/* * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #define PTE_SIZE 12 /* #define DEBUG_MMU */ #ifdef DEBUG_MMU #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) #else #define dprintk_mmu(a, ...) do { } while(0) #endif static struct kmem_cache *hpte_cache; static inline u64 kvmppc_mmu_hash_pte(u64 eaddr) { return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE); } static inline u64 kvmppc_mmu_hash_vpte(u64 vpage) { return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE); } static inline u64 kvmppc_mmu_hash_vpte_long(u64 vpage) { return hash_64((vpage & 0xffffff000ULL) >> 12, HPTEG_HASH_BITS_VPTE_LONG); } void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { u64 index; spin_lock(&vcpu->arch.mmu_lock); /* Add to ePTE list */ index = kvmppc_mmu_hash_pte(pte->pte.eaddr); hlist_add_head_rcu(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]); /* Add to vPTE list */ index = kvmppc_mmu_hash_vpte(pte->pte.vpage); hlist_add_head_rcu(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]); /* Add to vPTE_long list */ index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage); hlist_add_head_rcu(&pte->list_vpte_long, &vcpu->arch.hpte_hash_vpte_long[index]); spin_unlock(&vcpu->arch.mmu_lock); } static void free_pte_rcu(struct rcu_head *head) { struct hpte_cache *pte = container_of(head, struct hpte_cache, rcu_head); kmem_cache_free(hpte_cache, pte); } static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { /* pte already invalidated? */ if (hlist_unhashed(&pte->list_pte)) return; dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n", pte->pte.eaddr, pte->pte.vpage, pte->host_va); /* Different for 32 and 64 bit */ kvmppc_mmu_invalidate_pte(vcpu, pte); spin_lock(&vcpu->arch.mmu_lock); hlist_del_init_rcu(&pte->list_pte); hlist_del_init_rcu(&pte->list_vpte); hlist_del_init_rcu(&pte->list_vpte_long); spin_unlock(&vcpu->arch.mmu_lock); if (pte->pte.may_write) kvm_release_pfn_dirty(pte->pfn); else kvm_release_pfn_clean(pte->pfn); vcpu->arch.hpte_cache_count--; call_rcu(&pte->rcu_head, free_pte_rcu); } static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu) { struct hpte_cache *pte; struct hlist_node *node; int i; rcu_read_lock(); for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) invalidate_pte(vcpu, pte); } rcu_read_unlock(); } static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea) { struct hlist_head *list; struct hlist_node *node; struct hpte_cache *pte; /* Find the list of entries in the map */ list = &vcpu->arch.hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)]; rcu_read_lock(); /* Check the list for matching entries and invalidate */ hlist_for_each_entry_rcu(pte, node, list, list_pte) if ((pte->pte.eaddr & ~0xfffUL) == guest_ea) invalidate_pte(vcpu, pte); rcu_read_unlock(); } void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) { u64 i; dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n", vcpu->arch.hpte_cache_count, guest_ea, ea_mask); guest_ea &= ea_mask; switch (ea_mask) { case ~0xfffUL: kvmppc_mmu_pte_flush_page(vcpu, guest_ea); break; case 0x0ffff000: /* 32-bit flush w/o segment, go through all possible segments */ for (i = 0; i < 0x100000000ULL; i += 0x10000000ULL) kvmppc_mmu_pte_flush(vcpu, guest_ea | i, ~0xfffUL); break; case 0: /* Doing a complete flush -> start from scratch */ kvmppc_mmu_pte_flush_all(vcpu); break; default: WARN_ON(1); break; } } /* Flush with mask 0xfffffffff */ static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp) { struct hlist_head *list; struct hlist_node *node; struct hpte_cache *pte; u64 vp_mask = 0xfffffffffULL; list = &vcpu->arch.hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)]; rcu_read_lock(); /* Check the list for matching entries and invalidate */ hlist_for_each_entry_rcu(pte, node, list, list_vpte) if ((pte->pte.vpage & vp_mask) == guest_vp) invalidate_pte(vcpu, pte); rcu_read_unlock(); } /* Flush with mask 0xffffff000 */ static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp) { struct hlist_head *list; struct hlist_node *node; struct hpte_cache *pte; u64 vp_mask = 0xffffff000ULL; list = &vcpu->arch.hpte_hash_vpte_long[ kvmppc_mmu_hash_vpte_long(guest_vp)]; rcu_read_lock(); /* Check the list for matching entries and invalidate */ hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) if ((pte->pte.vpage & vp_mask) == guest_vp) invalidate_pte(vcpu, pte); rcu_read_unlock(); } void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) { dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_count, guest_vp, vp_mask); guest_vp &= vp_mask; switch(vp_mask) { case 0xfffffffffULL: kvmppc_mmu_pte_vflush_short(vcpu, guest_vp); break; case 0xffffff000ULL: kvmppc_mmu_pte_vflush_long(vcpu, guest_vp); break; default: WARN_ON(1); return; } } void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) { struct hlist_node *node; struct hpte_cache *pte; int i; dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx - 0x%lx\n", vcpu->arch.hpte_cache_count, pa_start, pa_end); rcu_read_lock(); for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) if ((pte->pte.raddr >= pa_start) && (pte->pte.raddr < pa_end)) invalidate_pte(vcpu, pte); } rcu_read_unlock(); } struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) { struct hpte_cache *pte; pte = kmem_cache_zalloc(hpte_cache, GFP_KERNEL); vcpu->arch.hpte_cache_count++; if (vcpu->arch.hpte_cache_count == HPTEG_CACHE_NUM) kvmppc_mmu_pte_flush_all(vcpu); return pte; } void kvmppc_mmu_hpte_destroy(struct kvm_vcpu *vcpu) { kvmppc_mmu_pte_flush(vcpu, 0, 0); } static void kvmppc_mmu_hpte_init_hash(struct hlist_head *hash_list, int len) { int i; for (i = 0; i < len; i++) INIT_HLIST_HEAD(&hash_list[i]); } int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu) { /* init hpte lookup hashes */ kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte, ARRAY_SIZE(vcpu->arch.hpte_hash_pte)); kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte, ARRAY_SIZE(vcpu->arch.hpte_hash_vpte)); kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte_long, ARRAY_SIZE(vcpu->arch.hpte_hash_vpte_long)); spin_lock_init(&vcpu->arch.mmu_lock); return 0; } int kvmppc_mmu_hpte_sysinit(void) { /* init hpte slab cache */ hpte_cache = kmem_cache_create("kvm-spt", sizeof(struct hpte_cache), sizeof(struct hpte_cache), 0, NULL); return 0; } void kvmppc_mmu_hpte_sysexit(void) { kmem_cache_destroy(hpte_cache); }