv->last_count1; } for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == dev_priv->c_m && cparams[i].t == dev_priv->r_t) { m = cparams[i].m; c = cparams[i].c; break; } } div_u64(diff, diff1); ret = ((m * diff) + c); div_u64(ret, 10); dev_priv->last_count1 = total_count; dev_priv->last_time1 = now; return ret; } unsigned long i915_mch_val(struct drm_i915_private *dev_priv) { unsigned long m, x, b; u32 tsfs; tsfs = I915_READ(TSFS); m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); x = I915_READ8(TR1); b = tsfs & TSFS_INTR_MASK; return ((m * x) / 127) - b; } static unsigned long pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) { unsigned long val = 0; int i; for (i = 0; i < ARRAY_SIZE(v_table); i++) { if (v_table[i].pvid == pxvid) { if (IS_MOBILE(dev_priv->dev)) val = v_table[i].vm; else val = v_table[i].vd; } } return val; } void i915_update_gfx_val(struct drm_i915_private *dev_priv) { struct timespec now, diff1; u64 diff; unsigned long diffms; u32 count; getrawmonotonic(&now); diff1 = timespec_sub(now, dev_priv->last_time2); /* Don't divide by 0 */ diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000; if (!diffms) return; count = I915_READ(GFXEC); if (count < dev_priv->last_count2) { diff = ~0UL - dev_priv->last_count2; diff += count; } else { diff = count - dev_priv->last_count2; } dev_priv->last_count2 = count; dev_priv->last_time2 = now; /* More magic constants... */ diff = diff * 1181; div_u64(diff, diffms * 10); dev_priv->gfx_power = diff; } unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) { unsigned long t, corr, state1, corr2, state2; u32 pxvid, ext_v; pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(dev_priv, pxvid); state1 = ext_v; t = i915_mch_val(dev_priv); /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ if (t > 80) corr = ((t * 2349) + 135940); else if (t >= 50) corr = ((t * 964) + 29317); else /* < 50 */ corr = ((t * 301) + 1004); corr = corr * ((150142 * state1) / 10000 - 78642); corr /= 100000; corr2 = (corr * dev_priv->corr); state2 = (corr2 * state1) / 10000; state2 /= 100; /* convert to mW */ i915_update_gfx_val(dev_priv); return dev_priv->gfx_power + state2; } /* Global for IPS driver to get at the current i915 device */ static struct drm_i915_private *i915_mch_dev; /* * Lock protecting IPS related data structures * - i915_mch_dev * - dev_priv->max_delay * - dev_priv->min_delay * - dev_priv->fmax * - dev_priv->gpu_busy */ DEFINE_SPINLOCK(mchdev_lock); /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *dev_priv; unsigned long chipset_val, graphics_val, ret = 0; spin_lock(&mchdev_lock); if (!i915_mch_dev) goto out_unlock; dev_priv = i915_mch_dev; chipset_val = i915_chipset_val(dev_priv); graphics_val = i915_gfx_val(dev_priv); ret = chipset_val + graphics_val; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->max_delay > dev_priv->fmax) dev_priv->max_delay--; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->max_delay < dev_priv->min_delay) dev_priv->max_delay++; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { struct drm_i915_private *dev_priv; bool ret = false; spin_lock(&mchdev_lock); if (!i915_mch_dev) goto out_unlock; dev_priv = i915_mch_dev; ret = dev_priv->busy; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; dev_priv->max_delay = dev_priv->fstart; if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart)) ret = false; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); /** * i915_driver_load - setup chip and create an initial config * @dev: DRM device * @flags: startup flags * * The driver load routine has to do several things: * - drive output discovery via intel_modeset_init() * - initialize the memory manager * - allocate initial config memory * - setup the DRM framebuffer with the allocated memory */ int i915_driver_load(struct drm_device *dev, unsigned long flags) { struct drm_i915_private *dev_priv; resource_size_t base, size; int ret = 0, mmio_bar; uint32_t agp_size, prealloc_size, prealloc_start; /* i915 has 4 more counters */ dev->counters += 4; dev->types[6] = _DRM_STAT_IRQ; dev->types[7] = _DRM_STAT_PRIMARY; dev->types[8] = _DRM_STAT_SECONDARY; dev->types[9] = _DRM_STAT_DMA; dev_priv = kzalloc(sizeof(drm_i915_private_t), GFP_KERNEL); if (dev_priv == NULL) return -ENOMEM; dev->dev_private = (void *)dev_priv; dev_priv->dev = dev; dev_priv->info = (struct intel_device_info *) flags; /* Add register map (needed for suspend/resume) */ mmio_bar = IS_I9XX(dev) ? 0 : 1; base = pci_resource_start(dev->pdev, mmio_bar); size = pci_resource_len(dev->pdev, mmio_bar); if (i915_get_bridge_dev(dev)) { ret = -EIO; goto free_priv; } /* overlay on gen2 is broken and can't address above 1G */ if (IS_GEN2(dev)) dma_set_coherent_mask(&dev->pdev->dev, DMA_BIT_MASK(30)); dev_priv->regs = ioremap(base, size); if (!dev_priv->regs) { DRM_ERROR("failed to map registers\n"); ret = -EIO; goto put_bridge; } dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base, dev->agp->agp_info.aper_size * 1024*1024); if (dev_priv->mm.gtt_mapping == NULL) { ret = -EIO; goto out_rmmap; } /* Set up a WC MTRR for non-PAT systems. This is more common than * one would think, because the kernel disables PAT on first * generation Core chips because WC PAT gets overridden by a UC * MTRR if present. Even if a UC MTRR isn't present. */ dev_priv->mm.gtt_mtrr = mtrr_add(dev->agp->base, dev->agp->agp_info.aper_size * 1024 * 1024, MTRR_TYPE_WRCOMB, 1); if (dev_priv->mm.gtt_mtrr < 0) { DRM_INFO("MTRR allocation failed. Graphics " "performance may suffer.\n"); } ret = i915_probe_agp(dev, &agp_size, &prealloc_size, &prealloc_start); if (ret) goto out_iomapfree; if (prealloc_size > intel_max_stolen) { DRM_INFO("detected %dM stolen memory, trimming to %dM\n", prealloc_size >> 20, intel_max_stolen >> 20); prealloc_size = intel_max_stolen; } dev_priv->wq = create_singlethread_workqueue("i915"); if (dev_priv->wq == NULL) { DRM_ERROR("Failed to create our workqueue.\n"); ret = -ENOMEM; goto out_iomapfree; } /* enable GEM by default */ dev_priv->has_gem = 1; if (prealloc_size > agp_size * 3 / 4) { DRM_ERROR("Detected broken video BIOS with %d/%dkB of video " "memory stolen.\n", prealloc_size / 1024, agp_size / 1024); DRM_ERROR("Disabling GEM. (try reducing stolen memory or " "updating the BIOS to fix).\n"); dev_priv->has_gem = 0; } if (dev_priv->has_gem == 0 && drm_core_check_feature(dev, DRIVER_MODESET)) { DRM_ERROR("kernel modesetting requires GEM, disabling driver.\n"); ret = -ENODEV; goto out_iomapfree; } dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ if (IS_G4X(dev) || IS_IRONLAKE(dev) || IS_GEN6(dev)) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = gm45_get_vblank_counter; } /* Try to make sure MCHBAR is enabled before poking at it */ intel_setup_mchbar(dev); i915_gem_load(dev); /* Init HWS */ if (!I915_NEED_GFX_HWS(dev)) { ret = i915_init_phys_hws(dev); if (ret != 0) goto out_workqueue_free; } if (IS_PINEVIEW(dev)) i915_pineview_get_mem_freq(dev); else if (IS_IRONLAKE(dev)) i915_ironlake_get_mem_freq(dev); /* On the 945G/GM, the chipset reports the MSI capability on the * integrated graphics even though the support isn't actually there * according to the published specs. It doesn't appear to function * correctly in testing on 945G. * This may be a side effect of MSI having been made available for PEG * and the registers being closely associated. * * According to chipset errata, on the 965GM, MSI interrupts may * be lost or delayed, but we use them anyways to avoid * stuck interrupts on some machines. */ if (!IS_I945G(dev) && !IS_I945GM(dev)) pci_enable_msi(dev->pdev); spin_lock_init(&dev_priv->user_irq_lock); spin_lock_init(&dev_priv->error_lock); dev_priv->trace_irq_seqno = 0; ret = drm_vblank_init(dev, I915_NUM_PIPE); if (ret) { (void) i915_driver_unload(dev); return ret; } /* Start out suspended */ dev_priv->mm.suspended = 1; intel_detect_pch(dev); if (drm_core_check_feature(dev, DRIVER_MODESET)) { ret = i915_load_modeset_init(dev, prealloc_start, prealloc_size, agp_size); if (ret < 0) { DRM_ERROR("failed to init modeset\n"); goto out_workqueue_free; } } /* Must be done after probing outputs */ intel_opregion_init(dev, 0); setup_timer(&dev_priv->hangcheck_timer, i915_hangcheck_elapsed, (unsigned long) dev); spin_lock(&mchdev_lock); i915_mch_dev = dev_priv; dev_priv->mchdev_lock = &mchdev_lock; spin_unlock(&mchdev_lock); return 0; out_workqueue_free: destroy_workqueue(dev_priv->wq); out_iomapfree: io_mapping_free(dev_priv->mm.gtt_mapping); out_rmmap: iounmap(dev_priv->regs); put_bridge: pci_dev_put(dev_priv->bridge_dev); free_priv: kfree(dev_priv); return ret; } int i915_driver_unload(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; spin_lock(&mchdev_lock); i915_mch_dev = NULL; spin_unlock(&mchdev_lock); mutex_lock(&dev->struct_mutex); ret = i915_gpu_idle(dev); if (ret) DRM_ERROR("failed to idle hardware: %d\n", ret); mutex_unlock(&dev->struct_mutex); /* Cancel the retire work handler, which should be idle now. */ cancel_delayed_work_sync(&dev_priv->mm.retire_work); io_mapping_free(dev_priv->mm.gtt_mapping); if (dev_priv->mm.gtt_mtrr >= 0) { mtrr_del(dev_priv->mm.gtt_mtrr, dev->agp->base, dev->agp->agp_info.aper_size * 1024 * 1024); dev_priv->mm.gtt_mtrr = -1; } if (drm_core_check_feature(dev, DRIVER_MODESET)) { intel_modeset_cleanup(dev); /* * free the memory space allocated for the child device * config parsed from VBT */ if (dev_priv->child_dev && dev_priv->child_dev_num) { kfree(dev_priv->child_dev); dev_priv->child_dev = NULL; dev_priv->child_dev_num = 0; } vga_switcheroo_unregister_client(dev->pdev); vga_client_register(dev->pdev, NULL, NULL, NULL); } /* Free error state after interrupts are fully disabled. */ del_timer_sync(&dev_priv->hangcheck_timer); cancel_work_sync(&dev_priv->error_work); i915_destroy_error_state(dev); if (dev->pdev->msi_enabled) pci_disable_msi(dev->pdev); if (dev_priv->regs != NULL) iounmap(dev_priv->regs); intel_opregion_free(dev, 0); if (drm_core_check_feature(dev, DRIVER_MODESET)) { /* Flush any outstanding unpin_work. */ flush_workqueue(dev_priv->wq); i915_gem_free_all_phys_object(dev); mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); if (I915_HAS_FBC(dev) && i915_powersave) i915_cleanup_compression(dev); drm_mm_takedown(&dev_priv->vram); intel_cleanup_overlay(dev); } intel_teardown_mchbar(dev); destroy_workqueue(dev_priv->wq); pci_dev_put(dev_priv->bridge_dev); kfree(dev->dev_private); return 0; } int i915_driver_open(struct drm_device *dev, struct drm_file *file_priv) { struct drm_i915_file_private *i915_file_priv; DRM_DEBUG_DRIVER("\n"); i915_file_priv = (struct drm_i915_file_private *) kmalloc(sizeof(*i915_file_priv), GFP_KERNEL); if (!i915_file_priv) return -ENOMEM; file_priv->driver_priv = i915_file_priv; INIT_LIST_HEAD(&i915_file_priv->mm.request_list); return 0; } /** * i915_driver_lastclose - clean up after all DRM clients have exited * @dev: DRM device * * Take care of cleaning up after all DRM clients have exited. In the * mode setting case, we want to restore the kernel's initial mode (just * in case the last client left us in a bad state). * * Additionally, in the non-mode setting case, we'll tear down the AGP * and DMA structures, since the kernel won't be using them, and clea * up any GEM state. */ void i915_driver_lastclose(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (!dev_priv || drm_core_check_feature(dev, DRIVER_MODESET)) { drm_fb_helper_restore(); vga_switcheroo_process_delayed_switch(); return; } i915_gem_lastclose(dev); if (dev_priv->agp_heap) i915_mem_takedown(&(dev_priv->agp_heap)); i915_dma_cleanup(dev); } void i915_driver_preclose(struct drm_device * dev, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; i915_gem_release(dev, file_priv); if (!drm_core_check_feature(dev, DRIVER_MODESET)) i915_mem_release(dev, file_priv, dev_priv->agp_heap); } void i915_driver_postclose(struct drm_device *dev, struct drm_file *file_priv) { struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; kfree(i915_file_priv); } struct drm_ioctl_desc i915_ioctls[] = { DRM_IOCTL_DEF_DRV(I915_INIT, i915_dma_init, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_FLUSH, i915_flush_ioctl, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_FLIP, i915_flip_bufs, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, i915_batchbuffer, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, i915_irq_emit, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, i915_irq_wait, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_SETPARAM, i915_setparam, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_ALLOC, i915_mem_alloc, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_FREE, i915_mem_free, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, i915_mem_init_heap, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, i915_cmdbuffer, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, i915_mem_destroy_heap, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, i915_vblank_pipe_set, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, i915_vblank_pipe_get, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, i915_vblank_swap, DRM_AUTH), DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, i915_set_status_page, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY), DRM_IOCTL_DEF_DRV(I915_GEM_INIT, i915_gem_init_ioctl, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_unpin_ioctl, DRM_AUTH|DRM_ROOT_ONLY|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, i915_gem_entervt_ioctl, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, i915_gem_leavevt_ioctl, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image, DRM_MASTER|DRM_CONTROL_ALLOW|DRM_UNLOCKED), DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs, DRM_MASTER|DRM_CONTROL_ALLOW|DRM_UNLOCKED), }; int i915_max_ioctl = DRM_ARRAY_SIZE(i915_ioctls); /** * Determine if the device really is AGP or not. * * All Intel graphics chipsets are treated as AGP, even if they are really * PCI-e. * * \param dev The device to be tested. * * \returns * A value of 1 is always retured to indictate every i9x5 is AGP. */ int i915_driver_device_is_agp(struct drm_device * dev) { return 1; }