/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include "hfi.h" #include "qp.h" #include "trace.h" #define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */ #define SC(name) SEND_CTXT_##name /* * Send Context functions */ static void sc_wait_for_packet_egress(struct send_context *sc, int pause); /* * Set the CM reset bit and wait for it to clear. Use the provided * sendctrl register. This routine has no locking. */ void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl) { write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK); while (1) { udelay(1); sendctrl = read_csr(dd, SEND_CTRL); if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0) break; } } /* defined in header release 48 and higher */ #ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT #define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3 #define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull #define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \ << SEND_CTRL_UNSUPPORTED_VL_SHIFT) #endif /* global control of PIO send */ void pio_send_control(struct hfi1_devdata *dd, int op) { u64 reg, mask; unsigned long flags; int write = 1; /* write sendctrl back */ int flush = 0; /* re-read sendctrl to make sure it is flushed */ spin_lock_irqsave(&dd->sendctrl_lock, flags); reg = read_csr(dd, SEND_CTRL); switch (op) { case PSC_GLOBAL_ENABLE: reg |= SEND_CTRL_SEND_ENABLE_SMASK; /* Fall through */ case PSC_DATA_VL_ENABLE: /* Disallow sending on VLs not enabled */ mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) << SEND_CTRL_UNSUPPORTED_VL_SHIFT; reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask; break; case PSC_GLOBAL_DISABLE: reg &= ~SEND_CTRL_SEND_ENABLE_SMASK; break; case PSC_GLOBAL_VLARB_ENABLE: reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK; break; case PSC_GLOBAL_VLARB_DISABLE: reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK; break; case PSC_CM_RESET: __cm_reset(dd, reg); write = 0; /* CSR already written (and flushed) */ break; case PSC_DATA_VL_DISABLE: reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK; flush = 1; break; default: dd_dev_err(dd, "%s: invalid control %d\n", __func__, op); break; } if (write) { write_csr(dd, SEND_CTRL, reg); if (flush) (void)read_csr(dd, SEND_CTRL); /* flush write */ } spin_unlock_irqrestore(&dd->sendctrl_lock, flags); } /* number of send context memory pools */ #define NUM_SC_POOLS 2 /* Send Context Size (SCS) wildcards */ #define SCS_POOL_0 -1 #define SCS_POOL_1 -2 /* Send Context Count (SCC) wildcards */ #define SCC_PER_VL -1 #define SCC_PER_CPU -2 #define SCC_PER_KRCVQ -3 /* Send Context Size (SCS) constants */ #define SCS_ACK_CREDITS 32 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */ #define PIO_THRESHOLD_CEILING 4096 #define PIO_WAIT_BATCH_SIZE 5 /* default send context sizes */ static struct sc_config_sizes sc_config_sizes[SC_MAX] = { [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */ .count = SCC_PER_VL }, /* one per NUMA */ [SC_ACK] = { .size = SCS_ACK_CREDITS, .count = SCC_PER_KRCVQ }, [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */ .count = SCC_PER_CPU }, /* one per CPU */ [SC_VL15] = { .size = SCS_VL15_CREDITS, .count = 1 }, }; /* send context memory pool configuration */ struct mem_pool_config { int centipercent; /* % of memory, in 100ths of 1% */ int absolute_blocks; /* absolute block count */ }; /* default memory pool configuration: 100% in pool 0 */ static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = { /* centi%, abs blocks */ { 10000, -1 }, /* pool 0 */ { 0, -1 }, /* pool 1 */ }; /* memory pool information, used when calculating final sizes */ struct mem_pool_info { int centipercent; /* * 100th of 1% of memory to use, -1 if blocks * already set */ int count; /* count of contexts in the pool */ int blocks; /* block size of the pool */ int size; /* context size, in blocks */ }; /* * Convert a pool wildcard to a valid pool index. The wildcards * start at -1 and increase negatively. Map them as: * -1 => 0 * -2 => 1 * etc. * * Return -1 on non-wildcard input, otherwise convert to a pool number. */ static int wildcard_to_pool(int wc) { if (wc >= 0) return -1; /* non-wildcard */ return -wc - 1; } static const char *sc_type_names[SC_MAX] = { "kernel", "ack", "user", "vl15" }; static const char *sc_type_name(int index) { if (index < 0 || index >= SC_MAX) return "unknown"; return sc_type_names[index]; } /* * Read the send context memory pool configuration and send context * size configuration. Replace any wildcards and come up with final * counts and sizes for the send context types. */ int init_sc_pools_and_sizes(struct hfi1_devdata *dd) { struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } }; int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1; int total_contexts = 0; int fixed_blocks; int pool_blocks; int used_blocks; int cp_total; /* centipercent total */ int ab_total; /* absolute block total */ int extra; int i; /* * When SDMA is enabled, kernel context pio packet size is capped by * "piothreshold". Reduce pio buffer allocation for kernel context by * setting it to a fixed size. The allocation allows 3-deep buffering * of the largest pio packets plus up to 128 bytes header, sufficient * to maintain verbs performance. * * When SDMA is disabled, keep the default pooling allocation. */ if (HFI1_CAP_IS_KSET(SDMA)) { u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ? piothreshold : PIO_THRESHOLD_CEILING; sc_config_sizes[SC_KERNEL].size = 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE; } /* * Step 0: * - copy the centipercents/absolute sizes from the pool config * - sanity check these values * - add up centipercents, then later check for full value * - add up absolute blocks, then later check for over-commit */ cp_total = 0; ab_total = 0; for (i = 0; i < NUM_SC_POOLS; i++) { int cp = sc_mem_pool_config[i].centipercent; int ab = sc_mem_pool_config[i].absolute_blocks; /* * A negative value is "unused" or "invalid". Both *can* * be valid, but centipercent wins, so check that first */ if (cp >= 0) { /* centipercent valid */ cp_total += cp; } else if (ab >= 0) { /* absolute blocks valid */ ab_total += ab; } else { /* neither valid */ dd_dev_err( dd, "Send context memory pool %d: both the block count and centipercent are invalid\n", i); return -EINVAL; } mem_pool_info[i].centipercent = cp; mem_pool_info[i].blocks = ab; } /* do not use both % and absolute blocks for different pools */ if (cp_total != 0 && ab_total != 0) { dd_dev_err( dd, "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n"); return -EINVAL; } /* if any percentages are present, they must add up to 100% x 100 */ if (cp_total != 0 && cp_total != 10000) { dd_dev_err( dd, "Send context memory pool centipercent is %d, expecting 10000\n", cp_total); return -EINVAL; } /* the absolute pool total cannot be more than the mem total */ if (ab_total > total_blocks) { dd_dev_err( dd, "Send context memory pool absolute block count %d is larger than the memory size %d\n", ab_total, total_blocks); return -EINVAL; } /* * Step 2: * - copy from the context size config * - replace context type wildcard counts with real values * - add up non-memory pool block sizes * - add up memory pool user counts */ fixed_blocks = 0; for (i = 0; i < SC_MAX; i++) { int count = sc_config_sizes[i].count; int size = sc_config_sizes[i].size; int pool; /* * Sanity check count: Either a positive value or * one of the expected wildcards is valid. The positive * value is checked later when we compare against total * memory available. */ if (i == SC_ACK) { count = dd->n_krcv_queues; } else if (i == SC_KERNEL) { count = INIT_SC_PER_VL * num_vls; } else if (count == SCC_PER_CPU) { count = dd->num_rcv_contexts - dd->n_krcv_queues; } else if (count < 0) { dd_dev_err( dd, "%s send context invalid count wildcard %d\n", sc_type_name(i), count); return -EINVAL; } if (total_contexts + count > dd->chip_send_contexts) count = dd->chip_send_contexts - total_contexts; total_contexts += count; /* * Sanity check pool: The conversion will return a pool * number or -1 if a fixed (non-negative) value. The fixed * value is checked later when we compare against * total memory available. */ pool = wildcard_to_pool(size); if (pool == -1) { /* non-wildcard */ fixed_blocks += size * count; } else if (pool < NUM_SC_POOLS) { /* valid wildcard */ mem_pool_info[pool].count += count; } else { /* invalid wildcard */ dd_dev_err( dd, "%s send context invalid pool wildcard %d\n", sc_type_name(i), size); return -EINVAL; } dd->sc_sizes[i].count = count; dd->sc_sizes[i].size = size; } if (fixed_blocks > total_blocks) { dd_dev_err( dd, "Send context fixed block count, %u, larger than total block count %u\n", fixed_blocks, total_blocks); return -EINVAL; } /* step 3: calculate the blocks in the pools, and pool context sizes */ pool_blocks = total_blocks - fixed_blocks; if (ab_total > pool_blocks) { dd_dev_err( dd, "Send context fixed pool sizes, %u, larger than pool block count %u\n", ab_total, pool_blocks); return -EINVAL; } /* subtract off the fixed pool blocks */ pool_blocks -= ab_total; for (i = 0; i < NUM_SC_POOLS; i++) { struct mem_pool_info *pi = &mem_pool_info[i]; /* % beats absolute blocks */ if (pi->centipercent >= 0) pi->blocks = (pool_blocks * pi->centipercent) / 10000; if (pi->blocks == 0 && pi->count != 0) { dd_dev_err( dd, "Send context memory pool %d has %u contexts, but no blocks\n", i, pi->count); return -EINVAL; } if (pi->count == 0) { /* warn about wasted blocks */ if (pi->blocks != 0) dd_dev_err( dd, "Send context memory pool %d has %u blocks, but zero contexts\n", i, pi->blocks); pi->size = 0; } else { pi->size = pi->blocks / pi->count; } } /* step 4: fill in the context type sizes from the pool sizes */ used_blocks = 0; for (i = 0; i < SC_MAX; i++) { if (dd->sc_sizes[i].size < 0) { unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size); WARN_ON_ONCE(pool >= NUM_SC_POOLS); dd->sc_sizes[i].size = mem_pool_info[pool].size; } /* make sure we are not larger than what is allowed by the HW */ #define PIO_MAX_BLOCKS 1024 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS) dd->sc_sizes[i].size = PIO_MAX_BLOCKS; /* calculate our total usage */ used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count; } extra = total_blocks - used_blocks; if (extra != 0) dd_dev_info(dd, "unused send context blocks: %d\n", extra); return total_contexts; } int init_send_contexts(struct hfi1_devdata *dd) { u16 base; int ret, i, j, context; ret = init_credit_return(dd); if (ret) return ret; dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8), GFP_KERNEL); dd->send_contexts = kcalloc(dd->num_send_contexts, sizeof(struct send_context_info), GFP_KERNEL); if (!dd->send_contexts || !dd->hw_to_sw) { kfree(dd->hw_to_sw); kfree(dd->send_contexts); free_credit_return(dd); return -ENOMEM; } /* hardware context map starts with invalid send context indices */ for (i = 0; i < TXE_NUM_CONTEXTS; i++) dd->hw_to_sw[i] = INVALID_SCI; /* * All send contexts have their credit sizes. Allocate credits * for each context one after another from the global space. */ context = 0; base = 1; for (i = 0; i < SC_MAX; i++) { struct sc_config_sizes *scs = &dd->sc_sizes[i]; for (j = 0; j < scs->count; j++) { struct send_context_info *sci = &dd->send_contexts[context]; sci->type = i; sci->base = base; sci->credits = scs->size; context++; base += scs->size; } } return 0; } /* * Allocate a software index and hardware context of the given type. * * Must be called with dd->sc_lock held. */ static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index, u32 *hw_context) { struct send_context_info *sci; u32 index; u32 context; for (index = 0, sci = &dd->send_contexts[0]; index < dd->num_send_contexts; index++, sci++) { if (sci->type == type && sci->allocated == 0) { sci->allocated = 1; /* use a 1:1 mapping, but make them non-equal */ context = dd->chip_send_contexts - index - 1; dd->hw_to_sw[context] = index; *sw_index = index; *hw_context = context; return 0; /* success */ } } dd_dev_err(dd, "Unable to locate a free type %d send context\n", type); return -ENOSPC; } /* * Free the send context given by its software index. * * Must be called with dd->sc_lock held. */ static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context) { struct send_context_info *sci; sci = &dd->send_contexts[sw_index]; if (!sci->allocated) { dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n", __func__, sw_index, hw_context); } sci->allocated = 0; dd->hw_to_sw[hw_context] = INVALID_SCI; } /* return the base context of a context in a group */ static inline u32 group_context(u32 context, u32 group) { return (context >> group) << group; } /* return the size of a group */ static inline u32 group_size(u32 group) { return 1 << group; } /* * Obtain the credit return addresses, kernel virtual and physical, for the * given sc. * * To understand this routine: * o va and pa are arrays of struct credit_return. One for each physical * send context, per NUMA. * o Each send context always looks in its relative location in a struct * credit_return for its credit return. * o Each send context in a group must have its return address CSR programmed * with the same value. Use the address of the first send context in the * group. */ static void cr_group_addresses(struct send_context *sc, dma_addr_t *pa) { u32 gc = group_context(sc->hw_context, sc->group); u32 index = sc->hw_context & 0x7; sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index]; *pa = (unsigned long) &((struct credit_return *)sc->dd->cr_base[sc->node].pa)[gc]; } /* * Work queue function triggered in error interrupt routine for * kernel contexts. */ static void sc_halted(struct work_struct *work) { struct send_context *sc; sc = container_of(work, struct send_context, halt_work); sc_restart(sc); } /* * Calculate PIO block threshold for this send context using the given MTU. * Trigger a return when one MTU plus optional header of credits remain. * * Parameter mtu is in bytes. * Parameter hdrqentsize is in DWORDs. * * Return value is what to write into the CSR: trigger return when * unreturned credits pass this count. */ u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize) { u32 release_credits; u32 threshold; /* add in the header size, then divide by the PIO block size */ mtu += hdrqentsize << 2; release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE); /* check against this context's credits */ if (sc->credits <= release_credits) threshold = 1; else threshold = sc->credits - release_credits; return threshold; } /* * Calculate credit threshold in terms of percent of the allocated credits. * Trigger when unreturned credits equal or exceed the percentage of the whole. * * Return value is what to write into the CSR: trigger return when * unreturned credits pass this count. */ u32 sc_percent_to_threshold(struct send_context *sc, u32 percent) { return (sc->credits * percent) / 100; } /* * Set the credit return threshold. */ void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold) { unsigned long flags; u32 old_threshold; int force_return = 0; spin_lock_irqsave(&sc->credit_ctrl_lock, flags); old_threshold = (sc->credit_ctrl >> SC(CREDIT_CTRL_THRESHOLD_SHIFT)) & SC(CREDIT_CTRL_THRESHOLD_MASK); if (new_threshold != old_threshold) { sc->credit_ctrl = (sc->credit_ctrl & ~SC(CREDIT_CTRL_THRESHOLD_SMASK)) | ((new_threshold & SC(CREDIT_CTRL_THRESHOLD_MASK)) << SC(CREDIT_CTRL_THRESHOLD_SHIFT)); write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_CTRL), sc->credit_ctrl); /* force a credit return on change to avoid a possible stall */ force_return = 1; } spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); if (force_return) sc_return_credits(sc); } /* * set_pio_integrity * * Set the CHECK_ENABLE register for the send context 'sc'. */ void set_pio_integrity(struct send_context *sc) { struct hfi1_devdata *dd = sc->dd; u64 reg = 0; u32 hw_context = sc->hw_context; int type = sc->type; /* * No integrity checks if HFI1_CAP_NO_INTEGRITY is set, or if * we're snooping. */ if (likely(!HFI1_CAP_IS_KSET(NO_INTEGRITY)) && dd->hfi1_snoop.mode_flag != HFI1_PORT_SNOOP_MODE) reg = hfi1_pkt_default_send_ctxt_mask(dd, type); write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), reg); } static u32 get_buffers_allocated(struct send_context *sc) { int cpu; u32 ret = 0; for_each_possible_cpu(cpu) ret += *per_cpu_ptr(sc->buffers_allocated, cpu); return ret; } static void reset_buffers_allocated(struct send_context *sc) { int cpu; for_each_possible_cpu(cpu) (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0; } /* * Allocate a NUMA relative send context structure of the given type along * with a HW context. */ struct send_context *sc_alloc(struct hfi1_devdata *dd, int type, uint hdrqentsize, int numa) { struct send_context_info *sci; struct send_context *sc = NULL; dma_addr_t pa; unsigned long flags; u64 reg; u32 thresh; u32 sw_index; u32 hw_context; int ret; u8 opval, opmask; /* do not allocate while frozen */ if (dd->flags & HFI1_FROZEN) return NULL; sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa); if (!sc) return NULL; sc->buffers_allocated = alloc_percpu(u32); if (!sc->buffers_allocated) { kfree(sc); dd_dev_err(dd, "Cannot allocate buffers_allocated per cpu counters\n" ); return NULL; } spin_lock_irqsave(&dd->sc_lock, flags); ret = sc_hw_alloc(dd, type, &sw_index, &hw_context); if (ret) { spin_unlock_irqrestore(&dd->sc_lock, flags); free_percpu(sc->buffers_allocated); kfree(sc); return NULL; } sci = &dd->send_contexts[sw_index]; sci->sc = sc; sc->dd = dd; sc->node = numa; sc->type = type; spin_lock_init(&sc->alloc_lock); spin_lock_init(&sc->release_lock); spin_lock_init(&sc->credit_ctrl_lock); INIT_LIST_HEAD(&sc->piowait); INIT_WORK(&sc->halt_work, sc_halted); init_waitqueue_head(&sc->halt_wait); /* grouping is always single context for now */ sc->group = 0; sc->sw_index = sw_index; sc->hw_context = hw_context; cr_group_addresses(sc, &pa); sc->credits = sci->credits; /* PIO Send Memory Address details */ #define PIO_ADDR_CONTEXT_MASK 0xfful #define PIO_ADDR_CONTEXT_SHIFT 16 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK) << PIO_ADDR_CONTEXT_SHIFT); /* set base and credits */ reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK)) << SC(CTRL_CTXT_DEPTH_SHIFT)) | ((sci->base & SC(CTRL_CTXT_BASE_MASK)) << SC(CTRL_CTXT_BASE_SHIFT)); write_kctxt_csr(dd, hw_context, SC(CTRL), reg); set_pio_integrity(sc); /* unmask all errors */ write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1); /* set the default partition key */ write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), (SC(CHECK_PARTITION_KEY_VALUE_MASK) & DEFAULT_PKEY) << SC(CHECK_PARTITION_KEY_VALUE_SHIFT)); /* per context type checks */ if (type == SC_USER) { opval = USER_OPCODE_CHECK_VAL; opmask = USER_OPCODE_CHECK_MASK; } else { opval = OPCODE_CHECK_VAL_DISABLED; opmask = OPCODE_CHECK_MASK_DISABLED; } /* set the send context check opcode mask and value */ write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) | ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT))); /* set up credit return */ reg = pa & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK); write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg); /* * Calculate the initial credit return threshold. * * For Ack contexts, set a threshold for half the credits. * For User contexts use the given percentage. This has been * sanitized on driver start-up. * For Kernel contexts, use the default MTU plus a header * or half the credits, whichever is smaller. This should * work for both the 3-deep buffering allocation and the * pooling allocation. */ if (type == SC_ACK) { thresh = sc_percent_to_threshold(sc, 50); } else if (type == SC_USER) { thresh = sc_percent_to_threshold(sc, user_credit_return_threshold); } else { /* kernel */ thresh = min(sc_percent_to_threshold(sc, 50), sc_mtu_to_threshold(sc, hfi1_max_mtu, hdrqentsize)); } reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT); /* add in early return */ if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN)) reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */ reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); /* set up write-through credit_ctrl */ sc->credit_ctrl = reg; write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg); /* User send contexts should not allow sending on VL15 */ if (type == SC_USER) { reg = 1ULL << 15; write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg); } spin_unlock_irqrestore(&dd->sc_lock, flags); /* * Allocate shadow ring to track outstanding PIO buffers _after_ * unlocking. We don't know the size until the lock is held and * we can't allocate while the lock is held. No one is using * the context yet, so allocate it now. * * User contexts do not get a shadow ring. */ if (type != SC_USER) { /* * Size the shadow ring 1 larger than the number of credits * so head == tail can mean empty. */ sc->sr_size = sci->credits + 1; sc->sr = kzalloc_node(sizeof(union pio_shadow_ring) * sc->sr_size, GFP_KERNEL, numa); if (!sc->sr) { sc_free(sc); return NULL; } } hfi1_cdbg(PIO, "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n", sw_index, hw_context, sc_type_name(type), sc->group, sc->credits, sc->credit_ctrl, thresh); return sc; } /* free a per-NUMA send context structure */ void sc_free(struct send_context *sc) { struct hfi1_devdata *dd; unsigned long flags; u32 sw_index; u32 hw_context; if (!sc) return; sc->flags |= SCF_IN_FREE; /* ensure no restarts */ dd = sc->dd; if (!list_empty(&sc->piowait)) dd_dev_err(dd, "piowait list not empty!\n"); sw_index = sc->sw_index; hw_context = sc->hw_context; sc_disable(sc); /* make sure the HW is disabled */ flush_work(&sc->halt_work); spin_lock_irqsave(&dd->sc_lock, flags); dd->send_contexts[sw_index].sc = NULL; /* clear/disable all registers set in sc_alloc */ write_kctxt_csr(dd, hw_context, SC(CTRL), 0); write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0); write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0); write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0); write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0); write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0); write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0); /* release the index and context for re-use */ sc_hw_free(dd, sw_index, hw_context); spin_unlock_irqrestore(&dd->sc_lock, flags); kfree(sc->sr); free_percpu(sc->buffers_allocated); kfree(sc); } /* disable the context */ void sc_disable(struct send_context *sc) { u64 reg; unsigned long flags; struct pio_buf *pbuf; if (!sc) return; /* do all steps, even if already disabled */ spin_lock_irqsave(&sc->alloc_lock, flags); reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL)); reg &= ~SC(CTRL_CTXT_ENABLE_SMASK); sc->flags &= ~SCF_ENABLED; sc_wait_for_packet_egress(sc, 1); write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg); spin_unlock_irqrestore(&sc->alloc_lock, flags); /* * Flush any waiters. Once the context is disabled, * credit return interrupts are stopped (although there * could be one in-process when the context is disabled). * Wait one microsecond for any lingering interrupts, then * proceed with the flush. */ udelay(1); spin_lock_irqsave(&sc->release_lock, flags); if (sc->sr) { /* this context has a shadow ring */ while (sc->sr_tail != sc->sr_head) { pbuf = &sc->sr[sc->sr_tail].pbuf; if (pbuf->cb) (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE); sc->sr_tail++; if (sc->sr_tail >= sc->sr_size) sc->sr_tail = 0; } } spin_unlock_irqrestore(&sc->release_lock, flags); } /* return SendEgressCtxtStatus.PacketOccupancy */ #define packet_occupancy(r) \ (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\ >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT) /* is egress halted on the context? */ #define egress_halted(r) \ ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK) /* wait for packet egress, optionally pause for credit return */ static void sc_wait_for_packet_egress(struct send_context *sc, int pause) { struct hfi1_devdata *dd = sc->dd; u64 reg = 0; u64 reg_prev; u32 loop = 0; while (1) { reg_prev = reg; reg = read_csr(dd, sc->hw_context * 8 + SEND_EGRESS_CTXT_STATUS); /* done if egress is stopped */ if (egress_halted(reg)) break; reg = packet_occupancy(reg); if (reg == 0) break; /* counter is reset if occupancy count changes */ if (reg != reg_prev) loop = 0; if (loop > 500) { /* timed out - bounce the link */ dd_dev_err(dd, "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n", __func__, sc->sw_index, sc->hw_context, (u32)reg); queue_work(dd->pport->hfi1_wq, &dd->pport->link_bounce_work); break; } loop++; udelay(1); } if (pause) /* Add additional delay to ensure chip returns all credits */ pause_for_credit_return(dd); } void sc_wait(struct hfi1_devdata *dd) { int i; for (i = 0; i < dd->num_send_contexts; i++) { struct send_context *sc = dd->send_contexts[i].sc; if (!sc) continue; sc_wait_for_packet_egress(sc, 0); } } /* * Restart a context after it has been halted due to error. * * If the first step fails - wait for the halt to be asserted, return early. * Otherwise complain about timeouts but keep going. * * It is expected that allocations (enabled flag bit) have been shut off * already (only applies to kernel contexts). */ int sc_restart(struct send_context *sc) { struct hfi1_devdata *dd = sc->dd; u64 reg; u32 loop; int count; /* bounce off if not halted, or being free'd */ if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE)) return -EINVAL; dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index, sc->hw_context); /* * Step 1: Wait for the context to actually halt. * * The error interrupt is asynchronous to actually setting halt * on the context. */ loop = 0; while (1) { reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS)); if (reg & SC(STATUS_CTXT_HALTED_SMASK)) break; if (loop > 100) { dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n", __func__, sc->sw_index, sc->hw_context); return -ETIME; } loop++; udelay(1); } /* * Step 2: Ensure no users are still trying to write to PIO. * * For kernel contexts, we have already turned off buffer allocation. * Now wait for the buffer count to go to zero. * * For user contexts, the user handling code has cut off write access * to the context's PIO pages before calling this routine and will * restore write access after this routine returns. */ if (sc->type != SC_USER) { /* kernel context */ loop = 0; while (1) { count = get_buffers_allocated(sc); if (count == 0) break; if (loop > 100) { dd_dev_err(dd, "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n", __func__, sc->sw_index, sc->hw_context, count); } loop++; udelay(1); } } /* * Step 3: Wait for all packets to egress. * This is done while disabling the send context * * Step 4: Disable the context * * This is a superset of the halt. After the disable, the * errors can be cleared. */ sc_disable(sc); /* * Step 5: Enable the context * * This enable will clear the halted flag and per-send context * error flags. */ return sc_enable(sc); } /* * PIO freeze processing. To be called after the TXE block is fully frozen. * Go through all frozen send contexts and disable them. The contexts are * already stopped by the freeze. */ void pio_freeze(struct hfi1_devdata *dd) { struct send_context *sc; int i; for (i = 0; i < dd->num_send_contexts; i++) { sc = dd->send_contexts[i].sc; /* * Don't disable unallocated, unfrozen, or user send contexts. * User send contexts will be disabled when the process * calls into the driver to reset its context. */ if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) continue; /* only need to disable, the context is already stopped */ sc_disable(sc); } } /* * Unfreeze PIO for kernel send contexts. The precondition for calling this * is that all PIO send contexts have been disabled and the SPC freeze has * been cleared. Now perform the last step and re-enable each kernel context. * User (PSM) processing will occur when PSM calls into the kernel to * acknowledge the freeze. */ void pio_kernel_unfreeze(struct hfi1_devdata *dd) { struct send_context *sc; int i; for (i = 0; i < dd->num_send_contexts; i++) { sc = dd->send_contexts[i].sc; if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) continue; sc_enable(sc); /* will clear the sc frozen flag */ } } /* * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear. * Returns: * -ETIMEDOUT - if we wait too long * -EIO - if there was an error */ static int pio_init_wait_progress(struct hfi1_devdata *dd) { u64 reg; int max, count = 0; /* max is the longest possible HW init time / delay */ max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5; while (1) { reg = read_csr(dd, SEND_PIO_INIT_CTXT); if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK)) break; if (count >= max) return -ETIMEDOUT; udelay(5); count++; } return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0; } /* * Reset all of the send contexts to their power-on state. Used * only during manual init - no lock against sc_enable needed. */ void pio_reset_all(struct hfi1_devdata *dd) { int ret; /* make sure the init engine is not busy */ ret = pio_init_wait_progress(dd); /* ignore any timeout */ if (ret == -EIO) { /* clear the error */ write_csr(dd, SEND_PIO_ERR_CLEAR, SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK); } /* reset init all */ write_csr(dd, SEND_PIO_INIT_CTXT, SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK); udelay(2); ret = pio_init_wait_progress(dd); if (ret < 0) { dd_dev_err(dd, "PIO send context init %s while initializing all PIO blocks\n", ret == -ETIMEDOUT ? "is stuck" : "had an error"); } } /* enable the context */ int sc_enable(struct send_context *sc) { u64 sc_ctrl, reg, pio; struct hfi1_devdata *dd; unsigned long flags; int ret = 0; if (!sc) return -EINVAL; dd = sc->dd; /* * Obtain the allocator lock to guard against any allocation * attempts (which should not happen prior to context being * enabled). On the release/disable side we don't need to * worry about locking since the releaser will not do anything * if the context accounting values have not changed. */ spin_lock_irqsave(&sc->alloc_lock, flags); sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK))) goto unlock; /* already enabled */ /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */ *sc->hw_free = 0; sc->free = 0; sc->alloc_free = 0; sc->fill = 0; sc->sr_head = 0; sc->sr_tail = 0; sc->flags = 0; /* the alloc lock insures no fast path allocation */ reset_buffers_allocated(sc); /* * Clear all per-context errors. Some of these will be set when * we are re-enabling after a context halt. Now that the context * is disabled, the halt will not clear until after the PIO init * engine runs below. */ reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS)); if (reg) write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg); /* * The HW PIO initialization engine can handle only one init * request at a time. Serialize access to each device's engine. */ spin_lock(&dd->sc_init_lock); /* * Since access to this code block is serialized and * each access waits for the initialization to complete * before releasing the lock, the PIO initialization engine * should not be in use, so we don't have to wait for the * InProgress bit to go down. */ pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) << SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) | SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK; write_csr(dd, SEND_PIO_INIT_CTXT, pio); /* * Wait until the engine is done. Give the chip the required time * so, hopefully, we read the register just once. */ udelay(2); ret = pio_init_wait_progress(dd); spin_unlock(&dd->sc_init_lock); if (ret) { dd_dev_err(dd, "sctxt%u(%u): Context not enabled due to init failure %d\n", sc->sw_index, sc->hw_context, ret); goto unlock; } /* * All is well. Enable the context. */ sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK); write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl); /* * Read SendCtxtCtrl to force the write out and prevent a timing * hazard where a PIO write may reach the context before the enable. */ read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); sc->flags |= SCF_ENABLED; unlock: spin_unlock_irqrestore(&sc->alloc_lock, flags); return ret; } /* force a credit return on the context */ void sc_return_credits(struct send_context *sc) { if (!sc) return; /* a 0->1 transition schedules a credit return */ write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), SC(CREDIT_FORCE_FORCE_RETURN_SMASK)); /* * Ensure that the write is flushed and the credit return is * scheduled. We care more about the 0 -> 1 transition. */ read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE)); /* set back to 0 for next time */ write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0); } /* allow all in-flight packets to drain on the context */ void sc_flush(struct send_context *sc) { if (!sc) return; sc_wait_for_packet_egress(sc, 1); } /* drop all packets on the context, no waiting until they are sent */ void sc_drop(struct send_context *sc) { if (!sc) return; dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n", __func__, sc->sw_index, sc->hw_context); } /* * Start the software reaction to a context halt or SPC freeze: * - mark the context as halted or frozen * - stop buffer allocations * * Called from the error interrupt. Other work is deferred until * out of the interrupt. */ void sc_stop(struct send_context *sc, int flag) { unsigned long flags; /* mark the context */ sc->flags |= flag; /* stop buffer allocations */ spin_lock_irqsave(&sc->alloc_lock, flags); sc->flags &= ~SCF_ENABLED; spin_unlock_irqrestore(&sc->alloc_lock, flags); wake_up(&sc->halt_wait); } #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32)) #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS) /* * The send context buffer "allocator". * * @sc: the PIO send context we are allocating from * @len: length of whole packet - including PBC - in dwords * @cb: optional callback to call when the buffer is finished sending * @arg: argument for cb * * Return a pointer to a PIO buffer if successful, NULL if not enough room. */ struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len, pio_release_cb cb, void *arg) { struct pio_buf *pbuf = NULL; unsigned long flags; unsigned long avail; unsigned long blocks = dwords_to_blocks(dw_len); unsigned long start_fill; int trycount = 0; u32 head, next; spin_lock_irqsave(&sc->alloc_lock, flags); if (!(sc->flags & SCF_ENABLED)) { spin_unlock_irqrestore(&sc->alloc_lock, flags); goto done; } retry: avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free); if (blocks > avail) { /* not enough room */ if (unlikely(trycount)) { /* already tried to get more room */ spin_unlock_irqrestore(&sc->alloc_lock, flags); goto done; } /* copy from receiver cache line and recalculate */ sc->alloc_free = ACCESS_ONCE(sc->free); avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free); if (blocks > avail) { /* still no room, actively update */ spin_unlock_irqrestore(&sc->alloc_lock, flags); sc_release_update(sc); spin_lock_irqsave(&sc->alloc_lock, flags); sc->alloc_free = ACCESS_ONCE(sc->free); trycount++; goto retry; } } /* there is enough room */ preempt_disable(); this_cpu_inc(*sc->buffers_allocated); /* read this once */ head = sc->sr_head; /* "allocate" the buffer */ start_fill = sc->fill; sc->fill += blocks; /* * Fill the parts that the releaser looks at before moving the head. * The only necessary piece is the sent_at field. The credits * we have just allocated cannot have been returned yet, so the * cb and arg will not be looked at for a "while". Put them * on this side of the memory barrier anyway. */ pbuf = &sc->sr[head].pbuf; pbuf->sent_at = sc->fill; pbuf->cb = cb; pbuf->arg = arg; pbuf->sc = sc; /* could be filled in at sc->sr init time */ /* make sure this is in memory before updating the head */ /* calculate next head index, do not store */ next = head + 1; if (next >= sc->sr_size) next = 0; /* * update the head - must be last! - the releaser can look at fields * in pbuf once we move the head */ smp_wmb(); sc->sr_head = next; spin_unlock_irqrestore(&sc->alloc_lock, flags); /* finish filling in the buffer outside the lock */ pbuf->start = sc->base_addr + ((start_fill % sc->credits) * PIO_BLOCK_SIZE); pbuf->size = sc->credits * PIO_BLOCK_SIZE; pbuf->end = sc->base_addr + pbuf->size; pbuf->block_count = blocks; pbuf->qw_written = 0; pbuf->carry_bytes = 0; pbuf->carry.val64 = 0; done: return pbuf; } /* * There are at least two entities that can turn on credit return * interrupts and they can overlap. Avoid problems by implementing * a count scheme that is enforced by a lock. The lock is needed because * the count and CSR write must be paired. */ /* * Start credit return interrupts. This is managed by a count. If already * on, just increment the count. */ void sc_add_credit_return_intr(struct send_context *sc) { unsigned long flags; /* lock must surround both the count change and the CSR update */ spin_lock_irqsave(&sc->credit_ctrl_lock, flags); if (sc->credit_intr_count == 0) { sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK); write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_CTRL), sc->credit_ctrl); } sc->credit_intr_count++; spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); } /* * Stop credit return interrupts. This is managed by a count. Decrement the * count, if the last user, then turn the credit interrupts off. */ void sc_del_credit_return_intr(struct send_context *sc) { unsigned long flags; WARN_ON(sc->credit_intr_count == 0); /* lock must surround both the count change and the CSR update */ spin_lock_irqsave(&sc->credit_ctrl_lock, flags); sc->credit_intr_count--; if (sc->credit_intr_count == 0) { sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK); write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_CTRL), sc->credit_ctrl); } spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); } /* * The caller must be careful when calling this. All needint calls * must be paired with !needint. */ void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint) { if (needint) sc_add_credit_return_intr(sc); else sc_del_credit_return_intr(sc); trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl); if (needint) { mmiowb(); sc_return_credits(sc); } } /** * sc_piobufavail - callback when a PIO buffer is available * @sc: the send context * * This is called from the interrupt handler when a PIO buffer is * available after hfi1_verbs_send() returned an error that no buffers were * available. Disable the interrupt if there are no more QPs waiting. */ static void sc_piobufavail(struct send_context *sc) { struct hfi1_devdata *dd = sc->dd; struct hfi1_ibdev *dev = &dd->verbs_dev; struct list_head *list; struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE]; struct rvt_qp *qp; struct hfi1_qp_priv *priv; unsigned long flags; unsigned i, n = 0; if (dd->send_contexts[sc->sw_index].type != SC_KERNEL && dd->send_contexts[sc->sw_index].type != SC_VL15) return; list = &sc->piowait; /* * Note: checking that the piowait list is empty and clearing * the buffer available interrupt needs to be atomic or we * could end up with QPs on the wait list with the interrupt * disabled. */ write_seqlock_irqsave(&dev->iowait_lock, flags); while (!list_empty(list)) { struct iowait *wait; if (n == ARRAY_SIZE(qps)) break; wait = list_first_entry(list, struct iowait, list); qp = iowait_to_qp(wait); priv = qp->priv; list_del_init(&priv->s_iowait.list); /* refcount held until actual wake up */ qps[n++] = qp; } /* * If there had been waiters and there are more * insure that we redo the force to avoid a potential hang. */ if (n) { hfi1_sc_wantpiobuf_intr(sc, 0); if (!list_empty(list)) hfi1_sc_wantpiobuf_intr(sc, 1); } write_sequnlock_irqrestore(&dev->iowait_lock, flags); for (i = 0; i < n; i++) hfi1_qp_wakeup(qps[i], RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN); } /* translate a send credit update to a bit code of reasons */ static inline int fill_code(u64 hw_free) { int code = 0; if (hw_free & CR_STATUS_SMASK) code |= PRC_STATUS_ERR; if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK) code |= PRC_PBC; if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK) code |= PRC_THRESHOLD; if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK) code |= PRC_FILL_ERR; if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK) code |= PRC_SC_DISABLE; return code; } /* use the jiffies compare to get the wrap right */ #define sent_before(a, b) time_before(a, b) /* a < b */ /* * The send context buffer "releaser". */ void sc_release_update(struct send_context *sc) { struct pio_buf *pbuf; u64 hw_free; u32 head, tail; unsigned long old_free; unsigned long free; unsigned long extra; unsigned long flags; int code; if (!sc) return; spin_lock_irqsave(&sc->release_lock, flags); /* update free */ hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */ old_free = sc->free; extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT) - (old_free & CR_COUNTER_MASK)) & CR_COUNTER_MASK; free = old_free + extra; trace_hfi1_piofree(sc, extra); /* call sent buffer callbacks */ code = -1; /* code not yet set */ head = ACCESS_ONCE(sc->sr_head); /* snapshot the head */ tail = sc->sr_tail; while (head != tail) { pbuf = &sc->sr[tail].pbuf; if (sent_before(free, pbuf->sent_at)) { /* not sent yet */ break; } if (pbuf->cb) { if (code < 0) /* fill in code on first user */ code = fill_code(hw_free); (*pbuf->cb)(pbuf->arg, code); } tail++; if (tail >= sc->sr_size) tail = 0; } sc->sr_tail = tail; /* make sure tail is updated before free */ smp_wmb(); sc->free = free; spin_unlock_irqrestore(&sc->release_lock, flags); sc_piobufavail(sc); } /* * Send context group releaser. Argument is the send context that caused * the interrupt. Called from the send context interrupt handler. * * Call release on all contexts in the group. * * This routine takes the sc_lock without an irqsave because it is only * called from an interrupt handler. Adjust if that changes. */ void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context) { struct send_context *sc; u32 sw_index; u32 gc, gc_end; spin_lock(&dd->sc_lock); sw_index = dd->hw_to_sw[hw_context]; if (unlikely(sw_index >= dd->num_send_contexts)) { dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n", __func__, hw_context, sw_index); goto done; } sc = dd->send_contexts[sw_index].sc; if (unlikely(!sc)) goto done; gc = group_context(hw_context, sc->group); gc_end = gc + group_size(sc->group); for (; gc < gc_end; gc++) { sw_index = dd->hw_to_sw[gc]; if (unlikely(sw_index >= dd->num_send_contexts)) { dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n", __func__, hw_context, sw_index); continue; } sc_release_update(dd->send_contexts[sw_index].sc); } done: spin_unlock(&dd->sc_lock); } /* * pio_select_send_context_vl() - select send context * @dd: devdata * @selector: a spreading factor * @vl: this vl * * This function returns a send context based on the selector and a vl. * The mapping fields are protected by RCU */ struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd, u32 selector, u8 vl) { struct pio_vl_map *m; struct pio_map_elem *e; struct send_context *rval; /* * NOTE This should only happen if SC->VL changed after the initial * checks on the QP/AH * Default will return VL0's send context below */ if (unlikely(vl >= num_vls)) { rval = NULL; goto done; } rcu_read_lock(); m = rcu_dereference(dd->pio_map); if (unlikely(!m)) { rcu_read_unlock(); return dd->vld[0].sc; } e = m->map[vl & m->mask]; rval = e->ksc[selector & e->mask]; rcu_read_unlock(); done: rval = !rval ? dd->vld[0].sc : rval; return rval; } /* * pio_select_send_context_sc() - select send context * @dd: devdata * @selector: a spreading factor * @sc5: the 5 bit sc * * This function returns an send context based on the selector and an sc */ struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd, u32 selector, u8 sc5) { u8 vl = sc_to_vlt(dd, sc5); return pio_select_send_context_vl(dd, selector, vl); } /* * Free the indicated map struct */ static void pio_map_free(struct pio_vl_map *m) { int i; for (i = 0; m && i < m->actual_vls; i++) kfree(m->map[i]); kfree(m); } /* * Handle RCU callback */ static void pio_map_rcu_callback(struct rcu_head *list) { struct pio_vl_map *m = container_of(list, struct pio_vl_map, list); pio_map_free(m); } /* * Set credit return threshold for the kernel send context */ static void set_threshold(struct hfi1_devdata *dd, int scontext, int i) { u32 thres; thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext], 50), sc_mtu_to_threshold(dd->kernel_send_context[scontext], dd->vld[i].mtu, dd->rcd[0]->rcvhdrqentsize)); sc_set_cr_threshold(dd->kernel_send_context[scontext], thres); } /* * pio_map_init - called when #vls change * @dd: hfi1_devdata * @port: port number * @num_vls: number of vls * @vl_scontexts: per vl send context mapping (optional) * * This routine changes the mapping based on the number of vls. * * vl_scontexts is used to specify a non-uniform vl/send context * loading. NULL implies auto computing the loading and giving each * VL an uniform distribution of send contexts per VL. * * The auto algorithm computers the sc_per_vl and the number of extra * send contexts. Any extra send contexts are added from the last VL * on down * * rcu locking is used here to control access to the mapping fields. * * If either the num_vls or num_send_contexts are non-power of 2, the * array sizes in the struct pio_vl_map and the struct pio_map_elem are * rounded up to the next highest power of 2 and the first entry is * reused in a round robin fashion. * * If an error occurs the map change is not done and the mapping is not * chaged. * */ int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts) { int i, j; int extra, sc_per_vl; int scontext = 1; int num_kernel_send_contexts = 0; u8 lvl_scontexts[OPA_MAX_VLS]; struct pio_vl_map *oldmap, *newmap; if (!vl_scontexts) { for (i = 0; i < dd->num_send_contexts; i++) if (dd->send_contexts[i].type == SC_KERNEL) num_kernel_send_contexts++; /* truncate divide */ sc_per_vl = num_kernel_send_contexts / num_vls; /* extras */ extra = num_kernel_send_contexts % num_vls; vl_scontexts = lvl_scontexts; /* add extras from last vl down */ for (i = num_vls - 1; i >= 0; i--, extra--) vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0); } /* build new map */ newmap = kzalloc(sizeof(*newmap) + roundup_pow_of_two(num_vls) * sizeof(struct pio_map_elem *), GFP_KERNEL); if (!newmap) goto bail; newmap->actual_vls = num_vls; newmap->vls = roundup_pow_of_two(num_vls); newmap->mask = (1 << ilog2(newmap->vls)) - 1; for (i = 0; i < newmap->vls; i++) { /* save for wrap around */ int first_scontext = scontext; if (i < newmap->actual_vls) { int sz = roundup_pow_of_two(vl_scontexts[i]); /* only allocate once */ newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) + sz * sizeof(struct send_context *), GFP_KERNEL); if (!newmap->map[i]) goto bail; newmap->map[i]->mask = (1 << ilog2(sz)) - 1; /* * assign send contexts and * adjust credit return threshold */ for (j = 0; j < sz; j++) { if (dd->kernel_send_context[scontext]) { newmap->map[i]->ksc[j] = dd->kernel_send_context[scontext]; set_threshold(dd, scontext, i); } if (++scontext >= first_scontext + vl_scontexts[i]) /* wrap back to first send context */ scontext = first_scontext; } } else { /* just re-use entry without allocating */ newmap->map[i] = newmap->map[i % num_vls]; } scontext = first_scontext + vl_scontexts[i]; } /* newmap in hand, save old map */ spin_lock_irq(&dd->pio_map_lock); oldmap = rcu_dereference_protected(dd->pio_map, lockdep_is_held(&dd->pio_map_lock)); /* publish newmap */ rcu_assign_pointer(dd->pio_map, newmap); spin_unlock_irq(&dd->pio_map_lock); /* success, free any old map after grace period */ if (oldmap) call_rcu(&oldmap->list, pio_map_rcu_callback); return 0; bail: /* free any partial allocation */ pio_map_free(newmap); return -ENOMEM; } void free_pio_map(struct hfi1_devdata *dd) { /* Free PIO map if allocated */ if (rcu_access_pointer(dd->pio_map)) { spin_lock_irq(&dd->pio_map_lock); pio_map_free(rcu_access_pointer(dd->pio_map)); RCU_INIT_POINTER(dd->pio_map, NULL); spin_unlock_irq(&dd->pio_map_lock); synchronize_rcu(); } kfree(dd->kernel_send_context); dd->kernel_send_context = NULL; } int init_pervl_scs(struct hfi1_devdata *dd) { int i; u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */ u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */ u32 ctxt; struct hfi1_pportdata *ppd = dd->pport; dd->vld[15].sc = sc_alloc(dd, SC_VL15, dd->rcd[0]->rcvhdrqentsize, dd->node); if (!dd->vld[15].sc) goto nomem; hfi1_init_ctxt(dd->vld[15].sc); dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048); dd->kernel_send_context = kmalloc_node(dd->num_send_contexts * sizeof(struct send_context *), GFP_KERNEL, dd->node); dd->kernel_send_context[0] = dd->vld[15].sc; for (i = 0; i < num_vls; i++) { /* * Since this function does not deal with a specific * receive context but we need the RcvHdrQ entry size, * use the size from rcd[0]. It is guaranteed to be * valid at this point and will remain the same for all * receive contexts. */ dd->vld[i].sc = sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node); if (!dd->vld[i].sc) goto nomem; dd->kernel_send_context[i + 1] = dd->vld[i].sc; hfi1_init_ctxt(dd->vld[i].sc); /* non VL15 start with the max MTU */ dd->vld[i].mtu = hfi1_max_mtu; } for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { dd->kernel_send_context[i + 1] = sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node); if (!dd->kernel_send_context[i + 1]) goto nomem; hfi1_init_ctxt(dd->kernel_send_context[i + 1]); } sc_enable(dd->vld[15].sc); ctxt = dd->vld[15].sc->hw_context; mask = all_vl_mask & ~(1LL << 15); write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); dd_dev_info(dd, "Using send context %u(%u) for VL15\n", dd->vld[15].sc->sw_index, ctxt); for (i = 0; i < num_vls; i++) { sc_enable(dd->vld[i].sc); ctxt = dd->vld[i].sc->hw_context; mask = all_vl_mask & ~(data_vls_mask); write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); } for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { sc_enable(dd->kernel_send_context[i + 1]); ctxt = dd->kernel_send_context[i + 1]->hw_context; mask = all_vl_mask & ~(data_vls_mask); write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); } if (pio_map_init(dd, ppd->port - 1, num_vls, NULL)) goto nomem; return 0; nomem: sc_free(dd->vld[15].sc); for (i = 0; i < num_vls; i++) sc_free(dd->vld[i].sc); for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) sc_free(dd->kernel_send_context[i + 1]); return -ENOMEM; } int init_credit_return(struct hfi1_devdata *dd) { int ret; int num_numa; int i; num_numa = num_online_nodes(); /* enforce the expectation that the numas are compact */ for (i = 0; i < num_numa; i++) { if (!node_online(i)) { dd_dev_err(dd, "NUMA nodes are not compact\n"); ret = -EINVAL; goto done; } } dd->cr_base = kcalloc( num_numa, sizeof(struct credit_return_base), GFP_KERNEL); if (!dd->cr_base) { dd_dev_err(dd, "Unable to allocate credit return base\n"); ret = -ENOMEM; goto done; } for (i = 0; i < num_numa; i++) { int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return); set_dev_node(&dd->pcidev->dev, i); dd->cr_base[i].va = dma_zalloc_coherent( &dd->pcidev->dev, bytes, &dd->cr_base[i].pa, GFP_KERNEL); if (!dd->cr_base[i].va) { set_dev_node(&dd->pcidev->dev, dd->node); dd_dev_err(dd, "Unable to allocate credit return DMA range for NUMA %d\n", i); ret = -ENOMEM; goto done; } } set_dev_node(&dd->pcidev->dev, dd->node); ret = 0; done: return ret; } void free_credit_return(struct hfi1_devdata *dd) { int num_numa; int i; if (!dd->cr_base) return; num_numa = num_online_nodes(); for (i = 0; i < num_numa; i++) { if (dd->cr_base[i].va) { dma_free_coherent(&dd->pcidev->dev, TXE_NUM_CONTEXTS * sizeof(struct credit_return), dd->cr_base[i].va, dd->cr_base[i].pa); } } kfree(dd->cr_base); dd->cr_base = NULL; }