/* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "mxc_nand" /* Addresses for NFC registers */ #define NFC_BUF_SIZE 0xE00 #define NFC_BUF_ADDR 0xE04 #define NFC_FLASH_ADDR 0xE06 #define NFC_FLASH_CMD 0xE08 #define NFC_CONFIG 0xE0A #define NFC_ECC_STATUS_RESULT 0xE0C #define NFC_RSLTMAIN_AREA 0xE0E #define NFC_RSLTSPARE_AREA 0xE10 #define NFC_WRPROT 0xE12 #define NFC_UNLOCKSTART_BLKADDR 0xE14 #define NFC_UNLOCKEND_BLKADDR 0xE16 #define NFC_NF_WRPRST 0xE18 #define NFC_CONFIG1 0xE1A #define NFC_CONFIG2 0xE1C /* Addresses for NFC RAM BUFFER Main area 0 */ #define MAIN_AREA0 0x000 #define MAIN_AREA1 0x200 #define MAIN_AREA2 0x400 #define MAIN_AREA3 0x600 /* Addresses for NFC SPARE BUFFER Spare area 0 */ #define SPARE_AREA0 0x800 #define SPARE_AREA1 0x810 #define SPARE_AREA2 0x820 #define SPARE_AREA3 0x830 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register * for Command operation */ #define NFC_CMD 0x1 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register * for Address operation */ #define NFC_ADDR 0x2 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register * for Input operation */ #define NFC_INPUT 0x4 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register * for Data Output operation */ #define NFC_OUTPUT 0x8 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register * for Read ID operation */ #define NFC_ID 0x10 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register * for Read Status operation */ #define NFC_STATUS 0x20 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read * Status operation */ #define NFC_INT 0x8000 #define NFC_SP_EN (1 << 2) #define NFC_ECC_EN (1 << 3) #define NFC_INT_MSK (1 << 4) #define NFC_BIG (1 << 5) #define NFC_RST (1 << 6) #define NFC_CE (1 << 7) #define NFC_ONE_CYCLE (1 << 8) struct mxc_nand_host { struct mtd_info mtd; struct nand_chip nand; struct mtd_partition *parts; struct device *dev; void __iomem *regs; int spare_only; int status_request; int pagesize_2k; uint16_t col_addr; struct clk *clk; int clk_act; int irq; wait_queue_head_t irq_waitq; }; /* Define delays in microsec for NAND device operations */ #define TROP_US_DELAY 2000 /* Macros to get byte and bit positions of ECC */ #define COLPOS(x) ((x) >> 3) #define BITPOS(x) ((x) & 0xf) /* Define single bit Error positions in Main & Spare area */ #define MAIN_SINGLEBIT_ERROR 0x4 #define SPARE_SINGLEBIT_ERROR 0x1 /* OOB placement block for use with hardware ecc generation */ static struct nand_ecclayout nand_hw_eccoob_8 = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = {{0, 5}, {11, 5}, } }; static struct nand_ecclayout nand_hw_eccoob_16 = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = {{0, 6}, {12, 4}, } }; #ifdef CONFIG_MTD_PARTITIONS static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; #endif static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) { struct mxc_nand_host *host = dev_id; uint16_t tmp; tmp = readw(host->regs + NFC_CONFIG1); tmp |= NFC_INT_MSK; /* Disable interrupt */ writew(tmp, host->regs + NFC_CONFIG1); wake_up(&host->irq_waitq); return IRQ_HANDLED; } /* This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */ static void wait_op_done(struct mxc_nand_host *host, int max_retries, uint16_t param, int useirq) { uint32_t tmp; if (useirq) { if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_INT_MSK; /* Enable interrupt */ writew(tmp, host->regs + NFC_CONFIG1); wait_event(host->irq_waitq, readw(host->regs + NFC_CONFIG2) & NFC_INT); tmp = readw(host->regs + NFC_CONFIG2); tmp &= ~NFC_INT; writew(tmp, host->regs + NFC_CONFIG2); } } else { while (max_retries-- > 0) { if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { tmp = readw(host->regs + NFC_CONFIG2); tmp &= ~NFC_INT; writew(tmp, host->regs + NFC_CONFIG2); break; } udelay(1); } if (max_retries <= 0) DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", __func__, param); } } /* This function issues the specified command to the NAND device and * waits for completion. */ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) { DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); writew(cmd, host->regs + NFC_FLASH_CMD); writew(NFC_CMD, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, cmd, useirq); } /* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) { DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); writew(addr, host->regs + NFC_FLASH_ADDR); writew(NFC_ADDR, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, addr, islast); } /* This function requests the NANDFC to initate the transfer * of data currently in the NANDFC RAM buffer to the NAND device. */ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); /* NANDFC buffer 0 is used for page read/write */ writew(buf_id, host->regs + NFC_BUF_ADDR); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint16_t config1 = readw(host->regs + NFC_CONFIG1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~(NFC_SP_EN); writew(config1, host->regs + NFC_CONFIG1); } writew(NFC_INPUT, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only, true); } /* Requests NANDFC to initated the transfer of data from the * NAND device into in the NANDFC ram buffer. */ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); /* NANDFC buffer 0 is used for page read/write */ writew(buf_id, host->regs + NFC_BUF_ADDR); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint32_t config1 = readw(host->regs + NFC_CONFIG1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~NFC_SP_EN; writew(config1, host->regs + NFC_CONFIG1); } writew(NFC_OUTPUT, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only, true); } /* Request the NANDFC to perform a read of the NAND device ID. */ static void send_read_id(struct mxc_nand_host *host) { struct nand_chip *this = &host->nand; uint16_t tmp; /* NANDFC buffer 0 is used for device ID output */ writew(0x0, host->regs + NFC_BUF_ADDR); /* Read ID into main buffer */ tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_SP_EN; writew(tmp, host->regs + NFC_CONFIG1); writew(NFC_ID, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0, true); if (this->options & NAND_BUSWIDTH_16) { void __iomem *main_buf = host->regs + MAIN_AREA0; /* compress the ID info */ writeb(readb(main_buf + 2), main_buf + 1); writeb(readb(main_buf + 4), main_buf + 2); writeb(readb(main_buf + 6), main_buf + 3); writeb(readb(main_buf + 8), main_buf + 4); writeb(readb(main_buf + 10), main_buf + 5); } } /* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ static uint16_t get_dev_status(struct mxc_nand_host *host) { void __iomem *main_buf = host->regs + MAIN_AREA1; uint32_t store; uint16_t ret, tmp; /* Issue status request to NAND device */ /* store the main area1 first word, later do recovery */ store = readl(main_buf); /* NANDFC buffer 1 is used for device status to prevent * corruption of read/write buffer on status requests. */ writew(1, host->regs + NFC_BUF_ADDR); /* Read status into main buffer */ tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_SP_EN; writew(tmp, host->regs + NFC_CONFIG1); writew(NFC_STATUS, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0, true); /* Status is placed in first word of main buffer */ /* get status, then recovery area 1 data */ ret = readw(main_buf); writel(store, main_buf); return ret; } /* This functions is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct mtd_info *mtd) { /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1; } static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) { /* * If HW ECC is enabled, we turn it on during init. There is * no need to enable again here. */ } static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; /* * 1-Bit errors are automatically corrected in HW. No need for * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { DEBUG(MTD_DEBUG_LEVEL0, "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } return 0; } static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { return 0; } static u_char mxc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint8_t ret = 0; uint16_t col, rd_word; uint16_t __iomem *main_buf = host->regs + MAIN_AREA0; uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0; /* Check for status request */ if (host->status_request) return get_dev_status(host) & 0xFF; /* Get column for 16-bit access */ col = host->col_addr >> 1; /* If we are accessing the spare region */ if (host->spare_only) rd_word = readw(&spare_buf[col]); else rd_word = readw(&main_buf[col]); /* Pick upper/lower byte of word from RAM buffer */ if (host->col_addr & 0x1) ret = (rd_word >> 8) & 0xFF; else ret = rd_word & 0xFF; /* Update saved column address */ host->col_addr++; return ret; } static uint16_t mxc_nand_read_word(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t col, rd_word, ret; uint16_t __iomem *p; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", host->col_addr); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; if (col < mtd->writesize) p = (host->regs + MAIN_AREA0) + (col >> 1); else p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1); if (col & 1) { rd_word = readw(p); ret = (rd_word >> 8) & 0xff; rd_word = readw(&p[1]); ret |= (rd_word << 8) & 0xff00; } else ret = readw(p); /* Update saved column address */ host->col_addr = col + 2; return ret; } /* Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */ static void mxc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int n, col, i = 0; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); while (n) { void __iomem *p; if (col < mtd->writesize) p = host->regs + MAIN_AREA0 + (col & ~3); else p = host->regs + SPARE_AREA0 - mtd->writesize + (col & ~3); DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, __LINE__, p); if (((col | (int)&buf[i]) & 3) || n < 16) { uint32_t data = 0; if (col & 3 || n < 4) data = readl(p); switch (col & 3) { case 0: if (n) { data = (data & 0xffffff00) | (buf[i++] << 0); n--; col++; } case 1: if (n) { data = (data & 0xffff00ff) | (buf[i++] << 8); n--; col++; } case 2: if (n) { data = (data & 0xff00ffff) | (buf[i++] << 16); n--; col++; } case 3: if (n) { data = (data & 0x00ffffff) | (buf[i++] << 24); n--; col++; } } writel(data, p); } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: n = %d, m = %d, i = %d, col = %d\n", __func__, __LINE__, n, m, i, col); memcpy(p, &buf[i], m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* Read the data buffer from the NAND Flash. To read the data from NAND * Flash first the data output cycle is initiated by the NFC, which copies * the data to RAMbuffer. This data of length len is then copied to buffer buf. */ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int n, col, i = 0; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); while (n) { void __iomem *p; if (col < mtd->writesize) p = host->regs + MAIN_AREA0 + (col & ~3); else p = host->regs + SPARE_AREA0 - mtd->writesize + (col & ~3); if (((col | (int)&buf[i]) & 3) || n < 16) { uint32_t data; data = readl(p); switch (col & 3) { case 0: if (n) { buf[i++] = (uint8_t) (data); n--; col++; } case 1: if (n) { buf[i++] = (uint8_t) (data >> 8); n--; col++; } case 2: if (n) { buf[i++] = (uint8_t) (data >> 16); n--; col++; } case 3: if (n) { buf[i++] = (uint8_t) (data >> 24); n--; col++; } } } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; memcpy(&buf[i], p, m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* Used by the upper layer to verify the data in NAND Flash * with the data in the buf. */ static int mxc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { return -EFAULT; } /* This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE if (chip > 0) { DEBUG(MTD_DEBUG_LEVEL0, "ERROR: Illegal chip select (chip = %d)\n", chip); return; } if (chip == -1) { writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE, host->regs + NFC_CONFIG1); return; } writew(readw(host->regs + NFC_CONFIG1) | NFC_CE, host->regs + NFC_CONFIG1); #endif switch (chip) { case -1: /* Disable the NFC clock */ if (host->clk_act) { clk_disable(host->clk); host->clk_act = 0; } break; case 0: /* Enable the NFC clock */ if (!host->clk_act) { clk_enable(host->clk); host->clk_act = 1; } break; default: break; } } /* Used by the upper layer to write command to NAND Flash for * different operations to be carried out on NAND Flash */ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int useirq = true; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ host->status_request = false; /* Command pre-processing step */ switch (command) { case NAND_CMD_STATUS: host->col_addr = 0; host->status_request = true; break; case NAND_CMD_READ0: host->col_addr = column; host->spare_only = false; useirq = false; break; case NAND_CMD_READOOB: host->col_addr = column; host->spare_only = true; useirq = false; if (host->pagesize_2k) command = NAND_CMD_READ0; /* only READ0 is valid */ break; case NAND_CMD_SEQIN: if (column >= mtd->writesize) { /* * FIXME: before send SEQIN command for write OOB, * We must read one page out. * For K9F1GXX has no READ1 command to set current HW * pointer to spare area, we must write the whole page * including OOB together. */ if (host->pagesize_2k) /* call ourself to read a page */ mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); host->col_addr = column - mtd->writesize; host->spare_only = true; /* Set program pointer to spare region */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READOOB, false); } else { host->spare_only = false; host->col_addr = column; /* Set program pointer to page start */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READ0, false); } useirq = false; break; case NAND_CMD_PAGEPROG: send_prog_page(host, 0, host->spare_only); if (host->pagesize_2k) { /* data in 4 areas datas */ send_prog_page(host, 1, host->spare_only); send_prog_page(host, 2, host->spare_only); send_prog_page(host, 3, host->spare_only); } break; case NAND_CMD_ERASE1: useirq = false; break; } /* Write out the command to the device. */ send_cmd(host, command, useirq); /* Write out column address, if necessary */ if (column != -1) { /* * MXC NANDFC can only perform full page+spare or * spare-only read/write. When the upper layers * layers perform a read/write buf operation, * we will used the saved column adress to index into * the full page. */ send_addr(host, 0, page_addr == -1); if (host->pagesize_2k) /* another col addr cycle for 2k page */ send_addr(host, 0, false); } /* Write out page address, if necessary */ if (page_addr != -1) { /* paddr_0 - p_addr_7 */ send_addr(host, (page_addr & 0xff), false); if (host->pagesize_2k) { send_addr(host, (page_addr >> 8) & 0xFF, false); if (mtd->size >= 0x40000000) send_addr(host, (page_addr >> 16) & 0xff, true); } else { /* One more address cycle for higher density devices */ if (mtd->size >= 0x4000000) { /* paddr_8 - paddr_15 */ send_addr(host, (page_addr >> 8) & 0xff, false); send_addr(host, (page_addr >> 16) & 0xff, true); } else /* paddr_8 - paddr_15 */ send_addr(host, (page_addr >> 8) & 0xff, true); } } /* Command post-processing step */ switch (command) { case NAND_CMD_RESET: break; case NAND_CMD_READOOB: case NAND_CMD_READ0: if (host->pagesize_2k) { /* send read confirm command */ send_cmd(host, NAND_CMD_READSTART, true); /* read for each AREA */ send_read_page(host, 0, host->spare_only); send_read_page(host, 1, host->spare_only); send_read_page(host, 2, host->spare_only); send_read_page(host, 3, host->spare_only); } else send_read_page(host, 0, host->spare_only); break; case NAND_CMD_READID: send_read_id(host); break; case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: break; case NAND_CMD_ERASE2: break; } } static int __init mxcnd_probe(struct platform_device *pdev) { struct nand_chip *this; struct mtd_info *mtd; struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; struct mxc_nand_host *host; struct resource *res; uint16_t tmp; int err = 0, nr_parts = 0; /* Allocate memory for MTD device structure and private data */ host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL); if (!host) return -ENOMEM; host->dev = &pdev->dev; /* structures must be linked */ this = &host->nand; mtd = &host->mtd; mtd->priv = this; mtd->owner = THIS_MODULE; mtd->dev.parent = &pdev->dev; /* 50 us command delay time */ this->chip_delay = 5; this->priv = host; this->dev_ready = mxc_nand_dev_ready; this->cmdfunc = mxc_nand_command; this->select_chip = mxc_nand_select_chip; this->read_byte = mxc_nand_read_byte; this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; this->verify_buf = mxc_nand_verify_buf; host->clk = clk_get(&pdev->dev, "nfc"); if (IS_ERR(host->clk)) goto eclk; clk_enable(host->clk); host->clk_act = 1; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { err = -ENODEV; goto eres; } host->regs = ioremap(res->start, res->end - res->start + 1); if (!host->regs) { err = -EIO; goto eres; } tmp = readw(host->regs + NFC_CONFIG1); tmp |= NFC_INT_MSK; writew(tmp, host->regs + NFC_CONFIG1); init_waitqueue_head(&host->irq_waitq); host->irq = platform_get_irq(pdev, 0); err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host); if (err) goto eirq; if (pdata->hw_ecc) { this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = mxc_nand_correct_data; this->ecc.mode = NAND_ECC_HW; this->ecc.size = 512; this->ecc.bytes = 3; this->ecc.layout = &nand_hw_eccoob_8; tmp = readw(host->regs + NFC_CONFIG1); tmp |= NFC_ECC_EN; writew(tmp, host->regs + NFC_CONFIG1); } else { this->ecc.size = 512; this->ecc.bytes = 3; this->ecc.layout = &nand_hw_eccoob_8; this->ecc.mode = NAND_ECC_SOFT; tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_ECC_EN; writew(tmp, host->regs + NFC_CONFIG1); } /* Reset NAND */ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* preset operation */ /* Unlock the internal RAM Buffer */ writew(0x2, host->regs + NFC_CONFIG); /* Blocks to be unlocked */ writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR); writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR); /* Unlock Block Command for given address range */ writew(0x4, host->regs + NFC_WRPROT); /* NAND bus width determines access funtions used by upper layer */ if (pdata->width == 2) { this->options |= NAND_BUSWIDTH_16; this->ecc.layout = &nand_hw_eccoob_16; } host->pagesize_2k = 0; /* Scan to find existence of the device */ if (nand_scan(mtd, 1)) { DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND: Unable to find any NAND device.\n"); err = -ENXIO; goto escan; } /* Register the partitions */ #ifdef CONFIG_MTD_PARTITIONS nr_parts = parse_mtd_partitions(mtd, part_probes, &host->parts, 0); if (nr_parts > 0) add_mtd_partitions(mtd, host->parts, nr_parts); else #endif { pr_info("Registering %s as whole device\n", mtd->name); add_mtd_device(mtd); } platform_set_drvdata(pdev, host); return 0; escan: free_irq(host->irq, host); eirq: iounmap(host->regs); eres: clk_put(host->clk); eclk: kfree(host); return err; } static int __devexit mxcnd_remove(struct platform_device *pdev) { struct mxc_nand_host *host = platform_get_drvdata(pdev); clk_put(host->clk); platform_set_drvdata(pdev, NULL); nand_release(&host->mtd); free_irq(host->irq, host); iounmap(host->regs); kfree(host); return 0; } #ifdef CONFIG_PM static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) { struct mtd_info *info = platform_get_drvdata(pdev); int ret = 0; DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); /* Disable the NFC clock */ clk_disable(nfc_clk); /* FIXME */ return ret; } static int mxcnd_resume(struct platform_device *pdev) { struct mtd_info *info = platform_get_drvdata(pdev); int ret = 0; DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); /* Enable the NFC clock */ clk_enable(nfc_clk); /* FIXME */ return ret; } #else # define mxcnd_suspend NULL # define mxcnd_resume NULL #endif /* CONFIG_PM */ static struct platform_driver mxcnd_driver = { .driver = { .name = DRIVER_NAME, }, .remove = __exit_p(mxcnd_remove), .suspend = mxcnd_suspend, .resume = mxcnd_resume, }; static int __init mxc_nd_init(void) { /* Register the device driver structure. */ pr_info("MXC MTD nand Driver\n"); if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) { printk(KERN_ERR "Driver register failed for mxcnd_driver\n"); return -ENODEV; } return 0; } static void __exit mxc_nd_cleanup(void) { /* Unregister the device structure */ platform_driver_unregister(&mxcnd_driver); } module_init(mxc_nd_init); module_exit(mxc_nd_cleanup); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MXC NAND MTD driver"); MODULE_LICENSE("GPL");