/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "drmP.h" #include "amdgpu.h" #include "amdgpu_ih.h" #include "amdgpu_gfx.h" #include "cikd.h" #include "cik.h" #include "cik_structs.h" #include "atom.h" #include "amdgpu_ucode.h" #include "clearstate_ci.h" #include "dce/dce_8_0_d.h" #include "dce/dce_8_0_sh_mask.h" #include "bif/bif_4_1_d.h" #include "bif/bif_4_1_sh_mask.h" #include "gca/gfx_7_0_d.h" #include "gca/gfx_7_2_enum.h" #include "gca/gfx_7_2_sh_mask.h" #include "gmc/gmc_7_0_d.h" #include "gmc/gmc_7_0_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" #define GFX7_NUM_GFX_RINGS 1 #define GFX7_MEC_HPD_SIZE 2048 static void gfx_v7_0_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v7_0_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v7_0_set_gds_init(struct amdgpu_device *adev); MODULE_FIRMWARE("radeon/bonaire_pfp.bin"); MODULE_FIRMWARE("radeon/bonaire_me.bin"); MODULE_FIRMWARE("radeon/bonaire_ce.bin"); MODULE_FIRMWARE("radeon/bonaire_rlc.bin"); MODULE_FIRMWARE("radeon/bonaire_mec.bin"); MODULE_FIRMWARE("radeon/hawaii_pfp.bin"); MODULE_FIRMWARE("radeon/hawaii_me.bin"); MODULE_FIRMWARE("radeon/hawaii_ce.bin"); MODULE_FIRMWARE("radeon/hawaii_rlc.bin"); MODULE_FIRMWARE("radeon/hawaii_mec.bin"); MODULE_FIRMWARE("radeon/kaveri_pfp.bin"); MODULE_FIRMWARE("radeon/kaveri_me.bin"); MODULE_FIRMWARE("radeon/kaveri_ce.bin"); MODULE_FIRMWARE("radeon/kaveri_rlc.bin"); MODULE_FIRMWARE("radeon/kaveri_mec.bin"); MODULE_FIRMWARE("radeon/kaveri_mec2.bin"); MODULE_FIRMWARE("radeon/kabini_pfp.bin"); MODULE_FIRMWARE("radeon/kabini_me.bin"); MODULE_FIRMWARE("radeon/kabini_ce.bin"); MODULE_FIRMWARE("radeon/kabini_rlc.bin"); MODULE_FIRMWARE("radeon/kabini_mec.bin"); MODULE_FIRMWARE("radeon/mullins_pfp.bin"); MODULE_FIRMWARE("radeon/mullins_me.bin"); MODULE_FIRMWARE("radeon/mullins_ce.bin"); MODULE_FIRMWARE("radeon/mullins_rlc.bin"); MODULE_FIRMWARE("radeon/mullins_mec.bin"); static const struct amdgpu_gds_reg_offset amdgpu_gds_reg_offset[] = { {mmGDS_VMID0_BASE, mmGDS_VMID0_SIZE, mmGDS_GWS_VMID0, mmGDS_OA_VMID0}, {mmGDS_VMID1_BASE, mmGDS_VMID1_SIZE, mmGDS_GWS_VMID1, mmGDS_OA_VMID1}, {mmGDS_VMID2_BASE, mmGDS_VMID2_SIZE, mmGDS_GWS_VMID2, mmGDS_OA_VMID2}, {mmGDS_VMID3_BASE, mmGDS_VMID3_SIZE, mmGDS_GWS_VMID3, mmGDS_OA_VMID3}, {mmGDS_VMID4_BASE, mmGDS_VMID4_SIZE, mmGDS_GWS_VMID4, mmGDS_OA_VMID4}, {mmGDS_VMID5_BASE, mmGDS_VMID5_SIZE, mmGDS_GWS_VMID5, mmGDS_OA_VMID5}, {mmGDS_VMID6_BASE, mmGDS_VMID6_SIZE, mmGDS_GWS_VMID6, mmGDS_OA_VMID6}, {mmGDS_VMID7_BASE, mmGDS_VMID7_SIZE, mmGDS_GWS_VMID7, mmGDS_OA_VMID7}, {mmGDS_VMID8_BASE, mmGDS_VMID8_SIZE, mmGDS_GWS_VMID8, mmGDS_OA_VMID8}, {mmGDS_VMID9_BASE, mmGDS_VMID9_SIZE, mmGDS_GWS_VMID9, mmGDS_OA_VMID9}, {mmGDS_VMID10_BASE, mmGDS_VMID10_SIZE, mmGDS_GWS_VMID10, mmGDS_OA_VMID10}, {mmGDS_VMID11_BASE, mmGDS_VMID11_SIZE, mmGDS_GWS_VMID11, mmGDS_OA_VMID11}, {mmGDS_VMID12_BASE, mmGDS_VMID12_SIZE, mmGDS_GWS_VMID12, mmGDS_OA_VMID12}, {mmGDS_VMID13_BASE, mmGDS_VMID13_SIZE, mmGDS_GWS_VMID13, mmGDS_OA_VMID13}, {mmGDS_VMID14_BASE, mmGDS_VMID14_SIZE, mmGDS_GWS_VMID14, mmGDS_OA_VMID14}, {mmGDS_VMID15_BASE, mmGDS_VMID15_SIZE, mmGDS_GWS_VMID15, mmGDS_OA_VMID15} }; static const u32 spectre_rlc_save_restore_register_list[] = { (0x0e00 << 16) | (0xc12c >> 2), 0x00000000, (0x0e00 << 16) | (0xc140 >> 2), 0x00000000, (0x0e00 << 16) | (0xc150 >> 2), 0x00000000, (0x0e00 << 16) | (0xc15c >> 2), 0x00000000, (0x0e00 << 16) | (0xc168 >> 2), 0x00000000, (0x0e00 << 16) | (0xc170 >> 2), 0x00000000, (0x0e00 << 16) | (0xc178 >> 2), 0x00000000, (0x0e00 << 16) | (0xc204 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2bc >> 2), 0x00000000, (0x0e00 << 16) | (0xc2c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8228 >> 2), 0x00000000, (0x0e00 << 16) | (0x829c >> 2), 0x00000000, (0x0e00 << 16) | (0x869c >> 2), 0x00000000, (0x0600 << 16) | (0x98f4 >> 2), 0x00000000, (0x0e00 << 16) | (0x98f8 >> 2), 0x00000000, (0x0e00 << 16) | (0x9900 >> 2), 0x00000000, (0x0e00 << 16) | (0xc260 >> 2), 0x00000000, (0x0e00 << 16) | (0x90e8 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c000 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c00c >> 2), 0x00000000, (0x0e00 << 16) | (0x8c1c >> 2), 0x00000000, (0x0e00 << 16) | (0x9700 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x4e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x5e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x6e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x7e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x8e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x9e00 << 16) | (0xcd20 >> 2), 0x00000000, (0xae00 << 16) | (0xcd20 >> 2), 0x00000000, (0xbe00 << 16) | (0xcd20 >> 2), 0x00000000, (0x0e00 << 16) | (0x89bc >> 2), 0x00000000, (0x0e00 << 16) | (0x8900 >> 2), 0x00000000, 0x3, (0x0e00 << 16) | (0xc130 >> 2), 0x00000000, (0x0e00 << 16) | (0xc134 >> 2), 0x00000000, (0x0e00 << 16) | (0xc1fc >> 2), 0x00000000, (0x0e00 << 16) | (0xc208 >> 2), 0x00000000, (0x0e00 << 16) | (0xc264 >> 2), 0x00000000, (0x0e00 << 16) | (0xc268 >> 2), 0x00000000, (0x0e00 << 16) | (0xc26c >> 2), 0x00000000, (0x0e00 << 16) | (0xc270 >> 2), 0x00000000, (0x0e00 << 16) | (0xc274 >> 2), 0x00000000, (0x0e00 << 16) | (0xc278 >> 2), 0x00000000, (0x0e00 << 16) | (0xc27c >> 2), 0x00000000, (0x0e00 << 16) | (0xc280 >> 2), 0x00000000, (0x0e00 << 16) | (0xc284 >> 2), 0x00000000, (0x0e00 << 16) | (0xc288 >> 2), 0x00000000, (0x0e00 << 16) | (0xc28c >> 2), 0x00000000, (0x0e00 << 16) | (0xc290 >> 2), 0x00000000, (0x0e00 << 16) | (0xc294 >> 2), 0x00000000, (0x0e00 << 16) | (0xc298 >> 2), 0x00000000, (0x0e00 << 16) | (0xc29c >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a0 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2ac >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x301d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30238 >> 2), 0x00000000, (0x0e00 << 16) | (0x30250 >> 2), 0x00000000, (0x0e00 << 16) | (0x30254 >> 2), 0x00000000, (0x0e00 << 16) | (0x30258 >> 2), 0x00000000, (0x0e00 << 16) | (0x3025c >> 2), 0x00000000, (0x4e00 << 16) | (0xc900 >> 2), 0x00000000, (0x5e00 << 16) | (0xc900 >> 2), 0x00000000, (0x6e00 << 16) | (0xc900 >> 2), 0x00000000, (0x7e00 << 16) | (0xc900 >> 2), 0x00000000, (0x8e00 << 16) | (0xc900 >> 2), 0x00000000, (0x9e00 << 16) | (0xc900 >> 2), 0x00000000, (0xae00 << 16) | (0xc900 >> 2), 0x00000000, (0xbe00 << 16) | (0xc900 >> 2), 0x00000000, (0x4e00 << 16) | (0xc904 >> 2), 0x00000000, (0x5e00 << 16) | (0xc904 >> 2), 0x00000000, (0x6e00 << 16) | (0xc904 >> 2), 0x00000000, (0x7e00 << 16) | (0xc904 >> 2), 0x00000000, (0x8e00 << 16) | (0xc904 >> 2), 0x00000000, (0x9e00 << 16) | (0xc904 >> 2), 0x00000000, (0xae00 << 16) | (0xc904 >> 2), 0x00000000, (0xbe00 << 16) | (0xc904 >> 2), 0x00000000, (0x4e00 << 16) | (0xc908 >> 2), 0x00000000, (0x5e00 << 16) | (0xc908 >> 2), 0x00000000, (0x6e00 << 16) | (0xc908 >> 2), 0x00000000, (0x7e00 << 16) | (0xc908 >> 2), 0x00000000, (0x8e00 << 16) | (0xc908 >> 2), 0x00000000, (0x9e00 << 16) | (0xc908 >> 2), 0x00000000, (0xae00 << 16) | (0xc908 >> 2), 0x00000000, (0xbe00 << 16) | (0xc908 >> 2), 0x00000000, (0x4e00 << 16) | (0xc90c >> 2), 0x00000000, (0x5e00 << 16) | (0xc90c >> 2), 0x00000000, (0x6e00 << 16) | (0xc90c >> 2), 0x00000000, (0x7e00 << 16) | (0xc90c >> 2), 0x00000000, (0x8e00 << 16) | (0xc90c >> 2), 0x00000000, (0x9e00 << 16) | (0xc90c >> 2), 0x00000000, (0xae00 << 16) | (0xc90c >> 2), 0x00000000, (0xbe00 << 16) | (0xc90c >> 2), 0x00000000, (0x4e00 << 16) | (0xc910 >> 2), 0x00000000, (0x5e00 << 16) | (0xc910 >> 2), 0x00000000, (0x6e00 << 16) | (0xc910 >> 2), 0x00000000, (0x7e00 << 16) | (0xc910 >> 2), 0x00000000, (0x8e00 << 16) | (0xc910 >> 2), 0x00000000, (0x9e00 << 16) | (0xc910 >> 2), 0x00000000, (0xae00 << 16) | (0xc910 >> 2), 0x00000000, (0xbe00 << 16) | (0xc910 >> 2), 0x00000000, (0x0e00 << 16) | (0xc99c >> 2), 0x00000000, (0x0e00 << 16) | (0x9834 >> 2), 0x00000000, (0x0000 << 16) | (0x30f00 >> 2), 0x00000000, (0x0001 << 16) | (0x30f00 >> 2), 0x00000000, (0x0000 << 16) | (0x30f04 >> 2), 0x00000000, (0x0001 << 16) | (0x30f04 >> 2), 0x00000000, (0x0000 << 16) | (0x30f08 >> 2), 0x00000000, (0x0001 << 16) | (0x30f08 >> 2), 0x00000000, (0x0000 << 16) | (0x30f0c >> 2), 0x00000000, (0x0001 << 16) | (0x30f0c >> 2), 0x00000000, (0x0600 << 16) | (0x9b7c >> 2), 0x00000000, (0x0e00 << 16) | (0x8a14 >> 2), 0x00000000, (0x0e00 << 16) | (0x8a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bf0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bcc >> 2), 0x00000000, (0x0e00 << 16) | (0x8b24 >> 2), 0x00000000, (0x0e00 << 16) | (0x30a04 >> 2), 0x00000000, (0x0600 << 16) | (0x30a10 >> 2), 0x00000000, (0x0600 << 16) | (0x30a14 >> 2), 0x00000000, (0x0600 << 16) | (0x30a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a2c >> 2), 0x00000000, (0x0e00 << 16) | (0xc700 >> 2), 0x00000000, (0x0e00 << 16) | (0xc704 >> 2), 0x00000000, (0x0e00 << 16) | (0xc708 >> 2), 0x00000000, (0x0e00 << 16) | (0xc768 >> 2), 0x00000000, (0x0400 << 16) | (0xc770 >> 2), 0x00000000, (0x0400 << 16) | (0xc774 >> 2), 0x00000000, (0x0400 << 16) | (0xc778 >> 2), 0x00000000, (0x0400 << 16) | (0xc77c >> 2), 0x00000000, (0x0400 << 16) | (0xc780 >> 2), 0x00000000, (0x0400 << 16) | (0xc784 >> 2), 0x00000000, (0x0400 << 16) | (0xc788 >> 2), 0x00000000, (0x0400 << 16) | (0xc78c >> 2), 0x00000000, (0x0400 << 16) | (0xc798 >> 2), 0x00000000, (0x0400 << 16) | (0xc79c >> 2), 0x00000000, (0x0400 << 16) | (0xc7a0 >> 2), 0x00000000, (0x0400 << 16) | (0xc7a4 >> 2), 0x00000000, (0x0400 << 16) | (0xc7a8 >> 2), 0x00000000, (0x0400 << 16) | (0xc7ac >> 2), 0x00000000, (0x0400 << 16) | (0xc7b0 >> 2), 0x00000000, (0x0400 << 16) | (0xc7b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x9100 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c010 >> 2), 0x00000000, (0x0e00 << 16) | (0x92a8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92ac >> 2), 0x00000000, (0x0e00 << 16) | (0x92b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x92b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92bc >> 2), 0x00000000, (0x0e00 << 16) | (0x92c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x92c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x92c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92cc >> 2), 0x00000000, (0x0e00 << 16) | (0x92d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c04 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c20 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c38 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c3c >> 2), 0x00000000, (0x0e00 << 16) | (0xae00 >> 2), 0x00000000, (0x0e00 << 16) | (0x9604 >> 2), 0x00000000, (0x0e00 << 16) | (0xac08 >> 2), 0x00000000, (0x0e00 << 16) | (0xac0c >> 2), 0x00000000, (0x0e00 << 16) | (0xac10 >> 2), 0x00000000, (0x0e00 << 16) | (0xac14 >> 2), 0x00000000, (0x0e00 << 16) | (0xac58 >> 2), 0x00000000, (0x0e00 << 16) | (0xac68 >> 2), 0x00000000, (0x0e00 << 16) | (0xac6c >> 2), 0x00000000, (0x0e00 << 16) | (0xac70 >> 2), 0x00000000, (0x0e00 << 16) | (0xac74 >> 2), 0x00000000, (0x0e00 << 16) | (0xac78 >> 2), 0x00000000, (0x0e00 << 16) | (0xac7c >> 2), 0x00000000, (0x0e00 << 16) | (0xac80 >> 2), 0x00000000, (0x0e00 << 16) | (0xac84 >> 2), 0x00000000, (0x0e00 << 16) | (0xac88 >> 2), 0x00000000, (0x0e00 << 16) | (0xac8c >> 2), 0x00000000, (0x0e00 << 16) | (0x970c >> 2), 0x00000000, (0x0e00 << 16) | (0x9714 >> 2), 0x00000000, (0x0e00 << 16) | (0x9718 >> 2), 0x00000000, (0x0e00 << 16) | (0x971c >> 2), 0x00000000, (0x0e00 << 16) | (0x31068 >> 2), 0x00000000, (0x4e00 << 16) | (0x31068 >> 2), 0x00000000, (0x5e00 << 16) | (0x31068 >> 2), 0x00000000, (0x6e00 << 16) | (0x31068 >> 2), 0x00000000, (0x7e00 << 16) | (0x31068 >> 2), 0x00000000, (0x8e00 << 16) | (0x31068 >> 2), 0x00000000, (0x9e00 << 16) | (0x31068 >> 2), 0x00000000, (0xae00 << 16) | (0x31068 >> 2), 0x00000000, (0xbe00 << 16) | (0x31068 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd10 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd14 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88bc >> 2), 0x00000000, (0x0400 << 16) | (0x89c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d8 >> 2), 0x00000000, (0x0e00 << 16) | (0x8980 >> 2), 0x00000000, (0x0e00 << 16) | (0x30938 >> 2), 0x00000000, (0x0e00 << 16) | (0x3093c >> 2), 0x00000000, (0x0e00 << 16) | (0x30940 >> 2), 0x00000000, (0x0e00 << 16) | (0x89a0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30900 >> 2), 0x00000000, (0x0e00 << 16) | (0x30904 >> 2), 0x00000000, (0x0e00 << 16) | (0x89b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c210 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c214 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c218 >> 2), 0x00000000, (0x0e00 << 16) | (0x8904 >> 2), 0x00000000, 0x5, (0x0e00 << 16) | (0x8c28 >> 2), (0x0e00 << 16) | (0x8c2c >> 2), (0x0e00 << 16) | (0x8c30 >> 2), (0x0e00 << 16) | (0x8c34 >> 2), (0x0e00 << 16) | (0x9600 >> 2), }; static const u32 kalindi_rlc_save_restore_register_list[] = { (0x0e00 << 16) | (0xc12c >> 2), 0x00000000, (0x0e00 << 16) | (0xc140 >> 2), 0x00000000, (0x0e00 << 16) | (0xc150 >> 2), 0x00000000, (0x0e00 << 16) | (0xc15c >> 2), 0x00000000, (0x0e00 << 16) | (0xc168 >> 2), 0x00000000, (0x0e00 << 16) | (0xc170 >> 2), 0x00000000, (0x0e00 << 16) | (0xc204 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2bc >> 2), 0x00000000, (0x0e00 << 16) | (0xc2c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8228 >> 2), 0x00000000, (0x0e00 << 16) | (0x829c >> 2), 0x00000000, (0x0e00 << 16) | (0x869c >> 2), 0x00000000, (0x0600 << 16) | (0x98f4 >> 2), 0x00000000, (0x0e00 << 16) | (0x98f8 >> 2), 0x00000000, (0x0e00 << 16) | (0x9900 >> 2), 0x00000000, (0x0e00 << 16) | (0xc260 >> 2), 0x00000000, (0x0e00 << 16) | (0x90e8 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c000 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c00c >> 2), 0x00000000, (0x0e00 << 16) | (0x8c1c >> 2), 0x00000000, (0x0e00 << 16) | (0x9700 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x4e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x5e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x6e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x7e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x0e00 << 16) | (0x89bc >> 2), 0x00000000, (0x0e00 << 16) | (0x8900 >> 2), 0x00000000, 0x3, (0x0e00 << 16) | (0xc130 >> 2), 0x00000000, (0x0e00 << 16) | (0xc134 >> 2), 0x00000000, (0x0e00 << 16) | (0xc1fc >> 2), 0x00000000, (0x0e00 << 16) | (0xc208 >> 2), 0x00000000, (0x0e00 << 16) | (0xc264 >> 2), 0x00000000, (0x0e00 << 16) | (0xc268 >> 2), 0x00000000, (0x0e00 << 16) | (0xc26c >> 2), 0x00000000, (0x0e00 << 16) | (0xc270 >> 2), 0x00000000, (0x0e00 << 16) | (0xc274 >> 2), 0x00000000, (0x0e00 << 16) | (0xc28c >> 2), 0x00000000, (0x0e00 << 16) | (0xc290 >> 2), 0x00000000, (0x0e00 << 16) | (0xc294 >> 2), 0x00000000, (0x0e00 << 16) | (0xc298 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a0 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2ac >> 2), 0x00000000, (0x0e00 << 16) | (0x301d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30238 >> 2), 0x00000000, (0x0e00 << 16) | (0x30250 >> 2), 0x00000000, (0x0e00 << 16) | (0x30254 >> 2), 0x00000000, (0x0e00 << 16) | (0x30258 >> 2), 0x00000000, (0x0e00 << 16) | (0x3025c >> 2), 0x00000000, (0x4e00 << 16) | (0xc900 >> 2), 0x00000000, (0x5e00 << 16) | (0xc900 >> 2), 0x00000000, (0x6e00 << 16) | (0xc900 >> 2), 0x00000000, (0x7e00 << 16) | (0xc900 >> 2), 0x00000000, (0x4e00 << 16) | (0xc904 >> 2), 0x00000000, (0x5e00 << 16) | (0xc904 >> 2), 0x00000000, (0x6e00 << 16) | (0xc904 >> 2), 0x00000000, (0x7e00 << 16) | (0xc904 >> 2), 0x00000000, (0x4e00 << 16) | (0xc908 >> 2), 0x00000000, (0x5e00 << 16) | (0xc908 >> 2), 0x00000000, (0x6e00 << 16) | (0xc908 >> 2), 0x00000000, (0x7e00 << 16) | (0xc908 >> 2), 0x00000000, (0x4e00 << 16) | (0xc90c >> 2), 0x00000000, (0x5e00 << 16) | (0xc90c >> 2), 0x00000000, (0x6e00 << 16) | (0xc90c >> 2), 0x00000000, (0x7e00 << 16) | (0xc90c >> 2), 0x00000000, (0x4e00 << 16) | (0xc910 >> 2), 0x00000000, (0x5e00 << 16) | (0xc910 >> 2), 0x00000000, (0x6e00 << 16) | (0xc910 >> 2), 0x00000000, (0x7e00 << 16) | (0xc910 >> 2), 0x00000000, (0x0e00 << 16) | (0xc99c >> 2), 0x00000000, (0x0e00 << 16) | (0x9834 >> 2), 0x00000000, (0x0000 << 16) | (0x30f00 >> 2), 0x00000000, (0x0000 << 16) | (0x30f04 >> 2), 0x00000000, (0x0000 << 16) | (0x30f08 >> 2), 0x00000000, (0x0000 << 16) | (0x30f0c >> 2), 0x00000000, (0x0600 << 16) | (0x9b7c >> 2), 0x00000000, (0x0e00 << 16) | (0x8a14 >> 2), 0x00000000, (0x0e00 << 16) | (0x8a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bf0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bcc >> 2), 0x00000000, (0x0e00 << 16) | (0x8b24 >> 2), 0x00000000, (0x0e00 << 16) | (0x30a04 >> 2), 0x00000000, (0x0600 << 16) | (0x30a10 >> 2), 0x00000000, (0x0600 << 16) | (0x30a14 >> 2), 0x00000000, (0x0600 << 16) | (0x30a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a2c >> 2), 0x00000000, (0x0e00 << 16) | (0xc700 >> 2), 0x00000000, (0x0e00 << 16) | (0xc704 >> 2), 0x00000000, (0x0e00 << 16) | (0xc708 >> 2), 0x00000000, (0x0e00 << 16) | (0xc768 >> 2), 0x00000000, (0x0400 << 16) | (0xc770 >> 2), 0x00000000, (0x0400 << 16) | (0xc774 >> 2), 0x00000000, (0x0400 << 16) | (0xc798 >> 2), 0x00000000, (0x0400 << 16) | (0xc79c >> 2), 0x00000000, (0x0e00 << 16) | (0x9100 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c010 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c04 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c20 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c38 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c3c >> 2), 0x00000000, (0x0e00 << 16) | (0xae00 >> 2), 0x00000000, (0x0e00 << 16) | (0x9604 >> 2), 0x00000000, (0x0e00 << 16) | (0xac08 >> 2), 0x00000000, (0x0e00 << 16) | (0xac0c >> 2), 0x00000000, (0x0e00 << 16) | (0xac10 >> 2), 0x00000000, (0x0e00 << 16) | (0xac14 >> 2), 0x00000000, (0x0e00 << 16) | (0xac58 >> 2), 0x00000000, (0x0e00 << 16) | (0xac68 >> 2), 0x00000000, (0x0e00 << 16) | (0xac6c >> 2), 0x00000000, (0x0e00 << 16) | (0xac70 >> 2), 0x00000000, (0x0e00 << 16) | (0xac74 >> 2), 0x00000000, (0x0e00 << 16) | (0xac78 >> 2), 0x00000000, (0x0e00 << 16) | (0xac7c >> 2), 0x00000000, (0x0e00 << 16) | (0xac80 >> 2), 0x00000000, (0x0e00 << 16) | (0xac84 >> 2), 0x00000000, (0x0e00 << 16) | (0xac88 >> 2), 0x00000000, (0x0e00 << 16) | (0xac8c >> 2), 0x00000000, (0x0e00 << 16) | (0x970c >> 2), 0x00000000, (0x0e00 << 16) | (0x9714 >> 2), 0x00000000, (0x0e00 << 16) | (0x9718 >> 2), 0x00000000, (0x0e00 << 16) | (0x971c >> 2), 0x00000000, (0x0e00 << 16) | (0x31068 >> 2), 0x00000000, (0x4e00 << 16) | (0x31068 >> 2), 0x00000000, (0x5e00 << 16) | (0x31068 >> 2), 0x00000000, (0x6e00 << 16) | (0x31068 >> 2), 0x00000000, (0x7e00 << 16) | (0x31068 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd10 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd14 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88bc >> 2), 0x00000000, (0x0400 << 16) | (0x89c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d8 >> 2), 0x00000000, (0x0e00 << 16) | (0x8980 >> 2), 0x00000000, (0x0e00 << 16) | (0x30938 >> 2), 0x00000000, (0x0e00 << 16) | (0x3093c >> 2), 0x00000000, (0x0e00 << 16) | (0x30940 >> 2), 0x00000000, (0x0e00 << 16) | (0x89a0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30900 >> 2), 0x00000000, (0x0e00 << 16) | (0x30904 >> 2), 0x00000000, (0x0e00 << 16) | (0x89b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x3e1fc >> 2), 0x00000000, (0x0e00 << 16) | (0x3c210 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c214 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c218 >> 2), 0x00000000, (0x0e00 << 16) | (0x8904 >> 2), 0x00000000, 0x5, (0x0e00 << 16) | (0x8c28 >> 2), (0x0e00 << 16) | (0x8c2c >> 2), (0x0e00 << 16) | (0x8c30 >> 2), (0x0e00 << 16) | (0x8c34 >> 2), (0x0e00 << 16) | (0x9600 >> 2), }; static u32 gfx_v7_0_get_csb_size(struct amdgpu_device *adev); static void gfx_v7_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer); static void gfx_v7_0_init_cp_pg_table(struct amdgpu_device *adev); static void gfx_v7_0_init_pg(struct amdgpu_device *adev); static void gfx_v7_0_get_cu_info(struct amdgpu_device *adev); /* * Core functions */ /** * gfx_v7_0_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int gfx_v7_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_BONAIRE: chip_name = "bonaire"; break; case CHIP_HAWAII: chip_name = "hawaii"; break; case CHIP_KAVERI: chip_name = "kaveri"; break; case CHIP_KABINI: chip_name = "kabini"; break; case CHIP_MULLINS: chip_name = "mullins"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.pfp_fw); if (err) goto out; snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.me_fw); if (err) goto out; snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.ce_fw); if (err) goto out; snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name); err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.mec_fw); if (err) goto out; if (adev->asic_type == CHIP_KAVERI) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec2.bin", chip_name); err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.mec2_fw); if (err) goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name); err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.rlc_fw); out: if (err) { pr_err("gfx7: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->gfx.pfp_fw); adev->gfx.pfp_fw = NULL; release_firmware(adev->gfx.me_fw); adev->gfx.me_fw = NULL; release_firmware(adev->gfx.ce_fw); adev->gfx.ce_fw = NULL; release_firmware(adev->gfx.mec_fw); adev->gfx.mec_fw = NULL; release_firmware(adev->gfx.mec2_fw); adev->gfx.mec2_fw = NULL; release_firmware(adev->gfx.rlc_fw); adev->gfx.rlc_fw = NULL; } return err; } static void gfx_v7_0_free_microcode(struct amdgpu_device *adev) { release_firmware(adev->gfx.pfp_fw); adev->gfx.pfp_fw = NULL; release_firmware(adev->gfx.me_fw); adev->gfx.me_fw = NULL; release_firmware(adev->gfx.ce_fw); adev->gfx.ce_fw = NULL; release_firmware(adev->gfx.mec_fw); adev->gfx.mec_fw = NULL; release_firmware(adev->gfx.mec2_fw); adev->gfx.mec2_fw = NULL; release_firmware(adev->gfx.rlc_fw); adev->gfx.rlc_fw = NULL; } /** * gfx_v7_0_tiling_mode_table_init - init the hw tiling table * * @adev: amdgpu_device pointer * * Starting with SI, the tiling setup is done globally in a * set of 32 tiling modes. Rather than selecting each set of * parameters per surface as on older asics, we just select * which index in the tiling table we want to use, and the * surface uses those parameters (CIK). */ static void gfx_v7_0_tiling_mode_table_init(struct amdgpu_device *adev) { const u32 num_tile_mode_states = ARRAY_SIZE(adev->gfx.config.tile_mode_array); const u32 num_secondary_tile_mode_states = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); u32 reg_offset, split_equal_to_row_size; uint32_t *tile, *macrotile; tile = adev->gfx.config.tile_mode_array; macrotile = adev->gfx.config.macrotile_mode_array; switch (adev->gfx.config.mem_row_size_in_kb) { case 1: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; break; case 2: default: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; break; case 4: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; break; } for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) tile[reg_offset] = 0; for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) macrotile[reg_offset] = 0; switch (adev->asic_type) { case CHIP_BONAIRE: tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[7] = (TILE_SPLIT(split_equal_to_row_size)); tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P4_16x16)); tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[12] = (TILE_SPLIT(split_equal_to_row_size)); tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[17] = (TILE_SPLIT(split_equal_to_row_size)); tile[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); tile[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[23] = (TILE_SPLIT(split_equal_to_row_size)); tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); tile[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[30] = (TILE_SPLIT(split_equal_to_row_size)); macrotile[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); macrotile[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, tile[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, macrotile[reg_offset]); break; case CHIP_HAWAII: tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16)); tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[12] = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING)); tile[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); tile[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); macrotile[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); macrotile[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); macrotile[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, tile[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, macrotile[reg_offset]); break; case CHIP_KABINI: case CHIP_KAVERI: case CHIP_MULLINS: default: tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); tile[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | TILE_SPLIT(split_equal_to_row_size)); tile[7] = (TILE_SPLIT(split_equal_to_row_size)); tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P2)); tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[12] = (TILE_SPLIT(split_equal_to_row_size)); tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[17] = (TILE_SPLIT(split_equal_to_row_size)); tile[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING)); tile[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[23] = (TILE_SPLIT(split_equal_to_row_size)); tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); tile[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); tile[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); tile[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); tile[30] = (TILE_SPLIT(split_equal_to_row_size)); macrotile[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); macrotile[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); macrotile[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, tile[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, macrotile[reg_offset]); break; } } /** * gfx_v7_0_select_se_sh - select which SE, SH to address * * @adev: amdgpu_device pointer * @se_num: shader engine to address * @sh_num: sh block to address * * Select which SE, SH combinations to address. Certain * registers are instanced per SE or SH. 0xffffffff means * broadcast to all SEs or SHs (CIK). */ static void gfx_v7_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance) { u32 data; if (instance == 0xffffffff) data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance); if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) data |= GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK; else if (se_num == 0xffffffff) data |= GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK | (sh_num << GRBM_GFX_INDEX__SH_INDEX__SHIFT); else if (sh_num == 0xffffffff) data |= GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | (se_num << GRBM_GFX_INDEX__SE_INDEX__SHIFT); else data |= (sh_num << GRBM_GFX_INDEX__SH_INDEX__SHIFT) | (se_num << GRBM_GFX_INDEX__SE_INDEX__SHIFT); WREG32(mmGRBM_GFX_INDEX, data); } /** * gfx_v7_0_get_rb_active_bitmap - computes the mask of enabled RBs * * @adev: amdgpu_device pointer * * Calculates the bitmask of enabled RBs (CIK). * Returns the enabled RB bitmask. */ static u32 gfx_v7_0_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32(mmCC_RB_BACKEND_DISABLE); data |= RREG32(mmGC_USER_RB_BACKEND_DISABLE); data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK; data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT; mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se); return (~data) & mask; } static void gfx_v7_0_raster_config(struct amdgpu_device *adev, u32 *rconf, u32 *rconf1) { switch (adev->asic_type) { case CHIP_BONAIRE: *rconf |= RB_MAP_PKR0(2) | RB_XSEL2(1) | SE_MAP(2) | SE_XSEL(1) | SE_YSEL(1); *rconf1 |= 0x0; break; case CHIP_HAWAII: *rconf |= RB_MAP_PKR0(2) | RB_MAP_PKR1(2) | RB_XSEL2(1) | PKR_MAP(2) | PKR_XSEL(1) | PKR_YSEL(1) | SE_MAP(2) | SE_XSEL(2) | SE_YSEL(3); *rconf1 |= SE_PAIR_MAP(2) | SE_PAIR_XSEL(3) | SE_PAIR_YSEL(2); break; case CHIP_KAVERI: *rconf |= RB_MAP_PKR0(2); *rconf1 |= 0x0; break; case CHIP_KABINI: case CHIP_MULLINS: *rconf |= 0x0; *rconf1 |= 0x0; break; default: DRM_ERROR("unknown asic: 0x%x\n", adev->asic_type); break; } } static void gfx_v7_0_write_harvested_raster_configs(struct amdgpu_device *adev, u32 raster_config, u32 raster_config_1, unsigned rb_mask, unsigned num_rb) { unsigned sh_per_se = max_t(unsigned, adev->gfx.config.max_sh_per_se, 1); unsigned num_se = max_t(unsigned, adev->gfx.config.max_shader_engines, 1); unsigned rb_per_pkr = min_t(unsigned, num_rb / num_se / sh_per_se, 2); unsigned rb_per_se = num_rb / num_se; unsigned se_mask[4]; unsigned se; se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask; se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask; se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask; se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask; WARN_ON(!(num_se == 1 || num_se == 2 || num_se == 4)); WARN_ON(!(sh_per_se == 1 || sh_per_se == 2)); WARN_ON(!(rb_per_pkr == 1 || rb_per_pkr == 2)); if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) || (!se_mask[2] && !se_mask[3]))) { raster_config_1 &= ~SE_PAIR_MAP_MASK; if (!se_mask[0] && !se_mask[1]) { raster_config_1 |= SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_3); } else { raster_config_1 |= SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_0); } } for (se = 0; se < num_se; se++) { unsigned raster_config_se = raster_config; unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se); unsigned pkr1_mask = pkr0_mask << rb_per_pkr; int idx = (se / 2) * 2; if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) { raster_config_se &= ~SE_MAP_MASK; if (!se_mask[idx]) { raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_3); } else { raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_0); } } pkr0_mask &= rb_mask; pkr1_mask &= rb_mask; if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) { raster_config_se &= ~PKR_MAP_MASK; if (!pkr0_mask) { raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_3); } else { raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_0); } } if (rb_per_se >= 2) { unsigned rb0_mask = 1 << (se * rb_per_se); unsigned rb1_mask = rb0_mask << 1; rb0_mask &= rb_mask; rb1_mask &= rb_mask; if (!rb0_mask || !rb1_mask) { raster_config_se &= ~RB_MAP_PKR0_MASK; if (!rb0_mask) { raster_config_se |= RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_3); } else { raster_config_se |= RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_0); } } if (rb_per_se > 2) { rb0_mask = 1 << (se * rb_per_se + rb_per_pkr); rb1_mask = rb0_mask << 1; rb0_mask &= rb_mask; rb1_mask &= rb_mask; if (!rb0_mask || !rb1_mask) { raster_config_se &= ~RB_MAP_PKR1_MASK; if (!rb0_mask) { raster_config_se |= RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_3); } else { raster_config_se |= RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_0); } } } } /* GRBM_GFX_INDEX has a different offset on CI+ */ gfx_v7_0_select_se_sh(adev, se, 0xffffffff, 0xffffffff); WREG32(mmPA_SC_RASTER_CONFIG, raster_config_se); WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1); } /* GRBM_GFX_INDEX has a different offset on CI+ */ gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); } /** * gfx_v7_0_setup_rb - setup the RBs on the asic * * @adev: amdgpu_device pointer * @se_num: number of SEs (shader engines) for the asic * @sh_per_se: number of SH blocks per SE for the asic * * Configures per-SE/SH RB registers (CIK). */ static void gfx_v7_0_setup_rb(struct amdgpu_device *adev) { int i, j; u32 data; u32 raster_config = 0, raster_config_1 = 0; u32 active_rbs = 0; u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; unsigned num_rb_pipes; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v7_0_select_se_sh(adev, i, j, 0xffffffff); data = gfx_v7_0_get_rb_active_bitmap(adev); active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) * rb_bitmap_width_per_sh); } } gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); adev->gfx.config.backend_enable_mask = active_rbs; adev->gfx.config.num_rbs = hweight32(active_rbs); num_rb_pipes = min_t(unsigned, adev->gfx.config.max_backends_per_se * adev->gfx.config.max_shader_engines, 16); gfx_v7_0_raster_config(adev, &raster_config, &raster_config_1); if (!adev->gfx.config.backend_enable_mask || adev->gfx.config.num_rbs >= num_rb_pipes) { WREG32(mmPA_SC_RASTER_CONFIG, raster_config); WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1); } else { gfx_v7_0_write_harvested_raster_configs(adev, raster_config, raster_config_1, adev->gfx.config.backend_enable_mask, num_rb_pipes); } mutex_unlock(&adev->grbm_idx_mutex); } /** * gmc_v7_0_init_compute_vmid - gart enable * * @adev: amdgpu_device pointer * * Initialize compute vmid sh_mem registers * */ #define DEFAULT_SH_MEM_BASES (0x6000) #define FIRST_COMPUTE_VMID (8) #define LAST_COMPUTE_VMID (16) static void gmc_v7_0_init_compute_vmid(struct amdgpu_device *adev) { int i; uint32_t sh_mem_config; uint32_t sh_mem_bases; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16); sh_mem_config = SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT; sh_mem_config |= MTYPE_NONCACHED << SH_MEM_CONFIG__DEFAULT_MTYPE__SHIFT; mutex_lock(&adev->srbm_mutex); for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) { cik_srbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32(mmSH_MEM_CONFIG, sh_mem_config); WREG32(mmSH_MEM_APE1_BASE, 1); WREG32(mmSH_MEM_APE1_LIMIT, 0); WREG32(mmSH_MEM_BASES, sh_mem_bases); } cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static void gfx_v7_0_config_init(struct amdgpu_device *adev) { adev->gfx.config.double_offchip_lds_buf = 1; } /** * gfx_v7_0_gpu_init - setup the 3D engine * * @adev: amdgpu_device pointer * * Configures the 3D engine and tiling configuration * registers so that the 3D engine is usable. */ static void gfx_v7_0_gpu_init(struct amdgpu_device *adev) { u32 sh_mem_cfg, sh_static_mem_cfg, sh_mem_base; u32 tmp; int i; WREG32(mmGRBM_CNTL, (0xff << GRBM_CNTL__READ_TIMEOUT__SHIFT)); WREG32(mmGB_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmHDP_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmDMIF_ADDR_CALC, adev->gfx.config.gb_addr_config); gfx_v7_0_tiling_mode_table_init(adev); gfx_v7_0_setup_rb(adev); gfx_v7_0_get_cu_info(adev); gfx_v7_0_config_init(adev); /* set HW defaults for 3D engine */ WREG32(mmCP_MEQ_THRESHOLDS, (0x30 << CP_MEQ_THRESHOLDS__MEQ1_START__SHIFT) | (0x60 << CP_MEQ_THRESHOLDS__MEQ2_START__SHIFT)); mutex_lock(&adev->grbm_idx_mutex); /* * making sure that the following register writes will be broadcasted * to all the shaders */ gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ sh_mem_cfg = REG_SET_FIELD(0, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); sh_mem_cfg = REG_SET_FIELD(sh_mem_cfg, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_NC); sh_mem_cfg = REG_SET_FIELD(sh_mem_cfg, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC); sh_mem_cfg = REG_SET_FIELD(sh_mem_cfg, SH_MEM_CONFIG, PRIVATE_ATC, 0); sh_static_mem_cfg = REG_SET_FIELD(0, SH_STATIC_MEM_CONFIG, SWIZZLE_ENABLE, 1); sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG, ELEMENT_SIZE, 1); sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG, INDEX_STRIDE, 3); mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->vm_manager.id_mgr[0].num_ids; i++) { if (i == 0) sh_mem_base = 0; else sh_mem_base = adev->mc.shared_aperture_start >> 48; cik_srbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32(mmSH_MEM_CONFIG, sh_mem_cfg); WREG32(mmSH_MEM_APE1_BASE, 1); WREG32(mmSH_MEM_APE1_LIMIT, 0); WREG32(mmSH_MEM_BASES, sh_mem_base); WREG32(mmSH_STATIC_MEM_CONFIG, sh_static_mem_cfg); } cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); gmc_v7_0_init_compute_vmid(adev); WREG32(mmSX_DEBUG_1, 0x20); WREG32(mmTA_CNTL_AUX, 0x00010000); tmp = RREG32(mmSPI_CONFIG_CNTL); tmp |= 0x03000000; WREG32(mmSPI_CONFIG_CNTL, tmp); WREG32(mmSQ_CONFIG, 1); WREG32(mmDB_DEBUG, 0); tmp = RREG32(mmDB_DEBUG2) & ~0xf00fffff; tmp |= 0x00000400; WREG32(mmDB_DEBUG2, tmp); tmp = RREG32(mmDB_DEBUG3) & ~0x0002021c; tmp |= 0x00020200; WREG32(mmDB_DEBUG3, tmp); tmp = RREG32(mmCB_HW_CONTROL) & ~0x00010000; tmp |= 0x00018208; WREG32(mmCB_HW_CONTROL, tmp); WREG32(mmSPI_CONFIG_CNTL_1, (4 << SPI_CONFIG_CNTL_1__VTX_DONE_DELAY__SHIFT)); WREG32(mmPA_SC_FIFO_SIZE, ((adev->gfx.config.sc_prim_fifo_size_frontend << PA_SC_FIFO_SIZE__SC_FRONTEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_prim_fifo_size_backend << PA_SC_FIFO_SIZE__SC_BACKEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_hiz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_HIZ_TILE_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_earlyz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_EARLYZ_TILE_FIFO_SIZE__SHIFT))); WREG32(mmVGT_NUM_INSTANCES, 1); WREG32(mmCP_PERFMON_CNTL, 0); WREG32(mmSQ_CONFIG, 0); WREG32(mmPA_SC_FORCE_EOV_MAX_CNTS, ((4095 << PA_SC_FORCE_EOV_MAX_CNTS__FORCE_EOV_MAX_CLK_CNT__SHIFT) | (255 << PA_SC_FORCE_EOV_MAX_CNTS__FORCE_EOV_MAX_REZ_CNT__SHIFT))); WREG32(mmVGT_CACHE_INVALIDATION, (VC_AND_TC << VGT_CACHE_INVALIDATION__CACHE_INVALIDATION__SHIFT) | (ES_AND_GS_AUTO << VGT_CACHE_INVALIDATION__AUTO_INVLD_EN__SHIFT)); WREG32(mmVGT_GS_VERTEX_REUSE, 16); WREG32(mmPA_SC_LINE_STIPPLE_STATE, 0); WREG32(mmPA_CL_ENHANCE, PA_CL_ENHANCE__CLIP_VTX_REORDER_ENA_MASK | (3 << PA_CL_ENHANCE__NUM_CLIP_SEQ__SHIFT)); WREG32(mmPA_SC_ENHANCE, PA_SC_ENHANCE__ENABLE_PA_SC_OUT_OF_ORDER_MASK); tmp = RREG32(mmSPI_ARB_PRIORITY); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS0, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS1, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS2, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS3, 2); WREG32(mmSPI_ARB_PRIORITY, tmp); mutex_unlock(&adev->grbm_idx_mutex); udelay(50); } /* * GPU scratch registers helpers function. */ /** * gfx_v7_0_scratch_init - setup driver info for CP scratch regs * * @adev: amdgpu_device pointer * * Set up the number and offset of the CP scratch registers. * NOTE: use of CP scratch registers is a legacy inferface and * is not used by default on newer asics (r6xx+). On newer asics, * memory buffers are used for fences rather than scratch regs. */ static void gfx_v7_0_scratch_init(struct amdgpu_device *adev) { adev->gfx.scratch.num_reg = 7; adev->gfx.scratch.reg_base = mmSCRATCH_REG0; adev->gfx.scratch.free_mask = (1u << adev->gfx.scratch.num_reg) - 1; } /** * gfx_v7_0_ring_test_ring - basic gfx ring test * * @adev: amdgpu_device pointer * @ring: amdgpu_ring structure holding ring information * * Allocate a scratch register and write to it using the gfx ring (CIK). * Provides a basic gfx ring test to verify that the ring is working. * Used by gfx_v7_0_cp_gfx_resume(); * Returns 0 on success, error on failure. */ static int gfx_v7_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); amdgpu_gfx_scratch_free(adev, scratch); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < adev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n", ring->idx, scratch, tmp); r = -EINVAL; } amdgpu_gfx_scratch_free(adev, scratch); return r; } /** * gfx_v7_0_ring_emit_hdp - emit an hdp flush on the cp * * @adev: amdgpu_device pointer * @ridx: amdgpu ring index * * Emits an hdp flush on the cp. */ static void gfx_v7_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { u32 ref_and_mask; int usepfp = ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE ? 0 : 1; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { switch (ring->me) { case 1: ref_and_mask = GPU_HDP_FLUSH_DONE__CP2_MASK << ring->pipe; break; case 2: ref_and_mask = GPU_HDP_FLUSH_DONE__CP6_MASK << ring->pipe; break; default: return; } } else { ref_and_mask = GPU_HDP_FLUSH_DONE__CP0_MASK; } amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(1) | /* write, wait, write */ WAIT_REG_MEM_FUNCTION(3) | /* == */ WAIT_REG_MEM_ENGINE(usepfp))); /* pfp or me */ amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE); amdgpu_ring_write(ring, ref_and_mask); amdgpu_ring_write(ring, ref_and_mask); amdgpu_ring_write(ring, 0x20); /* poll interval */ } static void gfx_v7_0_ring_emit_vgt_flush(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0)); amdgpu_ring_write(ring, EVENT_TYPE(VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0)); amdgpu_ring_write(ring, EVENT_TYPE(VGT_FLUSH) | EVENT_INDEX(0)); } /** * gfx_v7_0_ring_emit_hdp_invalidate - emit an hdp invalidate on the cp * * @adev: amdgpu_device pointer * @ridx: amdgpu ring index * * Emits an hdp invalidate on the cp. */ static void gfx_v7_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, mmHDP_DEBUG0); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 1); } /** * gfx_v7_0_ring_emit_fence_gfx - emit a fence on the gfx ring * * @adev: amdgpu_device pointer * @fence: amdgpu fence object * * Emits a fence sequnce number on the gfx ring and flushes * GPU caches. */ static void gfx_v7_0_ring_emit_fence_gfx(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* Workaround for cache flush problems. First send a dummy EOP * event down the pipe with seq one below. */ amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(0)); amdgpu_ring_write(ring, lower_32_bits(seq - 1)); amdgpu_ring_write(ring, upper_32_bits(seq - 1)); /* Then send the real EOP event down the pipe. */ amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /** * gfx_v7_0_ring_emit_fence_compute - emit a fence on the compute ring * * @adev: amdgpu_device pointer * @fence: amdgpu fence object * * Emits a fence sequnce number on the compute ring and flushes * GPU caches. */ static void gfx_v7_0_ring_emit_fence_compute(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* * IB stuff */ /** * gfx_v7_0_ring_emit_ib - emit an IB (Indirect Buffer) on the ring * * @ring: amdgpu_ring structure holding ring information * @ib: amdgpu indirect buffer object * * Emits an DE (drawing engine) or CE (constant engine) IB * on the gfx ring. IBs are usually generated by userspace * acceleration drivers and submitted to the kernel for * sheduling on the ring. This function schedules the IB * on the gfx ring for execution by the GPU. */ static void gfx_v7_0_ring_emit_ib_gfx(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vm_id, bool ctx_switch) { u32 header, control = 0; /* insert SWITCH_BUFFER packet before first IB in the ring frame */ if (ctx_switch) { amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } if (ib->flags & AMDGPU_IB_FLAG_CE) header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); else header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); control |= ib->length_dw | (vm_id << 24); amdgpu_ring_write(ring, header); amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); amdgpu_ring_write(ring, control); } static void gfx_v7_0_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vm_id, bool ctx_switch) { u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vm_id << 24); amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); amdgpu_ring_write(ring, control); } static void gfx_v7_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags) { uint32_t dw2 = 0; dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */ if (flags & AMDGPU_HAVE_CTX_SWITCH) { gfx_v7_0_ring_emit_vgt_flush(ring); /* set load_global_config & load_global_uconfig */ dw2 |= 0x8001; /* set load_cs_sh_regs */ dw2 |= 0x01000000; /* set load_per_context_state & load_gfx_sh_regs */ dw2 |= 0x10002; } amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, dw2); amdgpu_ring_write(ring, 0); } /** * gfx_v7_0_ring_test_ib - basic ring IB test * * @ring: amdgpu_ring structure holding ring information * * Allocate an IB and execute it on the gfx ring (CIK). * Provides a basic gfx ring test to verify that IBs are working. * Returns 0 on success, error on failure. */ static int gfx_v7_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; uint32_t scratch; uint32_t tmp = 0; long r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: failed to get scratch reg (%ld).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); goto err1; } ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START)); ib.ptr[2] = 0xDEADBEEF; ib.length_dw = 3; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { DRM_ERROR("amdgpu: IB test timed out\n"); r = -ETIMEDOUT; goto err2; } else if (r < 0) { DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); goto err2; } tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) { DRM_INFO("ib test on ring %d succeeded\n", ring->idx); r = 0; } else { DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } err2: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err1: amdgpu_gfx_scratch_free(adev, scratch); return r; } /* * CP. * On CIK, gfx and compute now have independant command processors. * * GFX * Gfx consists of a single ring and can process both gfx jobs and * compute jobs. The gfx CP consists of three microengines (ME): * PFP - Pre-Fetch Parser * ME - Micro Engine * CE - Constant Engine * The PFP and ME make up what is considered the Drawing Engine (DE). * The CE is an asynchronous engine used for updating buffer desciptors * used by the DE so that they can be loaded into cache in parallel * while the DE is processing state update packets. * * Compute * The compute CP consists of two microengines (ME): * MEC1 - Compute MicroEngine 1 * MEC2 - Compute MicroEngine 2 * Each MEC supports 4 compute pipes and each pipe supports 8 queues. * The queues are exposed to userspace and are programmed directly * by the compute runtime. */ /** * gfx_v7_0_cp_gfx_enable - enable/disable the gfx CP MEs * * @adev: amdgpu_device pointer * @enable: enable or disable the MEs * * Halts or unhalts the gfx MEs. */ static void gfx_v7_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable) { int i; if (enable) { WREG32(mmCP_ME_CNTL, 0); } else { WREG32(mmCP_ME_CNTL, (CP_ME_CNTL__ME_HALT_MASK | CP_ME_CNTL__PFP_HALT_MASK | CP_ME_CNTL__CE_HALT_MASK)); for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].ready = false; } udelay(50); } /** * gfx_v7_0_cp_gfx_load_microcode - load the gfx CP ME ucode * * @adev: amdgpu_device pointer * * Loads the gfx PFP, ME, and CE ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int gfx_v7_0_cp_gfx_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *pfp_hdr; const struct gfx_firmware_header_v1_0 *ce_hdr; const struct gfx_firmware_header_v1_0 *me_hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw) return -EINVAL; pfp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; ce_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; me_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header); amdgpu_ucode_print_gfx_hdr(&ce_hdr->header); amdgpu_ucode_print_gfx_hdr(&me_hdr->header); adev->gfx.pfp_fw_version = le32_to_cpu(pfp_hdr->header.ucode_version); adev->gfx.ce_fw_version = le32_to_cpu(ce_hdr->header.ucode_version); adev->gfx.me_fw_version = le32_to_cpu(me_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(me_hdr->ucode_feature_version); adev->gfx.ce_feature_version = le32_to_cpu(ce_hdr->ucode_feature_version); adev->gfx.pfp_feature_version = le32_to_cpu(pfp_hdr->ucode_feature_version); gfx_v7_0_cp_gfx_enable(adev, false); /* PFP */ fw_data = (const __le32 *) (adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4; WREG32(mmCP_PFP_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmCP_PFP_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(mmCP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version); /* CE */ fw_data = (const __le32 *) (adev->gfx.ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4; WREG32(mmCP_CE_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmCP_CE_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(mmCP_CE_UCODE_ADDR, adev->gfx.ce_fw_version); /* ME */ fw_data = (const __le32 *) (adev->gfx.me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4; WREG32(mmCP_ME_RAM_WADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmCP_ME_RAM_DATA, le32_to_cpup(fw_data++)); WREG32(mmCP_ME_RAM_WADDR, adev->gfx.me_fw_version); return 0; } /** * gfx_v7_0_cp_gfx_start - start the gfx ring * * @adev: amdgpu_device pointer * * Enables the ring and loads the clear state context and other * packets required to init the ring. * Returns 0 for success, error for failure. */ static int gfx_v7_0_cp_gfx_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0]; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int r, i; /* init the CP */ WREG32(mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1); WREG32(mmCP_ENDIAN_SWAP, 0); WREG32(mmCP_DEVICE_ID, 1); gfx_v7_0_cp_gfx_enable(adev, true); r = amdgpu_ring_alloc(ring, gfx_v7_0_get_csb_size(adev) + 8); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } /* init the CE partitions. CE only used for gfx on CIK */ amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_write(ring, 0x8000); /* clear state buffer */ amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, 0x80000000); amdgpu_ring_write(ring, 0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) amdgpu_ring_write(ring, ext->extent[i]); } } } amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); amdgpu_ring_write(ring, mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START); switch (adev->asic_type) { case CHIP_BONAIRE: amdgpu_ring_write(ring, 0x16000012); amdgpu_ring_write(ring, 0x00000000); break; case CHIP_KAVERI: amdgpu_ring_write(ring, 0x00000000); /* XXX */ amdgpu_ring_write(ring, 0x00000000); break; case CHIP_KABINI: case CHIP_MULLINS: amdgpu_ring_write(ring, 0x00000000); /* XXX */ amdgpu_ring_write(ring, 0x00000000); break; case CHIP_HAWAII: amdgpu_ring_write(ring, 0x3a00161a); amdgpu_ring_write(ring, 0x0000002e); break; default: amdgpu_ring_write(ring, 0x00000000); amdgpu_ring_write(ring, 0x00000000); break; } amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); amdgpu_ring_write(ring, 0x00000316); amdgpu_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ amdgpu_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ amdgpu_ring_commit(ring); return 0; } /** * gfx_v7_0_cp_gfx_resume - setup the gfx ring buffer registers * * @adev: amdgpu_device pointer * * Program the location and size of the gfx ring buffer * and test it to make sure it's working. * Returns 0 for success, error for failure. */ static int gfx_v7_0_cp_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr, rptr_addr; int r; WREG32(mmCP_SEM_WAIT_TIMER, 0x0); if (adev->asic_type != CHIP_HAWAII) WREG32(mmCP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); /* Set the write pointer delay */ WREG32(mmCP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32(mmCP_RB_VMID, 0); WREG32(mmSCRATCH_ADDR, 0); /* ring 0 - compute and gfx */ /* Set ring buffer size */ ring = &adev->gfx.gfx_ring[0]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = (order_base_2(AMDGPU_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= 2 << CP_RB0_CNTL__BUF_SWAP__SHIFT; #endif WREG32(mmCP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(mmCP_RB0_CNTL, tmp | CP_RB0_CNTL__RB_RPTR_WR_ENA_MASK); ring->wptr = 0; WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); /* set the wb address wether it's enabled or not */ rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); WREG32(mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32(mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF); /* scratch register shadowing is no longer supported */ WREG32(mmSCRATCH_UMSK, 0); mdelay(1); WREG32(mmCP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32(mmCP_RB0_BASE, rb_addr); WREG32(mmCP_RB0_BASE_HI, upper_32_bits(rb_addr)); /* start the ring */ gfx_v7_0_cp_gfx_start(adev); ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) { ring->ready = false; return r; } return 0; } static u64 gfx_v7_0_ring_get_rptr(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; } static u64 gfx_v7_0_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return RREG32(mmCP_RB0_WPTR); } static void gfx_v7_0_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); (void)RREG32(mmCP_RB0_WPTR); } static u64 gfx_v7_0_ring_get_wptr_compute(struct amdgpu_ring *ring) { /* XXX check if swapping is necessary on BE */ return ring->adev->wb.wb[ring->wptr_offs]; } static void gfx_v7_0_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* XXX check if swapping is necessary on BE */ adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr); WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr)); } /** * gfx_v7_0_cp_compute_enable - enable/disable the compute CP MEs * * @adev: amdgpu_device pointer * @enable: enable or disable the MEs * * Halts or unhalts the compute MEs. */ static void gfx_v7_0_cp_compute_enable(struct amdgpu_device *adev, bool enable) { int i; if (enable) { WREG32(mmCP_MEC_CNTL, 0); } else { WREG32(mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK)); for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].ready = false; } udelay(50); } /** * gfx_v7_0_cp_compute_load_microcode - load the compute CP ME ucode * * @adev: amdgpu_device pointer * * Loads the compute MEC1&2 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int gfx_v7_0_cp_compute_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *mec_hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.mec_fw) return -EINVAL; mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); adev->gfx.mec_fw_version = le32_to_cpu(mec_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu( mec_hdr->ucode_feature_version); gfx_v7_0_cp_compute_enable(adev, false); /* MEC1 */ fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes) / 4; WREG32(mmCP_MEC_ME1_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmCP_MEC_ME1_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(mmCP_MEC_ME1_UCODE_ADDR, 0); if (adev->asic_type == CHIP_KAVERI) { const struct gfx_firmware_header_v1_0 *mec2_hdr; if (!adev->gfx.mec2_fw) return -EINVAL; mec2_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec2_fw->data; amdgpu_ucode_print_gfx_hdr(&mec2_hdr->header); adev->gfx.mec2_fw_version = le32_to_cpu(mec2_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu( mec2_hdr->ucode_feature_version); /* MEC2 */ fw_data = (const __le32 *) (adev->gfx.mec2_fw->data + le32_to_cpu(mec2_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec2_hdr->header.ucode_size_bytes) / 4; WREG32(mmCP_MEC_ME2_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmCP_MEC_ME2_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(mmCP_MEC_ME2_UCODE_ADDR, 0); } return 0; } /** * gfx_v7_0_cp_compute_fini - stop the compute queues * * @adev: amdgpu_device pointer * * Stop the compute queues and tear down the driver queue * info. */ static void gfx_v7_0_cp_compute_fini(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; if (ring->mqd_obj) { r = amdgpu_bo_reserve(ring->mqd_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve MQD bo failed\n", r); amdgpu_bo_unpin(ring->mqd_obj); amdgpu_bo_unreserve(ring->mqd_obj); amdgpu_bo_unref(&ring->mqd_obj); ring->mqd_obj = NULL; } } } static void gfx_v7_0_mec_fini(struct amdgpu_device *adev) { int r; if (adev->gfx.mec.hpd_eop_obj) { r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve HPD EOP bo failed\n", r); amdgpu_bo_unpin(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unref(&adev->gfx.mec.hpd_eop_obj); adev->gfx.mec.hpd_eop_obj = NULL; } } static int gfx_v7_0_mec_init(struct amdgpu_device *adev) { int r; u32 *hpd; size_t mec_hpd_size; bitmap_zero(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* take ownership of the relevant compute queues */ amdgpu_gfx_compute_queue_acquire(adev); /* allocate space for ALL pipes (even the ones we don't own) */ mec_hpd_size = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe_per_mec * GFX7_MEC_HPD_SIZE * 2; if (adev->gfx.mec.hpd_eop_obj == NULL) { r = amdgpu_bo_create(adev, mec_hpd_size, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL, &adev->gfx.mec.hpd_eop_obj); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); return r; } } r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, false); if (unlikely(r != 0)) { gfx_v7_0_mec_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.mec.hpd_eop_obj, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.hpd_eop_gpu_addr); if (r) { dev_warn(adev->dev, "(%d) pin HDP EOP bo failed\n", r); gfx_v7_0_mec_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.mec.hpd_eop_obj, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) map HDP EOP bo failed\n", r); gfx_v7_0_mec_fini(adev); return r; } /* clear memory. Not sure if this is required or not */ memset(hpd, 0, mec_hpd_size); amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); return 0; } struct hqd_registers { u32 cp_mqd_base_addr; u32 cp_mqd_base_addr_hi; u32 cp_hqd_active; u32 cp_hqd_vmid; u32 cp_hqd_persistent_state; u32 cp_hqd_pipe_priority; u32 cp_hqd_queue_priority; u32 cp_hqd_quantum; u32 cp_hqd_pq_base; u32 cp_hqd_pq_base_hi; u32 cp_hqd_pq_rptr; u32 cp_hqd_pq_rptr_report_addr; u32 cp_hqd_pq_rptr_report_addr_hi; u32 cp_hqd_pq_wptr_poll_addr; u32 cp_hqd_pq_wptr_poll_addr_hi; u32 cp_hqd_pq_doorbell_control; u32 cp_hqd_pq_wptr; u32 cp_hqd_pq_control; u32 cp_hqd_ib_base_addr; u32 cp_hqd_ib_base_addr_hi; u32 cp_hqd_ib_rptr; u32 cp_hqd_ib_control; u32 cp_hqd_iq_timer; u32 cp_hqd_iq_rptr; u32 cp_hqd_dequeue_request; u32 cp_hqd_dma_offload; u32 cp_hqd_sema_cmd; u32 cp_hqd_msg_type; u32 cp_hqd_atomic0_preop_lo; u32 cp_hqd_atomic0_preop_hi; u32 cp_hqd_atomic1_preop_lo; u32 cp_hqd_atomic1_preop_hi; u32 cp_hqd_hq_scheduler0; u32 cp_hqd_hq_scheduler1; u32 cp_mqd_control; }; static void gfx_v7_0_compute_pipe_init(struct amdgpu_device *adev, int mec, int pipe) { u64 eop_gpu_addr; u32 tmp; size_t eop_offset = (mec * adev->gfx.mec.num_pipe_per_mec + pipe) * GFX7_MEC_HPD_SIZE * 2; mutex_lock(&adev->srbm_mutex); eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + eop_offset; cik_srbm_select(adev, mec + 1, pipe, 0, 0); /* write the EOP addr */ WREG32(mmCP_HPD_EOP_BASE_ADDR, eop_gpu_addr >> 8); WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(eop_gpu_addr) >> 8); /* set the VMID assigned */ WREG32(mmCP_HPD_EOP_VMID, 0); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32(mmCP_HPD_EOP_CONTROL); tmp &= ~CP_HPD_EOP_CONTROL__EOP_SIZE_MASK; tmp |= order_base_2(GFX7_MEC_HPD_SIZE / 8); WREG32(mmCP_HPD_EOP_CONTROL, tmp); cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static int gfx_v7_0_mqd_deactivate(struct amdgpu_device *adev) { int i; /* disable the queue if it's active */ if (RREG32(mmCP_HQD_ACTIVE) & 1) { WREG32(mmCP_HQD_DEQUEUE_REQUEST, 1); for (i = 0; i < adev->usec_timeout; i++) { if (!(RREG32(mmCP_HQD_ACTIVE) & 1)) break; udelay(1); } if (i == adev->usec_timeout) return -ETIMEDOUT; WREG32(mmCP_HQD_DEQUEUE_REQUEST, 0); WREG32(mmCP_HQD_PQ_RPTR, 0); WREG32(mmCP_HQD_PQ_WPTR, 0); } return 0; } static void gfx_v7_0_mqd_init(struct amdgpu_device *adev, struct cik_mqd *mqd, uint64_t mqd_gpu_addr, struct amdgpu_ring *ring) { u64 hqd_gpu_addr; u64 wb_gpu_addr; /* init the mqd struct */ memset(mqd, 0, sizeof(struct cik_mqd)); mqd->header = 0xC0310800; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; /* enable doorbell? */ mqd->cp_hqd_pq_doorbell_control = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL); if (ring->use_doorbell) mqd->cp_hqd_pq_doorbell_control |= CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_EN_MASK; else mqd->cp_hqd_pq_doorbell_control &= ~CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_EN_MASK; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(mqd_gpu_addr); /* set MQD vmid to 0 */ mqd->cp_mqd_control = RREG32(mmCP_MQD_CONTROL); mqd->cp_mqd_control &= ~CP_MQD_CONTROL__VMID_MASK; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ mqd->cp_hqd_pq_control = RREG32(mmCP_HQD_PQ_CONTROL); mqd->cp_hqd_pq_control &= ~(CP_HQD_PQ_CONTROL__QUEUE_SIZE_MASK | CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE_MASK); mqd->cp_hqd_pq_control |= order_base_2(ring->ring_size / 8); mqd->cp_hqd_pq_control |= (order_base_2(AMDGPU_GPU_PAGE_SIZE/8) << 8); #ifdef __BIG_ENDIAN mqd->cp_hqd_pq_control |= 2 << CP_HQD_PQ_CONTROL__ENDIAN_SWAP__SHIFT; #endif mqd->cp_hqd_pq_control &= ~(CP_HQD_PQ_CONTROL__UNORD_DISPATCH_MASK | CP_HQD_PQ_CONTROL__ROQ_PQ_IB_FLIP_MASK | CP_HQD_PQ_CONTROL__PQ_VOLATILE_MASK); mqd->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__PRIV_STATE_MASK | CP_HQD_PQ_CONTROL__KMD_QUEUE_MASK; /* assuming kernel queue control */ /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* set the wb address wether it's enabled or not */ wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* enable the doorbell if requested */ if (ring->use_doorbell) { mqd->cp_hqd_pq_doorbell_control = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL); mqd->cp_hqd_pq_doorbell_control &= ~CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET_MASK; mqd->cp_hqd_pq_doorbell_control |= (ring->doorbell_index << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT); mqd->cp_hqd_pq_doorbell_control |= CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_EN_MASK; mqd->cp_hqd_pq_doorbell_control &= ~(CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_SOURCE_MASK | CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_HIT_MASK); } else { mqd->cp_hqd_pq_doorbell_control = 0; } /* read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_hqd_pq_wptr = lower_32_bits(ring->wptr); mqd->cp_hqd_pq_rptr = RREG32(mmCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; /* defaults */ mqd->cp_hqd_ib_control = RREG32(mmCP_HQD_IB_CONTROL); mqd->cp_hqd_ib_base_addr_lo = RREG32(mmCP_HQD_IB_BASE_ADDR); mqd->cp_hqd_ib_base_addr_hi = RREG32(mmCP_HQD_IB_BASE_ADDR_HI); mqd->cp_hqd_ib_rptr = RREG32(mmCP_HQD_IB_RPTR); mqd->cp_hqd_persistent_state = RREG32(mmCP_HQD_PERSISTENT_STATE); mqd->cp_hqd_sema_cmd = RREG32(mmCP_HQD_SEMA_CMD); mqd->cp_hqd_msg_type = RREG32(mmCP_HQD_MSG_TYPE); mqd->cp_hqd_atomic0_preop_lo = RREG32(mmCP_HQD_ATOMIC0_PREOP_LO); mqd->cp_hqd_atomic0_preop_hi = RREG32(mmCP_HQD_ATOMIC0_PREOP_HI); mqd->cp_hqd_atomic1_preop_lo = RREG32(mmCP_HQD_ATOMIC1_PREOP_LO); mqd->cp_hqd_atomic1_preop_hi = RREG32(mmCP_HQD_ATOMIC1_PREOP_HI); mqd->cp_hqd_pq_rptr = RREG32(mmCP_HQD_PQ_RPTR); mqd->cp_hqd_quantum = RREG32(mmCP_HQD_QUANTUM); mqd->cp_hqd_pipe_priority = RREG32(mmCP_HQD_PIPE_PRIORITY); mqd->cp_hqd_queue_priority = RREG32(mmCP_HQD_QUEUE_PRIORITY); mqd->cp_hqd_iq_rptr = RREG32(mmCP_HQD_IQ_RPTR); /* activate the queue */ mqd->cp_hqd_active = 1; } int gfx_v7_0_mqd_commit(struct amdgpu_device *adev, struct cik_mqd *mqd) { uint32_t tmp; uint32_t mqd_reg; uint32_t *mqd_data; /* HQD registers extend from mmCP_MQD_BASE_ADDR to mmCP_MQD_CONTROL */ mqd_data = &mqd->cp_mqd_base_addr_lo; /* disable wptr polling */ tmp = RREG32(mmCP_PQ_WPTR_POLL_CNTL); tmp = REG_SET_FIELD(tmp, CP_PQ_WPTR_POLL_CNTL, EN, 0); WREG32(mmCP_PQ_WPTR_POLL_CNTL, tmp); /* program all HQD registers */ for (mqd_reg = mmCP_HQD_VMID; mqd_reg <= mmCP_MQD_CONTROL; mqd_reg++) WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]); /* activate the HQD */ for (mqd_reg = mmCP_MQD_BASE_ADDR; mqd_reg <= mmCP_HQD_ACTIVE; mqd_reg++) WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]); return 0; } static int gfx_v7_0_compute_queue_init(struct amdgpu_device *adev, int ring_id) { int r; u64 mqd_gpu_addr; struct cik_mqd *mqd; struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id]; if (ring->mqd_obj == NULL) { r = amdgpu_bo_create(adev, sizeof(struct cik_mqd), PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL, &ring->mqd_obj); if (r) { dev_warn(adev->dev, "(%d) create MQD bo failed\n", r); return r; } } r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto out; r = amdgpu_bo_pin(ring->mqd_obj, AMDGPU_GEM_DOMAIN_GTT, &mqd_gpu_addr); if (r) { dev_warn(adev->dev, "(%d) pin MQD bo failed\n", r); goto out_unreserve; } r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&mqd); if (r) { dev_warn(adev->dev, "(%d) map MQD bo failed\n", r); goto out_unreserve; } mutex_lock(&adev->srbm_mutex); cik_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v7_0_mqd_init(adev, mqd, mqd_gpu_addr, ring); gfx_v7_0_mqd_deactivate(adev); gfx_v7_0_mqd_commit(adev, mqd); cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); amdgpu_bo_kunmap(ring->mqd_obj); out_unreserve: amdgpu_bo_unreserve(ring->mqd_obj); out: return 0; } /** * gfx_v7_0_cp_compute_resume - setup the compute queue registers * * @adev: amdgpu_device pointer * * Program the compute queues and test them to make sure they * are working. * Returns 0 for success, error for failure. */ static int gfx_v7_0_cp_compute_resume(struct amdgpu_device *adev) { int r, i, j; u32 tmp; struct amdgpu_ring *ring; /* fix up chicken bits */ tmp = RREG32(mmCP_CPF_DEBUG); tmp |= (1 << 23); WREG32(mmCP_CPF_DEBUG, tmp); /* init all pipes (even the ones we don't own) */ for (i = 0; i < adev->gfx.mec.num_mec; i++) for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) gfx_v7_0_compute_pipe_init(adev, i, j); /* init the queues */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { r = gfx_v7_0_compute_queue_init(adev, i); if (r) { gfx_v7_0_cp_compute_fini(adev); return r; } } gfx_v7_0_cp_compute_enable(adev, true); for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) ring->ready = false; } return 0; } static void gfx_v7_0_cp_enable(struct amdgpu_device *adev, bool enable) { gfx_v7_0_cp_gfx_enable(adev, enable); gfx_v7_0_cp_compute_enable(adev, enable); } static int gfx_v7_0_cp_load_microcode(struct amdgpu_device *adev) { int r; r = gfx_v7_0_cp_gfx_load_microcode(adev); if (r) return r; r = gfx_v7_0_cp_compute_load_microcode(adev); if (r) return r; return 0; } static void gfx_v7_0_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32(mmCP_INT_CNTL_RING0); if (enable) tmp |= (CP_INT_CNTL_RING0__CNTX_BUSY_INT_ENABLE_MASK | CP_INT_CNTL_RING0__CNTX_EMPTY_INT_ENABLE_MASK); else tmp &= ~(CP_INT_CNTL_RING0__CNTX_BUSY_INT_ENABLE_MASK | CP_INT_CNTL_RING0__CNTX_EMPTY_INT_ENABLE_MASK); WREG32(mmCP_INT_CNTL_RING0, tmp); } static int gfx_v7_0_cp_resume(struct amdgpu_device *adev) { int r; gfx_v7_0_enable_gui_idle_interrupt(adev, false); r = gfx_v7_0_cp_load_microcode(adev); if (r) return r; r = gfx_v7_0_cp_gfx_resume(adev); if (r) return r; r = gfx_v7_0_cp_compute_resume(adev); if (r) return r; gfx_v7_0_enable_gui_idle_interrupt(adev, true); return 0; } /** * gfx_v7_0_ring_emit_vm_flush - cik vm flush using the CP * * @ring: the ring to emmit the commands to * * Sync the command pipeline with the PFP. E.g. wait for everything * to be completed. */ static void gfx_v7_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_MEM_SPACE(1) | /* memory */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(usepfp))); /* pfp or me */ amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); amdgpu_ring_write(ring, seq); amdgpu_ring_write(ring, 0xffffffff); amdgpu_ring_write(ring, 4); /* poll interval */ if (usepfp) { /* synce CE with ME to prevent CE fetch CEIB before context switch done */ amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } } /* * vm * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gfx_v7_0_ring_emit_vm_flush - cik vm flush using the CP * * @adev: amdgpu_device pointer * * Update the page table base and flush the VM TLB * using the CP (CIK). */ static void gfx_v7_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vm_id, uint64_t pd_addr) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(usepfp) | WRITE_DATA_DST_SEL(0))); if (vm_id < 8) { amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id)); } else { amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8)); } amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, pd_addr >> 12); /* bits 0-15 are the VM contexts0-15 */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 1 << vm_id); /* wait for the invalidate to complete */ amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(0) | /* wait */ WAIT_REG_MEM_FUNCTION(0) | /* always */ WAIT_REG_MEM_ENGINE(0))); /* me */ amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); /* ref */ amdgpu_ring_write(ring, 0); /* mask */ amdgpu_ring_write(ring, 0x20); /* poll interval */ /* compute doesn't have PFP */ if (usepfp) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); amdgpu_ring_write(ring, 0x0); /* synce CE with ME to prevent CE fetch CEIB before context switch done */ amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } } /* * RLC * The RLC is a multi-purpose microengine that handles a * variety of functions. */ static void gfx_v7_0_rlc_fini(struct amdgpu_device *adev) { int r; /* save restore block */ if (adev->gfx.rlc.save_restore_obj) { r = amdgpu_bo_reserve(adev->gfx.rlc.save_restore_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve RLC sr bo failed\n", r); amdgpu_bo_unpin(adev->gfx.rlc.save_restore_obj); amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj); amdgpu_bo_unref(&adev->gfx.rlc.save_restore_obj); adev->gfx.rlc.save_restore_obj = NULL; } /* clear state block */ if (adev->gfx.rlc.clear_state_obj) { r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve RLC c bo failed\n", r); amdgpu_bo_unpin(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unref(&adev->gfx.rlc.clear_state_obj); adev->gfx.rlc.clear_state_obj = NULL; } /* clear state block */ if (adev->gfx.rlc.cp_table_obj) { r = amdgpu_bo_reserve(adev->gfx.rlc.cp_table_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve RLC cp table bo failed\n", r); amdgpu_bo_unpin(adev->gfx.rlc.cp_table_obj); amdgpu_bo_unreserve(adev->gfx.rlc.cp_table_obj); amdgpu_bo_unref(&adev->gfx.rlc.cp_table_obj); adev->gfx.rlc.cp_table_obj = NULL; } } static int gfx_v7_0_rlc_init(struct amdgpu_device *adev) { const u32 *src_ptr; volatile u32 *dst_ptr; u32 dws, i; const struct cs_section_def *cs_data; int r; /* allocate rlc buffers */ if (adev->flags & AMD_IS_APU) { if (adev->asic_type == CHIP_KAVERI) { adev->gfx.rlc.reg_list = spectre_rlc_save_restore_register_list; adev->gfx.rlc.reg_list_size = (u32)ARRAY_SIZE(spectre_rlc_save_restore_register_list); } else { adev->gfx.rlc.reg_list = kalindi_rlc_save_restore_register_list; adev->gfx.rlc.reg_list_size = (u32)ARRAY_SIZE(kalindi_rlc_save_restore_register_list); } } adev->gfx.rlc.cs_data = ci_cs_data; adev->gfx.rlc.cp_table_size = ALIGN(CP_ME_TABLE_SIZE * 5 * 4, 2048); /* CP JT */ adev->gfx.rlc.cp_table_size += 64 * 1024; /* GDS */ src_ptr = adev->gfx.rlc.reg_list; dws = adev->gfx.rlc.reg_list_size; dws += (5 * 16) + 48 + 48 + 64; cs_data = adev->gfx.rlc.cs_data; if (src_ptr) { /* save restore block */ if (adev->gfx.rlc.save_restore_obj == NULL) { r = amdgpu_bo_create(adev, dws * 4, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS, NULL, NULL, &adev->gfx.rlc.save_restore_obj); if (r) { dev_warn(adev->dev, "(%d) create RLC sr bo failed\n", r); return r; } } r = amdgpu_bo_reserve(adev->gfx.rlc.save_restore_obj, false); if (unlikely(r != 0)) { gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.rlc.save_restore_obj, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.rlc.save_restore_gpu_addr); if (r) { amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj); dev_warn(adev->dev, "(%d) pin RLC sr bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.rlc.save_restore_obj, (void **)&adev->gfx.rlc.sr_ptr); if (r) { dev_warn(adev->dev, "(%d) map RLC sr bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } /* write the sr buffer */ dst_ptr = adev->gfx.rlc.sr_ptr; for (i = 0; i < adev->gfx.rlc.reg_list_size; i++) dst_ptr[i] = cpu_to_le32(src_ptr[i]); amdgpu_bo_kunmap(adev->gfx.rlc.save_restore_obj); amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj); } if (cs_data) { /* clear state block */ adev->gfx.rlc.clear_state_size = dws = gfx_v7_0_get_csb_size(adev); if (adev->gfx.rlc.clear_state_obj == NULL) { r = amdgpu_bo_create(adev, dws * 4, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS, NULL, NULL, &adev->gfx.rlc.clear_state_obj); if (r) { dev_warn(adev->dev, "(%d) create RLC c bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } } r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, false); if (unlikely(r != 0)) { gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.rlc.clear_state_obj, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.rlc.clear_state_gpu_addr); if (r) { amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); dev_warn(adev->dev, "(%d) pin RLC c bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.rlc.clear_state_obj, (void **)&adev->gfx.rlc.cs_ptr); if (r) { dev_warn(adev->dev, "(%d) map RLC c bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } /* set up the cs buffer */ dst_ptr = adev->gfx.rlc.cs_ptr; gfx_v7_0_get_csb_buffer(adev, dst_ptr); amdgpu_bo_kunmap(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); } if (adev->gfx.rlc.cp_table_size) { if (adev->gfx.rlc.cp_table_obj == NULL) { r = amdgpu_bo_create(adev, adev->gfx.rlc.cp_table_size, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS, NULL, NULL, &adev->gfx.rlc.cp_table_obj); if (r) { dev_warn(adev->dev, "(%d) create RLC cp table bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } } r = amdgpu_bo_reserve(adev->gfx.rlc.cp_table_obj, false); if (unlikely(r != 0)) { dev_warn(adev->dev, "(%d) reserve RLC cp table bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.rlc.cp_table_obj, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.rlc.cp_table_gpu_addr); if (r) { amdgpu_bo_unreserve(adev->gfx.rlc.cp_table_obj); dev_warn(adev->dev, "(%d) pin RLC cp_table bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.rlc.cp_table_obj, (void **)&adev->gfx.rlc.cp_table_ptr); if (r) { dev_warn(adev->dev, "(%d) map RLC cp table bo failed\n", r); gfx_v7_0_rlc_fini(adev); return r; } gfx_v7_0_init_cp_pg_table(adev); amdgpu_bo_kunmap(adev->gfx.rlc.cp_table_obj); amdgpu_bo_unreserve(adev->gfx.rlc.cp_table_obj); } return 0; } static void gfx_v7_0_enable_lbpw(struct amdgpu_device *adev, bool enable) { u32 tmp; tmp = RREG32(mmRLC_LB_CNTL); if (enable) tmp |= RLC_LB_CNTL__LOAD_BALANCE_ENABLE_MASK; else tmp &= ~RLC_LB_CNTL__LOAD_BALANCE_ENABLE_MASK; WREG32(mmRLC_LB_CNTL, tmp); } static void gfx_v7_0_wait_for_rlc_serdes(struct amdgpu_device *adev) { u32 i, j, k; u32 mask; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v7_0_select_se_sh(adev, i, j, 0xffffffff); for (k = 0; k < adev->usec_timeout; k++) { if (RREG32(mmRLC_SERDES_CU_MASTER_BUSY) == 0) break; udelay(1); } } } gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK; for (k = 0; k < adev->usec_timeout; k++) { if ((RREG32(mmRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) break; udelay(1); } } static void gfx_v7_0_update_rlc(struct amdgpu_device *adev, u32 rlc) { u32 tmp; tmp = RREG32(mmRLC_CNTL); if (tmp != rlc) WREG32(mmRLC_CNTL, rlc); } static u32 gfx_v7_0_halt_rlc(struct amdgpu_device *adev) { u32 data, orig; orig = data = RREG32(mmRLC_CNTL); if (data & RLC_CNTL__RLC_ENABLE_F32_MASK) { u32 i; data &= ~RLC_CNTL__RLC_ENABLE_F32_MASK; WREG32(mmRLC_CNTL, data); for (i = 0; i < adev->usec_timeout; i++) { if ((RREG32(mmRLC_GPM_STAT) & RLC_GPM_STAT__RLC_BUSY_MASK) == 0) break; udelay(1); } gfx_v7_0_wait_for_rlc_serdes(adev); } return orig; } static void gfx_v7_0_enter_rlc_safe_mode(struct amdgpu_device *adev) { u32 tmp, i, mask; tmp = 0x1 | (1 << 1); WREG32(mmRLC_GPR_REG2, tmp); mask = RLC_GPM_STAT__GFX_POWER_STATUS_MASK | RLC_GPM_STAT__GFX_CLOCK_STATUS_MASK; for (i = 0; i < adev->usec_timeout; i++) { if ((RREG32(mmRLC_GPM_STAT) & mask) == mask) break; udelay(1); } for (i = 0; i < adev->usec_timeout; i++) { if ((RREG32(mmRLC_GPR_REG2) & 0x1) == 0) break; udelay(1); } } static void gfx_v7_0_exit_rlc_safe_mode(struct amdgpu_device *adev) { u32 tmp; tmp = 0x1 | (0 << 1); WREG32(mmRLC_GPR_REG2, tmp); } /** * gfx_v7_0_rlc_stop - stop the RLC ME * * @adev: amdgpu_device pointer * * Halt the RLC ME (MicroEngine) (CIK). */ static void gfx_v7_0_rlc_stop(struct amdgpu_device *adev) { WREG32(mmRLC_CNTL, 0); gfx_v7_0_enable_gui_idle_interrupt(adev, false); gfx_v7_0_wait_for_rlc_serdes(adev); } /** * gfx_v7_0_rlc_start - start the RLC ME * * @adev: amdgpu_device pointer * * Unhalt the RLC ME (MicroEngine) (CIK). */ static void gfx_v7_0_rlc_start(struct amdgpu_device *adev) { WREG32(mmRLC_CNTL, RLC_CNTL__RLC_ENABLE_F32_MASK); gfx_v7_0_enable_gui_idle_interrupt(adev, true); udelay(50); } static void gfx_v7_0_rlc_reset(struct amdgpu_device *adev) { u32 tmp = RREG32(mmGRBM_SOFT_RESET); tmp |= GRBM_SOFT_RESET__SOFT_RESET_RLC_MASK; WREG32(mmGRBM_SOFT_RESET, tmp); udelay(50); tmp &= ~GRBM_SOFT_RESET__SOFT_RESET_RLC_MASK; WREG32(mmGRBM_SOFT_RESET, tmp); udelay(50); } /** * gfx_v7_0_rlc_resume - setup the RLC hw * * @adev: amdgpu_device pointer * * Initialize the RLC registers, load the ucode, * and start the RLC (CIK). * Returns 0 for success, -EINVAL if the ucode is not available. */ static int gfx_v7_0_rlc_resume(struct amdgpu_device *adev) { const struct rlc_firmware_header_v1_0 *hdr; const __le32 *fw_data; unsigned i, fw_size; u32 tmp; if (!adev->gfx.rlc_fw) return -EINVAL; hdr = (const struct rlc_firmware_header_v1_0 *)adev->gfx.rlc_fw->data; amdgpu_ucode_print_rlc_hdr(&hdr->header); adev->gfx.rlc_fw_version = le32_to_cpu(hdr->header.ucode_version); adev->gfx.rlc_feature_version = le32_to_cpu( hdr->ucode_feature_version); gfx_v7_0_rlc_stop(adev); /* disable CG */ tmp = RREG32(mmRLC_CGCG_CGLS_CTRL) & 0xfffffffc; WREG32(mmRLC_CGCG_CGLS_CTRL, tmp); gfx_v7_0_rlc_reset(adev); gfx_v7_0_init_pg(adev); WREG32(mmRLC_LB_CNTR_INIT, 0); WREG32(mmRLC_LB_CNTR_MAX, 0x00008000); mutex_lock(&adev->grbm_idx_mutex); gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32(mmRLC_LB_INIT_CU_MASK, 0xffffffff); WREG32(mmRLC_LB_PARAMS, 0x00600408); WREG32(mmRLC_LB_CNTL, 0x80000004); mutex_unlock(&adev->grbm_idx_mutex); WREG32(mmRLC_MC_CNTL, 0); WREG32(mmRLC_UCODE_CNTL, 0); fw_data = (const __le32 *) (adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32(mmRLC_GPM_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(mmRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(mmRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version); /* XXX - find out what chips support lbpw */ gfx_v7_0_enable_lbpw(adev, false); if (adev->asic_type == CHIP_BONAIRE) WREG32(mmRLC_DRIVER_CPDMA_STATUS, 0); gfx_v7_0_rlc_start(adev); return 0; } static void gfx_v7_0_enable_cgcg(struct amdgpu_device *adev, bool enable) { u32 data, orig, tmp, tmp2; orig = data = RREG32(mmRLC_CGCG_CGLS_CTRL); if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) { gfx_v7_0_enable_gui_idle_interrupt(adev, true); tmp = gfx_v7_0_halt_rlc(adev); mutex_lock(&adev->grbm_idx_mutex); gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); tmp2 = RLC_SERDES_WR_CTRL__BPM_ADDR_MASK | RLC_SERDES_WR_CTRL__CGCG_OVERRIDE_0_MASK | RLC_SERDES_WR_CTRL__CGLS_ENABLE_MASK; WREG32(mmRLC_SERDES_WR_CTRL, tmp2); mutex_unlock(&adev->grbm_idx_mutex); gfx_v7_0_update_rlc(adev, tmp); data |= RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; if (orig != data) WREG32(mmRLC_CGCG_CGLS_CTRL, data); } else { gfx_v7_0_enable_gui_idle_interrupt(adev, false); RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK); if (orig != data) WREG32(mmRLC_CGCG_CGLS_CTRL, data); gfx_v7_0_enable_gui_idle_interrupt(adev, true); } } static void gfx_v7_0_enable_mgcg(struct amdgpu_device *adev, bool enable) { u32 data, orig, tmp = 0; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) { orig = data = RREG32(mmCP_MEM_SLP_CNTL); data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; if (orig != data) WREG32(mmCP_MEM_SLP_CNTL, data); } } orig = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data |= 0x00000001; data &= 0xfffffffd; if (orig != data) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data); tmp = gfx_v7_0_halt_rlc(adev); mutex_lock(&adev->grbm_idx_mutex); gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); data = RLC_SERDES_WR_CTRL__BPM_ADDR_MASK | RLC_SERDES_WR_CTRL__MGCG_OVERRIDE_0_MASK; WREG32(mmRLC_SERDES_WR_CTRL, data); mutex_unlock(&adev->grbm_idx_mutex); gfx_v7_0_update_rlc(adev, tmp); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS) { orig = data = RREG32(mmCGTS_SM_CTRL_REG); data &= ~CGTS_SM_CTRL_REG__SM_MODE_MASK; data |= (0x2 << CGTS_SM_CTRL_REG__SM_MODE__SHIFT); data |= CGTS_SM_CTRL_REG__SM_MODE_ENABLE_MASK; data &= ~CGTS_SM_CTRL_REG__OVERRIDE_MASK; if ((adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS_LS)) data &= ~CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK; data &= ~CGTS_SM_CTRL_REG__ON_MONITOR_ADD_MASK; data |= CGTS_SM_CTRL_REG__ON_MONITOR_ADD_EN_MASK; data |= (0x96 << CGTS_SM_CTRL_REG__ON_MONITOR_ADD__SHIFT); if (orig != data) WREG32(mmCGTS_SM_CTRL_REG, data); } } else { orig = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data |= 0x00000003; if (orig != data) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data); data = RREG32(mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) { data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; WREG32(mmRLC_MEM_SLP_CNTL, data); } data = RREG32(mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) { data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; WREG32(mmCP_MEM_SLP_CNTL, data); } orig = data = RREG32(mmCGTS_SM_CTRL_REG); data |= CGTS_SM_CTRL_REG__OVERRIDE_MASK | CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK; if (orig != data) WREG32(mmCGTS_SM_CTRL_REG, data); tmp = gfx_v7_0_halt_rlc(adev); mutex_lock(&adev->grbm_idx_mutex); gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); data = RLC_SERDES_WR_CTRL__BPM_ADDR_MASK | RLC_SERDES_WR_CTRL__MGCG_OVERRIDE_1_MASK; WREG32(mmRLC_SERDES_WR_CTRL, data); mutex_unlock(&adev->grbm_idx_mutex); gfx_v7_0_update_rlc(adev, tmp); } } static void gfx_v7_0_update_cg(struct amdgpu_device *adev, bool enable) { gfx_v7_0_enable_gui_idle_interrupt(adev, false); /* order matters! */ if (enable) { gfx_v7_0_enable_mgcg(adev, true); gfx_v7_0_enable_cgcg(adev, true); } else { gfx_v7_0_enable_cgcg(adev, false); gfx_v7_0_enable_mgcg(adev, false); } gfx_v7_0_enable_gui_idle_interrupt(adev, true); } static void gfx_v7_0_enable_sclk_slowdown_on_pu(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS)) data |= RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PU_ENABLE_MASK; else data &= ~RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PU_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } static void gfx_v7_0_enable_sclk_slowdown_on_pd(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS)) data |= RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PD_ENABLE_MASK; else data &= ~RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PD_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } static void gfx_v7_0_enable_cp_pg(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_CP)) data &= ~0x8000; else data |= 0x8000; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } static void gfx_v7_0_enable_gds_pg(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GDS)) data &= ~0x2000; else data |= 0x2000; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } static void gfx_v7_0_init_cp_pg_table(struct amdgpu_device *adev) { const __le32 *fw_data; volatile u32 *dst_ptr; int me, i, max_me = 4; u32 bo_offset = 0; u32 table_offset, table_size; if (adev->asic_type == CHIP_KAVERI) max_me = 5; if (adev->gfx.rlc.cp_table_ptr == NULL) return; /* write the cp table buffer */ dst_ptr = adev->gfx.rlc.cp_table_ptr; for (me = 0; me < max_me; me++) { if (me == 0) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; fw_data = (const __le32 *) (adev->gfx.ce_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 1) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; fw_data = (const __le32 *) (adev->gfx.pfp_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 2) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; fw_data = (const __le32 *) (adev->gfx.me_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 3) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec2_fw->data; fw_data = (const __le32 *) (adev->gfx.mec2_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } for (i = 0; i < table_size; i ++) { dst_ptr[bo_offset + i] = cpu_to_le32(le32_to_cpu(fw_data[table_offset + i])); } bo_offset += table_size; } } static void gfx_v7_0_enable_gfx_cgpg(struct amdgpu_device *adev, bool enable) { u32 data, orig; if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) { orig = data = RREG32(mmRLC_PG_CNTL); data |= RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); orig = data = RREG32(mmRLC_AUTO_PG_CTRL); data |= RLC_AUTO_PG_CTRL__AUTO_PG_EN_MASK; if (orig != data) WREG32(mmRLC_AUTO_PG_CTRL, data); } else { orig = data = RREG32(mmRLC_PG_CNTL); data &= ~RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); orig = data = RREG32(mmRLC_AUTO_PG_CTRL); data &= ~RLC_AUTO_PG_CTRL__AUTO_PG_EN_MASK; if (orig != data) WREG32(mmRLC_AUTO_PG_CTRL, data); data = RREG32(mmDB_RENDER_CONTROL); } } static void gfx_v7_0_set_user_cu_inactive_bitmap(struct amdgpu_device *adev, u32 bitmap) { u32 data; if (!bitmap) return; data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; WREG32(mmGC_USER_SHADER_ARRAY_CONFIG, data); } static u32 gfx_v7_0_get_cu_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32(mmCC_GC_SHADER_ARRAY_CONFIG); data |= RREG32(mmGC_USER_SHADER_ARRAY_CONFIG); data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh); return (~data) & mask; } static void gfx_v7_0_init_ao_cu_mask(struct amdgpu_device *adev) { u32 tmp; WREG32(mmRLC_PG_ALWAYS_ON_CU_MASK, adev->gfx.cu_info.ao_cu_mask); tmp = RREG32(mmRLC_MAX_PG_CU); tmp &= ~RLC_MAX_PG_CU__MAX_POWERED_UP_CU_MASK; tmp |= (adev->gfx.cu_info.number << RLC_MAX_PG_CU__MAX_POWERED_UP_CU__SHIFT); WREG32(mmRLC_MAX_PG_CU, tmp); } static void gfx_v7_0_enable_gfx_static_mgpg(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG)) data |= RLC_PG_CNTL__STATIC_PER_CU_PG_ENABLE_MASK; else data &= ~RLC_PG_CNTL__STATIC_PER_CU_PG_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } static void gfx_v7_0_enable_gfx_dynamic_mgpg(struct amdgpu_device *adev, bool enable) { u32 data, orig; orig = data = RREG32(mmRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG)) data |= RLC_PG_CNTL__DYN_PER_CU_PG_ENABLE_MASK; else data &= ~RLC_PG_CNTL__DYN_PER_CU_PG_ENABLE_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); } #define RLC_SAVE_AND_RESTORE_STARTING_OFFSET 0x90 #define RLC_CLEAR_STATE_DESCRIPTOR_OFFSET 0x3D static void gfx_v7_0_init_gfx_cgpg(struct amdgpu_device *adev) { u32 data, orig; u32 i; if (adev->gfx.rlc.cs_data) { WREG32(mmRLC_GPM_SCRATCH_ADDR, RLC_CLEAR_STATE_DESCRIPTOR_OFFSET); WREG32(mmRLC_GPM_SCRATCH_DATA, upper_32_bits(adev->gfx.rlc.clear_state_gpu_addr)); WREG32(mmRLC_GPM_SCRATCH_DATA, lower_32_bits(adev->gfx.rlc.clear_state_gpu_addr)); WREG32(mmRLC_GPM_SCRATCH_DATA, adev->gfx.rlc.clear_state_size); } else { WREG32(mmRLC_GPM_SCRATCH_ADDR, RLC_CLEAR_STATE_DESCRIPTOR_OFFSET); for (i = 0; i < 3; i++) WREG32(mmRLC_GPM_SCRATCH_DATA, 0); } if (adev->gfx.rlc.reg_list) { WREG32(mmRLC_GPM_SCRATCH_ADDR, RLC_SAVE_AND_RESTORE_STARTING_OFFSET); for (i = 0; i < adev->gfx.rlc.reg_list_size; i++) WREG32(mmRLC_GPM_SCRATCH_DATA, adev->gfx.rlc.reg_list[i]); } orig = data = RREG32(mmRLC_PG_CNTL); data |= RLC_PG_CNTL__GFX_POWER_GATING_SRC_MASK; if (orig != data) WREG32(mmRLC_PG_CNTL, data); WREG32(mmRLC_SAVE_AND_RESTORE_BASE, adev->gfx.rlc.save_restore_gpu_addr >> 8); WREG32(mmRLC_JUMP_TABLE_RESTORE, adev->gfx.rlc.cp_table_gpu_addr >> 8); data = RREG32(mmCP_RB_WPTR_POLL_CNTL); data &= ~CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT_MASK; data |= (0x60 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); WREG32(mmCP_RB_WPTR_POLL_CNTL, data); data = 0x10101010; WREG32(mmRLC_PG_DELAY, data); data = RREG32(mmRLC_PG_DELAY_2); data &= ~0xff; data |= 0x3; WREG32(mmRLC_PG_DELAY_2, data); data = RREG32(mmRLC_AUTO_PG_CTRL); data &= ~RLC_AUTO_PG_CTRL__GRBM_REG_SAVE_GFX_IDLE_THRESHOLD_MASK; data |= (0x700 << RLC_AUTO_PG_CTRL__GRBM_REG_SAVE_GFX_IDLE_THRESHOLD__SHIFT); WREG32(mmRLC_AUTO_PG_CTRL, data); } static void gfx_v7_0_update_gfx_pg(struct amdgpu_device *adev, bool enable) { gfx_v7_0_enable_gfx_cgpg(adev, enable); gfx_v7_0_enable_gfx_static_mgpg(adev, enable); gfx_v7_0_enable_gfx_dynamic_mgpg(adev, enable); } static u32 gfx_v7_0_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (adev->gfx.rlc.cs_data == NULL) return 0; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* pa_sc_raster_config/pa_sc_raster_config1 */ count += 4; /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static void gfx_v7_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 2)); buffer[count++] = cpu_to_le32(mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START); switch (adev->asic_type) { case CHIP_BONAIRE: buffer[count++] = cpu_to_le32(0x16000012); buffer[count++] = cpu_to_le32(0x00000000); break; case CHIP_KAVERI: buffer[count++] = cpu_to_le32(0x00000000); /* XXX */ buffer[count++] = cpu_to_le32(0x00000000); break; case CHIP_KABINI: case CHIP_MULLINS: buffer[count++] = cpu_to_le32(0x00000000); /* XXX */ buffer[count++] = cpu_to_le32(0x00000000); break; case CHIP_HAWAII: buffer[count++] = cpu_to_le32(0x3a00161a); buffer[count++] = cpu_to_le32(0x0000002e); break; default: buffer[count++] = cpu_to_le32(0x00000000); buffer[count++] = cpu_to_le32(0x00000000); break; } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void gfx_v7_0_init_pg(struct amdgpu_device *adev) { if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GDS | AMD_PG_SUPPORT_RLC_SMU_HS)) { gfx_v7_0_enable_sclk_slowdown_on_pu(adev, true); gfx_v7_0_enable_sclk_slowdown_on_pd(adev, true); if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) { gfx_v7_0_init_gfx_cgpg(adev); gfx_v7_0_enable_cp_pg(adev, true); gfx_v7_0_enable_gds_pg(adev, true); } gfx_v7_0_init_ao_cu_mask(adev); gfx_v7_0_update_gfx_pg(adev, true); } } static void gfx_v7_0_fini_pg(struct amdgpu_device *adev) { if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GDS | AMD_PG_SUPPORT_RLC_SMU_HS)) { gfx_v7_0_update_gfx_pg(adev, false); if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) { gfx_v7_0_enable_cp_pg(adev, false); gfx_v7_0_enable_gds_pg(adev, false); } } } /** * gfx_v7_0_get_gpu_clock_counter - return GPU clock counter snapshot * * @adev: amdgpu_device pointer * * Fetches a GPU clock counter snapshot (SI). * Returns the 64 bit clock counter snapshot. */ static uint64_t gfx_v7_0_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; mutex_lock(&adev->gfx.gpu_clock_mutex); WREG32(mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&adev->gfx.gpu_clock_mutex); return clock; } static void gfx_v7_0_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { gds_base = gds_base >> AMDGPU_GDS_SHIFT; gds_size = gds_size >> AMDGPU_GDS_SHIFT; gws_base = gws_base >> AMDGPU_GWS_SHIFT; gws_size = gws_size >> AMDGPU_GWS_SHIFT; oa_base = oa_base >> AMDGPU_OA_SHIFT; oa_size = oa_size >> AMDGPU_OA_SHIFT; /* GDS Base */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_base); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gds_base); /* GDS Size */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_size); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gds_size); /* GWS */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].gws); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].oa); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t address) { WREG32(mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK)); return RREG32(mmSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32(mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__THREAD_ID__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32(mmSQ_IND_DATA); } static void gfx_v7_0_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* type 0 wave data */ dst[(*no_fields)++] = 0; dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_HW_ID); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW1); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_DBG0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_M0); } static void gfx_v7_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs( adev, simd, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static const struct amdgpu_gfx_funcs gfx_v7_0_gfx_funcs = { .get_gpu_clock_counter = &gfx_v7_0_get_gpu_clock_counter, .select_se_sh = &gfx_v7_0_select_se_sh, .read_wave_data = &gfx_v7_0_read_wave_data, .read_wave_sgprs = &gfx_v7_0_read_wave_sgprs, }; static const struct amdgpu_rlc_funcs gfx_v7_0_rlc_funcs = { .enter_safe_mode = gfx_v7_0_enter_rlc_safe_mode, .exit_safe_mode = gfx_v7_0_exit_rlc_safe_mode }; static int gfx_v7_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.num_gfx_rings = GFX7_NUM_GFX_RINGS; adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS; adev->gfx.funcs = &gfx_v7_0_gfx_funcs; adev->gfx.rlc.funcs = &gfx_v7_0_rlc_funcs; gfx_v7_0_set_ring_funcs(adev); gfx_v7_0_set_irq_funcs(adev); gfx_v7_0_set_gds_init(adev); return 0; } static int gfx_v7_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; return 0; } static void gfx_v7_0_gpu_early_init(struct amdgpu_device *adev) { u32 gb_addr_config; u32 mc_shared_chmap, mc_arb_ramcfg; u32 dimm00_addr_map, dimm01_addr_map, dimm10_addr_map, dimm11_addr_map; u32 tmp; switch (adev->asic_type) { case CHIP_BONAIRE: adev->gfx.config.max_shader_engines = 2; adev->gfx.config.max_tile_pipes = 4; adev->gfx.config.max_cu_per_sh = 7; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 2; adev->gfx.config.max_texture_channel_caches = 4; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_HAWAII: adev->gfx.config.max_shader_engines = 4; adev->gfx.config.max_tile_pipes = 16; adev->gfx.config.max_cu_per_sh = 11; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 4; adev->gfx.config.max_texture_channel_caches = 16; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = HAWAII_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_KAVERI: adev->gfx.config.max_shader_engines = 1; adev->gfx.config.max_tile_pipes = 4; if ((adev->pdev->device == 0x1304) || (adev->pdev->device == 0x1305) || (adev->pdev->device == 0x130C) || (adev->pdev->device == 0x130F) || (adev->pdev->device == 0x1310) || (adev->pdev->device == 0x1311) || (adev->pdev->device == 0x131C)) { adev->gfx.config.max_cu_per_sh = 8; adev->gfx.config.max_backends_per_se = 2; } else if ((adev->pdev->device == 0x1309) || (adev->pdev->device == 0x130A) || (adev->pdev->device == 0x130D) || (adev->pdev->device == 0x1313) || (adev->pdev->device == 0x131D)) { adev->gfx.config.max_cu_per_sh = 6; adev->gfx.config.max_backends_per_se = 2; } else if ((adev->pdev->device == 0x1306) || (adev->pdev->device == 0x1307) || (adev->pdev->device == 0x130B) || (adev->pdev->device == 0x130E) || (adev->pdev->device == 0x1315) || (adev->pdev->device == 0x131B)) { adev->gfx.config.max_cu_per_sh = 4; adev->gfx.config.max_backends_per_se = 1; } else { adev->gfx.config.max_cu_per_sh = 3; adev->gfx.config.max_backends_per_se = 1; } adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_texture_channel_caches = 4; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 16; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_KABINI: case CHIP_MULLINS: default: adev->gfx.config.max_shader_engines = 1; adev->gfx.config.max_tile_pipes = 2; adev->gfx.config.max_cu_per_sh = 2; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 1; adev->gfx.config.max_texture_channel_caches = 2; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 16; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; break; } mc_shared_chmap = RREG32(mmMC_SHARED_CHMAP); adev->gfx.config.mc_arb_ramcfg = RREG32(mmMC_ARB_RAMCFG); mc_arb_ramcfg = adev->gfx.config.mc_arb_ramcfg; adev->gfx.config.num_tile_pipes = adev->gfx.config.max_tile_pipes; adev->gfx.config.mem_max_burst_length_bytes = 256; if (adev->flags & AMD_IS_APU) { /* Get memory bank mapping mode. */ tmp = RREG32(mmMC_FUS_DRAM0_BANK_ADDR_MAPPING); dimm00_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM0ADDRMAP); dimm01_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM1ADDRMAP); tmp = RREG32(mmMC_FUS_DRAM1_BANK_ADDR_MAPPING); dimm10_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM0ADDRMAP); dimm11_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM1ADDRMAP); /* Validate settings in case only one DIMM installed. */ if ((dimm00_addr_map == 0) || (dimm00_addr_map == 3) || (dimm00_addr_map == 4) || (dimm00_addr_map > 12)) dimm00_addr_map = 0; if ((dimm01_addr_map == 0) || (dimm01_addr_map == 3) || (dimm01_addr_map == 4) || (dimm01_addr_map > 12)) dimm01_addr_map = 0; if ((dimm10_addr_map == 0) || (dimm10_addr_map == 3) || (dimm10_addr_map == 4) || (dimm10_addr_map > 12)) dimm10_addr_map = 0; if ((dimm11_addr_map == 0) || (dimm11_addr_map == 3) || (dimm11_addr_map == 4) || (dimm11_addr_map > 12)) dimm11_addr_map = 0; /* If DIMM Addr map is 8GB, ROW size should be 2KB. Otherwise 1KB. */ /* If ROW size(DIMM1) != ROW size(DMIMM0), ROW size should be larger one. */ if ((dimm00_addr_map == 11) || (dimm01_addr_map == 11) || (dimm10_addr_map == 11) || (dimm11_addr_map == 11)) adev->gfx.config.mem_row_size_in_kb = 2; else adev->gfx.config.mem_row_size_in_kb = 1; } else { tmp = (mc_arb_ramcfg & MC_ARB_RAMCFG__NOOFCOLS_MASK) >> MC_ARB_RAMCFG__NOOFCOLS__SHIFT; adev->gfx.config.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (adev->gfx.config.mem_row_size_in_kb > 4) adev->gfx.config.mem_row_size_in_kb = 4; } /* XXX use MC settings? */ adev->gfx.config.shader_engine_tile_size = 32; adev->gfx.config.num_gpus = 1; adev->gfx.config.multi_gpu_tile_size = 64; /* fix up row size */ gb_addr_config &= ~GB_ADDR_CONFIG__ROW_SIZE_MASK; switch (adev->gfx.config.mem_row_size_in_kb) { case 1: default: gb_addr_config |= (0 << GB_ADDR_CONFIG__ROW_SIZE__SHIFT); break; case 2: gb_addr_config |= (1 << GB_ADDR_CONFIG__ROW_SIZE__SHIFT); break; case 4: gb_addr_config |= (2 << GB_ADDR_CONFIG__ROW_SIZE__SHIFT); break; } adev->gfx.config.gb_addr_config = gb_addr_config; } static int gfx_v7_0_compute_ring_init(struct amdgpu_device *adev, int ring_id, int mec, int pipe, int queue) { int r; unsigned irq_type; struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = AMDGPU_DOORBELL_MEC_RING0 + ring_id; sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type); if (r) return r; return 0; } static int gfx_v7_0_sw_init(void *handle) { struct amdgpu_ring *ring; struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i, j, k, r, ring_id; switch (adev->asic_type) { case CHIP_KAVERI: adev->gfx.mec.num_mec = 2; break; case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KABINI: case CHIP_MULLINS: default: adev->gfx.mec.num_mec = 1; break; } adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; /* EOP Event */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 181, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 184, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 185, &adev->gfx.priv_inst_irq); if (r) return r; gfx_v7_0_scratch_init(adev); r = gfx_v7_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load gfx firmware!\n"); return r; } r = gfx_v7_0_rlc_init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } /* allocate mec buffers */ r = gfx_v7_0_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; ring->ring_obj = NULL; sprintf(ring->name, "gfx"); r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, AMDGPU_CP_IRQ_GFX_EOP); if (r) return r; } /* set up the compute queues - allocate horizontally across pipes */ ring_id = 0; for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { if (!amdgpu_gfx_is_mec_queue_enabled(adev, i, k, j)) continue; r = gfx_v7_0_compute_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } /* reserve GDS, GWS and OA resource for gfx */ r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GDS, &adev->gds.gds_gfx_bo, NULL, NULL); if (r) return r; r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GWS, &adev->gds.gws_gfx_bo, NULL, NULL); if (r) return r; r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_OA, &adev->gds.oa_gfx_bo, NULL, NULL); if (r) return r; adev->gfx.ce_ram_size = 0x8000; gfx_v7_0_gpu_early_init(adev); return r; } static int gfx_v7_0_sw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_bo_free_kernel(&adev->gds.oa_gfx_bo, NULL, NULL); amdgpu_bo_free_kernel(&adev->gds.gws_gfx_bo, NULL, NULL); amdgpu_bo_free_kernel(&adev->gds.gds_gfx_bo, NULL, NULL); for (i = 0; i < adev->gfx.num_gfx_rings; i++) amdgpu_ring_fini(&adev->gfx.gfx_ring[i]); for (i = 0; i < adev->gfx.num_compute_rings; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); gfx_v7_0_cp_compute_fini(adev); gfx_v7_0_rlc_fini(adev); gfx_v7_0_mec_fini(adev); gfx_v7_0_free_microcode(adev); return 0; } static int gfx_v7_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gfx_v7_0_gpu_init(adev); /* init rlc */ r = gfx_v7_0_rlc_resume(adev); if (r) return r; r = gfx_v7_0_cp_resume(adev); if (r) return r; return r; } static int gfx_v7_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); gfx_v7_0_cp_enable(adev, false); gfx_v7_0_rlc_stop(adev); gfx_v7_0_fini_pg(adev); return 0; } static int gfx_v7_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return gfx_v7_0_hw_fini(adev); } static int gfx_v7_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return gfx_v7_0_hw_init(adev); } static bool gfx_v7_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (RREG32(mmGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK) return false; else return true; } static int gfx_v7_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(mmGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK; if (!tmp) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v7_0_soft_reset(void *handle) { u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* GRBM_STATUS */ tmp = RREG32(mmGRBM_STATUS); if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK | GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK | GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK)) grbm_soft_reset |= GRBM_SOFT_RESET__SOFT_RESET_CP_MASK | GRBM_SOFT_RESET__SOFT_RESET_GFX_MASK; if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) { grbm_soft_reset |= GRBM_SOFT_RESET__SOFT_RESET_CP_MASK; srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_GRBM_MASK; } /* GRBM_STATUS2 */ tmp = RREG32(mmGRBM_STATUS2); if (tmp & GRBM_STATUS2__RLC_BUSY_MASK) grbm_soft_reset |= GRBM_SOFT_RESET__SOFT_RESET_RLC_MASK; /* SRBM_STATUS */ tmp = RREG32(mmSRBM_STATUS); if (tmp & SRBM_STATUS__GRBM_RQ_PENDING_MASK) srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_GRBM_MASK; if (grbm_soft_reset || srbm_soft_reset) { /* disable CG/PG */ gfx_v7_0_fini_pg(adev); gfx_v7_0_update_cg(adev, false); /* stop the rlc */ gfx_v7_0_rlc_stop(adev); /* Disable GFX parsing/prefetching */ WREG32(mmCP_ME_CNTL, CP_ME_CNTL__ME_HALT_MASK | CP_ME_CNTL__PFP_HALT_MASK | CP_ME_CNTL__CE_HALT_MASK); /* Disable MEC parsing/prefetching */ WREG32(mmCP_MEC_CNTL, CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK); if (grbm_soft_reset) { tmp = RREG32(mmGRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmGRBM_SOFT_RESET, tmp); tmp = RREG32(mmGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(mmGRBM_SOFT_RESET, tmp); tmp = RREG32(mmGRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); } return 0; } static void gfx_v7_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev, enum amdgpu_interrupt_state state) { u32 cp_int_cntl; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl &= ~CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl |= CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; default: break; } } static void gfx_v7_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state) { /* Me 0 is for graphics and Me 2 is reserved for HW scheduling * So we should only really be configuring ME 1 i.e. MEC0 */ if (me != 1) { DRM_ERROR("Ignoring request to enable interrupts for invalid me:%d\n", me); return; } if (pipe >= adev->gfx.mec.num_pipe_per_mec) { DRM_ERROR("Ignoring request to enable interrupts for invalid " "me:%d pipe:%d\n", pipe, me); return; } mutex_lock(&adev->srbm_mutex); cik_srbm_select(adev, me, pipe, 0, 0); WREG32_FIELD(CPC_INT_CNTL, TIME_STAMP_INT_ENABLE, state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1); cik_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static int gfx_v7_0_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 cp_int_cntl; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl &= ~CP_INT_CNTL_RING0__PRIV_REG_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl |= CP_INT_CNTL_RING0__PRIV_REG_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; default: break; } return 0; } static int gfx_v7_0_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 cp_int_cntl; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl &= ~CP_INT_CNTL_RING0__PRIV_INSTR_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0); cp_int_cntl |= CP_INT_CNTL_RING0__PRIV_INSTR_INT_ENABLE_MASK; WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl); break; default: break; } return 0; } static int gfx_v7_0_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CP_IRQ_GFX_EOP: gfx_v7_0_set_gfx_eop_interrupt_state(adev, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 1, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 1, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 1, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 1, 3, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 2, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 2, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 2, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP: gfx_v7_0_set_compute_eop_interrupt_state(adev, 2, 3, state); break; default: break; } return 0; } static int gfx_v7_0_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id; struct amdgpu_ring *ring; int i; DRM_DEBUG("IH: CP EOP\n"); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; switch (me_id) { case 0: amdgpu_fence_process(&adev->gfx.gfx_ring[0]); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if ((ring->me == me_id) && (ring->pipe == pipe_id)) amdgpu_fence_process(ring); } break; } return 0; } static int gfx_v7_0_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); schedule_work(&adev->reset_work); return 0; } static int gfx_v7_0_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); // XXX soft reset the gfx block only schedule_work(&adev->reset_work); return 0; } static int gfx_v7_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { bool gate = false; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (state == AMD_CG_STATE_GATE) gate = true; gfx_v7_0_enable_gui_idle_interrupt(adev, false); /* order matters! */ if (gate) { gfx_v7_0_enable_mgcg(adev, true); gfx_v7_0_enable_cgcg(adev, true); } else { gfx_v7_0_enable_cgcg(adev, false); gfx_v7_0_enable_mgcg(adev, false); } gfx_v7_0_enable_gui_idle_interrupt(adev, true); return 0; } static int gfx_v7_0_set_powergating_state(void *handle, enum amd_powergating_state state) { bool gate = false; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (state == AMD_PG_STATE_GATE) gate = true; if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GDS | AMD_PG_SUPPORT_RLC_SMU_HS)) { gfx_v7_0_update_gfx_pg(adev, gate); if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) { gfx_v7_0_enable_cp_pg(adev, gate); gfx_v7_0_enable_gds_pg(adev, gate); } } return 0; } static const struct amd_ip_funcs gfx_v7_0_ip_funcs = { .name = "gfx_v7_0", .early_init = gfx_v7_0_early_init, .late_init = gfx_v7_0_late_init, .sw_init = gfx_v7_0_sw_init, .sw_fini = gfx_v7_0_sw_fini, .hw_init = gfx_v7_0_hw_init, .hw_fini = gfx_v7_0_hw_fini, .suspend = gfx_v7_0_suspend, .resume = gfx_v7_0_resume, .is_idle = gfx_v7_0_is_idle, .wait_for_idle = gfx_v7_0_wait_for_idle, .soft_reset = gfx_v7_0_soft_reset, .set_clockgating_state = gfx_v7_0_set_clockgating_state, .set_powergating_state = gfx_v7_0_set_powergating_state, }; static const struct amdgpu_ring_funcs gfx_v7_0_ring_funcs_gfx = { .type = AMDGPU_RING_TYPE_GFX, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = false, .get_rptr = gfx_v7_0_ring_get_rptr, .get_wptr = gfx_v7_0_ring_get_wptr_gfx, .set_wptr = gfx_v7_0_ring_set_wptr_gfx, .emit_frame_size = 20 + /* gfx_v7_0_ring_emit_gds_switch */ 7 + /* gfx_v7_0_ring_emit_hdp_flush */ 5 + /* gfx_v7_0_ring_emit_hdp_invalidate */ 12 + 12 + 12 + /* gfx_v7_0_ring_emit_fence_gfx x3 for user fence, vm fence */ 7 + 4 + /* gfx_v7_0_ring_emit_pipeline_sync */ 17 + 6 + /* gfx_v7_0_ring_emit_vm_flush */ 3 + 4, /* gfx_v7_ring_emit_cntxcntl including vgt flush*/ .emit_ib_size = 4, /* gfx_v7_0_ring_emit_ib_gfx */ .emit_ib = gfx_v7_0_ring_emit_ib_gfx, .emit_fence = gfx_v7_0_ring_emit_fence_gfx, .emit_pipeline_sync = gfx_v7_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v7_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v7_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v7_0_ring_emit_hdp_flush, .emit_hdp_invalidate = gfx_v7_0_ring_emit_hdp_invalidate, .test_ring = gfx_v7_0_ring_test_ring, .test_ib = gfx_v7_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_cntxcntl = gfx_v7_ring_emit_cntxcntl, }; static const struct amdgpu_ring_funcs gfx_v7_0_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = false, .get_rptr = gfx_v7_0_ring_get_rptr, .get_wptr = gfx_v7_0_ring_get_wptr_compute, .set_wptr = gfx_v7_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v7_0_ring_emit_gds_switch */ 7 + /* gfx_v7_0_ring_emit_hdp_flush */ 5 + /* gfx_v7_0_ring_emit_hdp_invalidate */ 7 + /* gfx_v7_0_ring_emit_pipeline_sync */ 17 + /* gfx_v7_0_ring_emit_vm_flush */ 7 + 7 + 7, /* gfx_v7_0_ring_emit_fence_compute x3 for user fence, vm fence */ .emit_ib_size = 4, /* gfx_v7_0_ring_emit_ib_compute */ .emit_ib = gfx_v7_0_ring_emit_ib_compute, .emit_fence = gfx_v7_0_ring_emit_fence_compute, .emit_pipeline_sync = gfx_v7_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v7_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v7_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v7_0_ring_emit_hdp_flush, .emit_hdp_invalidate = gfx_v7_0_ring_emit_hdp_invalidate, .test_ring = gfx_v7_0_ring_test_ring, .test_ib = gfx_v7_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, }; static void gfx_v7_0_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].funcs = &gfx_v7_0_ring_funcs_gfx; for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].funcs = &gfx_v7_0_ring_funcs_compute; } static const struct amdgpu_irq_src_funcs gfx_v7_0_eop_irq_funcs = { .set = gfx_v7_0_set_eop_interrupt_state, .process = gfx_v7_0_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v7_0_priv_reg_irq_funcs = { .set = gfx_v7_0_set_priv_reg_fault_state, .process = gfx_v7_0_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v7_0_priv_inst_irq_funcs = { .set = gfx_v7_0_set_priv_inst_fault_state, .process = gfx_v7_0_priv_inst_irq, }; static void gfx_v7_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v7_0_eop_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v7_0_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v7_0_priv_inst_irq_funcs; } static void gfx_v7_0_set_gds_init(struct amdgpu_device *adev) { /* init asci gds info */ adev->gds.mem.total_size = RREG32(mmGDS_VMID0_SIZE); adev->gds.gws.total_size = 64; adev->gds.oa.total_size = 16; if (adev->gds.mem.total_size == 64 * 1024) { adev->gds.mem.gfx_partition_size = 4096; adev->gds.mem.cs_partition_size = 4096; adev->gds.gws.gfx_partition_size = 4; adev->gds.gws.cs_partition_size = 4; adev->gds.oa.gfx_partition_size = 4; adev->gds.oa.cs_partition_size = 1; } else { adev->gds.mem.gfx_partition_size = 1024; adev->gds.mem.cs_partition_size = 1024; adev->gds.gws.gfx_partition_size = 16; adev->gds.gws.cs_partition_size = 16; adev->gds.oa.gfx_partition_size = 4; adev->gds.oa.cs_partition_size = 4; } } static void gfx_v7_0_get_cu_info(struct amdgpu_device *adev) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0; struct amdgpu_cu_info *cu_info = &adev->gfx.cu_info; unsigned disable_masks[4 * 2]; u32 ao_cu_num; if (adev->flags & AMD_IS_APU) ao_cu_num = 2; else ao_cu_num = adev->gfx.config.max_cu_per_sh; memset(cu_info, 0, sizeof(*cu_info)); amdgpu_gfx_parse_disable_cu(disable_masks, 4, 2); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; ao_bitmap = 0; counter = 0; gfx_v7_0_select_se_sh(adev, i, j, 0xffffffff); if (i < 4 && j < 2) gfx_v7_0_set_user_cu_inactive_bitmap( adev, disable_masks[i * 2 + j]); bitmap = gfx_v7_0_get_cu_active_bitmap(adev); cu_info->bitmap[i][j] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) { if (bitmap & mask) { if (counter < ao_cu_num) ao_bitmap |= mask; counter ++; } mask <<= 1; } active_cu_number += counter; ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8)); } } gfx_v7_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->ao_cu_mask = ao_cu_mask; } const struct amdgpu_ip_block_version gfx_v7_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 7, .minor = 0, .rev = 0, .funcs = &gfx_v7_0_ip_funcs, }; const struct amdgpu_ip_block_version gfx_v7_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 7, .minor = 1, .rev = 0, .funcs = &gfx_v7_0_ip_funcs, }; const struct amdgpu_ip_block_version gfx_v7_2_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 7, .minor = 2, .rev = 0, .funcs = &gfx_v7_0_ip_funcs, }; const struct amdgpu_ip_block_version gfx_v7_3_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 7, .minor = 3, .rev = 0, .funcs = &gfx_v7_0_ip_funcs, };