/* * PowerPC64 LPAR Configuration Information Driver * * Dave Engebretsen engebret@us.ibm.com * Copyright (c) 2003 Dave Engebretsen * Will Schmidt willschm@us.ibm.com * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. * Nathan Lynch nathanl@austin.ibm.com * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This driver creates a proc file at /proc/ppc64/lparcfg which contains * keyword - value pairs that specify the configuration of the partition. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MODULE_VERS "1.9" #define MODULE_NAME "lparcfg" /* #define LPARCFG_DEBUG */ static struct proc_dir_entry *proc_ppc64_lparcfg; /* * Track sum of all purrs across all processors. This is used to further * calculate usage values by different applications */ static unsigned long get_purr(void) { unsigned long sum_purr = 0; int cpu; for_each_possible_cpu(cpu) { struct cpu_usage *cu; cu = &per_cpu(cpu_usage_array, cpu); sum_purr += cu->current_tb; } return sum_purr; } /* * Methods used to fetch LPAR data when running on a pSeries platform. */ struct hvcall_ppp_data { u64 entitlement; u64 unallocated_entitlement; u16 group_num; u16 pool_num; u8 capped; u8 weight; u8 unallocated_weight; u16 active_procs_in_pool; u16 active_system_procs; u16 phys_platform_procs; u32 max_proc_cap_avail; u32 entitled_proc_cap_avail; }; /* * H_GET_PPP hcall returns info in 4 parms. * entitled_capacity,unallocated_capacity, * aggregation, resource_capability). * * R4 = Entitled Processor Capacity Percentage. * R5 = Unallocated Processor Capacity Percentage. * R6 (AABBCCDDEEFFGGHH). * XXXX - reserved (0) * XXXX - reserved (0) * XXXX - Group Number * XXXX - Pool Number. * R7 (IIJJKKLLMMNNOOPP). * XX - reserved. (0) * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. * XX - variable processor Capacity Weight * XX - Unallocated Variable Processor Capacity Weight. * XXXX - Active processors in Physical Processor Pool. * XXXX - Processors active on platform. * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 * XXXX - Physical platform procs allocated to virtualization. * XXXXXX - Max procs capacity % available to the partitions pool. * XXXXXX - Entitled procs capacity % available to the * partitions pool. */ static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) { unsigned long rc; unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; rc = plpar_hcall9(H_GET_PPP, retbuf); ppp_data->entitlement = retbuf[0]; ppp_data->unallocated_entitlement = retbuf[1]; ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; ppp_data->pool_num = retbuf[2] & 0xffff; ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; ppp_data->active_system_procs = retbuf[3] & 0xffff; ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; return rc; } static unsigned h_pic(unsigned long *pool_idle_time, unsigned long *num_procs) { unsigned long rc; unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; rc = plpar_hcall(H_PIC, retbuf); *pool_idle_time = retbuf[0]; *num_procs = retbuf[1]; return rc; } /* * parse_ppp_data * Parse out the data returned from h_get_ppp and h_pic */ static void parse_ppp_data(struct seq_file *m) { struct hvcall_ppp_data ppp_data; struct device_node *root; const int *perf_level; int rc; rc = h_get_ppp(&ppp_data); if (rc) return; seq_printf(m, "partition_entitled_capacity=%lld\n", ppp_data.entitlement); seq_printf(m, "group=%d\n", ppp_data.group_num); seq_printf(m, "system_active_processors=%d\n", ppp_data.active_system_procs); /* pool related entries are appropriate for shared configs */ if (lppaca_of(0).shared_proc) { unsigned long pool_idle_time, pool_procs; seq_printf(m, "pool=%d\n", ppp_data.pool_num); /* report pool_capacity in percentage */ seq_printf(m, "pool_capacity=%d\n", ppp_data.active_procs_in_pool * 100); h_pic(&pool_idle_time, &pool_procs); seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); seq_printf(m, "pool_num_procs=%ld\n", pool_procs); } seq_printf(m, "unallocated_capacity_weight=%d\n", ppp_data.unallocated_weight); seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); seq_printf(m, "capped=%d\n", ppp_data.capped); seq_printf(m, "unallocated_capacity=%lld\n", ppp_data.unallocated_entitlement); /* The last bits of information returned from h_get_ppp are only * valid if the ibm,partition-performance-parameters-level * property is >= 1. */ root = of_find_node_by_path("/"); if (root) { perf_level = of_get_property(root, "ibm,partition-performance-parameters-level", NULL); if (perf_level && (*perf_level >= 1)) { seq_printf(m, "physical_procs_allocated_to_virtualization=%d\n", ppp_data.phys_platform_procs); seq_printf(m, "max_proc_capacity_available=%d\n", ppp_data.max_proc_cap_avail); seq_printf(m, "entitled_proc_capacity_available=%d\n", ppp_data.entitled_proc_cap_avail); } of_node_put(root); } } /** * parse_mpp_data * Parse out data returned from h_get_mpp */ static void parse_mpp_data(struct seq_file *m) { struct hvcall_mpp_data mpp_data; int rc; rc = h_get_mpp(&mpp_data); if (rc) return; seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); if (mpp_data.mapped_mem != -1) seq_printf(m, "mapped_entitled_memory=%ld\n", mpp_data.mapped_mem); seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); seq_printf(m, "unallocated_entitled_memory_weight=%d\n", mpp_data.unallocated_mem_weight); seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", mpp_data.unallocated_entitlement); if (mpp_data.pool_size != -1) seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", mpp_data.pool_size); seq_printf(m, "entitled_memory_loan_request=%ld\n", mpp_data.loan_request); seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); } /** * parse_mpp_x_data * Parse out data returned from h_get_mpp_x */ static void parse_mpp_x_data(struct seq_file *m) { struct hvcall_mpp_x_data mpp_x_data; if (!firmware_has_feature(FW_FEATURE_XCMO)) return; if (h_get_mpp_x(&mpp_x_data)) return; seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); if (mpp_x_data.pool_coalesced_bytes) seq_printf(m, "pool_coalesced_bytes=%ld\n", mpp_x_data.pool_coalesced_bytes); if (mpp_x_data.pool_purr_cycles) seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); if (mpp_x_data.pool_spurr_cycles) seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); } #define SPLPAR_CHARACTERISTICS_TOKEN 20 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) /* * parse_system_parameter_string() * Retrieve the potential_processors, max_entitled_capacity and friends * through the get-system-parameter rtas call. Replace keyword strings as * necessary. */ static void parse_system_parameter_string(struct seq_file *m) { int call_status; unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); if (!local_buffer) { printk(KERN_ERR "%s %s kmalloc failure at line %d\n", __FILE__, __func__, __LINE__); return; } spin_lock(&rtas_data_buf_lock); memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH); call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, NULL, SPLPAR_CHARACTERISTICS_TOKEN, __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE); memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH); local_buffer[SPLPAR_MAXLENGTH - 1] = '\0'; spin_unlock(&rtas_data_buf_lock); if (call_status != 0) { printk(KERN_INFO "%s %s Error calling get-system-parameter (0x%x)\n", __FILE__, __func__, call_status); } else { int splpar_strlen; int idx, w_idx; char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); if (!workbuffer) { printk(KERN_ERR "%s %s kmalloc failure at line %d\n", __FILE__, __func__, __LINE__); kfree(local_buffer); return; } #ifdef LPARCFG_DEBUG printk(KERN_INFO "success calling get-system-parameter\n"); #endif splpar_strlen = local_buffer[0] * 256 + local_buffer[1]; local_buffer += 2; /* step over strlen value */ w_idx = 0; idx = 0; while ((*local_buffer) && (idx < splpar_strlen)) { workbuffer[w_idx++] = local_buffer[idx++]; if ((local_buffer[idx] == ',') || (local_buffer[idx] == '\0')) { workbuffer[w_idx] = '\0'; if (w_idx) { /* avoid the empty string */ seq_printf(m, "%s\n", workbuffer); } memset(workbuffer, 0, SPLPAR_MAXLENGTH); idx++; /* skip the comma */ w_idx = 0; } else if (local_buffer[idx] == '=') { /* code here to replace workbuffer contents with different keyword strings */ if (0 == strcmp(workbuffer, "MaxEntCap")) { strcpy(workbuffer, "partition_max_entitled_capacity"); w_idx = strlen(workbuffer); } if (0 == strcmp(workbuffer, "MaxPlatProcs")) { strcpy(workbuffer, "system_potential_processors"); w_idx = strlen(workbuffer); } } } kfree(workbuffer); local_buffer -= 2; /* back up over strlen value */ } kfree(local_buffer); } /* Return the number of processors in the system. * This function reads through the device tree and counts * the virtual processors, this does not include threads. */ static int lparcfg_count_active_processors(void) { struct device_node *cpus_dn = NULL; int count = 0; while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) { #ifdef LPARCFG_DEBUG printk(KERN_ERR "cpus_dn %p\n", cpus_dn); #endif count++; } return count; } static void pseries_cmo_data(struct seq_file *m) { int cpu; unsigned long cmo_faults = 0; unsigned long cmo_fault_time = 0; seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); if (!firmware_has_feature(FW_FEATURE_CMO)) return; for_each_possible_cpu(cpu) { cmo_faults += lppaca_of(cpu).cmo_faults; cmo_fault_time += lppaca_of(cpu).cmo_fault_time; } seq_printf(m, "cmo_faults=%lu\n", cmo_faults); seq_printf(m, "cmo_fault_time_usec=%lu\n", cmo_fault_time / tb_ticks_per_usec); seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); } static void splpar_dispatch_data(struct seq_file *m) { int cpu; unsigned long dispatches = 0; unsigned long dispatch_dispersions = 0; for_each_possible_cpu(cpu) { dispatches += lppaca_of(cpu).yield_count; dispatch_dispersions += lppaca_of(cpu).dispersion_count; } seq_printf(m, "dispatches=%lu\n", dispatches); seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); } static void parse_em_data(struct seq_file *m) { unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); } static int pseries_lparcfg_data(struct seq_file *m, void *v) { int partition_potential_processors; int partition_active_processors; struct device_node *rtas_node; const int *lrdrp = NULL; rtas_node = of_find_node_by_path("/rtas"); if (rtas_node) lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); if (lrdrp == NULL) { partition_potential_processors = vdso_data->processorCount; } else { partition_potential_processors = *(lrdrp + 4); } of_node_put(rtas_node); partition_active_processors = lparcfg_count_active_processors(); if (firmware_has_feature(FW_FEATURE_SPLPAR)) { /* this call handles the ibm,get-system-parameter contents */ parse_system_parameter_string(m); parse_ppp_data(m); parse_mpp_data(m); parse_mpp_x_data(m); pseries_cmo_data(m); splpar_dispatch_data(m); seq_printf(m, "purr=%ld\n", get_purr()); } else { /* non SPLPAR case */ seq_printf(m, "system_active_processors=%d\n", partition_potential_processors); seq_printf(m, "system_potential_processors=%d\n", partition_potential_processors); seq_printf(m, "partition_max_entitled_capacity=%d\n", partition_potential_processors * 100); seq_printf(m, "partition_entitled_capacity=%d\n", partition_active_processors * 100); } seq_printf(m, "partition_active_processors=%d\n", partition_active_processors); seq_printf(m, "partition_potential_processors=%d\n", partition_potential_processors); seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc); seq_printf(m, "slb_size=%d\n", mmu_slb_size); parse_em_data(m); return 0; } static ssize_t update_ppp(u64 *entitlement, u8 *weight) { struct hvcall_ppp_data ppp_data; u8 new_weight; u64 new_entitled; ssize_t retval; /* Get our current parameters */ retval = h_get_ppp(&ppp_data); if (retval) return retval; if (entitlement) { new_weight = ppp_data.weight; new_entitled = *entitlement; } else if (weight) { new_weight = *weight; new_entitled = ppp_data.entitlement; } else return -EINVAL; pr_debug("%s: current_entitled = %llu, current_weight = %u\n", __func__, ppp_data.entitlement, ppp_data.weight); pr_debug("%s: new_entitled = %llu, new_weight = %u\n", __func__, new_entitled, new_weight); retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); return retval; } /** * update_mpp * * Update the memory entitlement and weight for the partition. Caller must * specify either a new entitlement or weight, not both, to be updated * since the h_set_mpp call takes both entitlement and weight as parameters. */ static ssize_t update_mpp(u64 *entitlement, u8 *weight) { struct hvcall_mpp_data mpp_data; u64 new_entitled; u8 new_weight; ssize_t rc; if (entitlement) { /* Check with vio to ensure the new memory entitlement * can be handled. */ rc = vio_cmo_entitlement_update(*entitlement); if (rc) return rc; } rc = h_get_mpp(&mpp_data); if (rc) return rc; if (entitlement) { new_weight = mpp_data.mem_weight; new_entitled = *entitlement; } else if (weight) { new_weight = *weight; new_entitled = mpp_data.entitled_mem; } else return -EINVAL; pr_debug("%s: current_entitled = %lu, current_weight = %u\n", __func__, mpp_data.entitled_mem, mpp_data.mem_weight); pr_debug("%s: new_entitled = %llu, new_weight = %u\n", __func__, new_entitled, new_weight); rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); return rc; } /* * Interface for changing system parameters (variable capacity weight * and entitled capacity). Format of input is "param_name=value"; * anything after value is ignored. Valid parameters at this time are * "partition_entitled_capacity" and "capacity_weight". We use * H_SET_PPP to alter parameters. * * This function should be invoked only on systems with * FW_FEATURE_SPLPAR. */ static ssize_t lparcfg_write(struct file *file, const char __user * buf, size_t count, loff_t * off) { int kbuf_sz = 64; char kbuf[kbuf_sz]; char *tmp; u64 new_entitled, *new_entitled_ptr = &new_entitled; u8 new_weight, *new_weight_ptr = &new_weight; ssize_t retval; if (!firmware_has_feature(FW_FEATURE_SPLPAR)) return -EINVAL; if (count > kbuf_sz) return -EINVAL; if (copy_from_user(kbuf, buf, count)) return -EFAULT; kbuf[count - 1] = '\0'; tmp = strchr(kbuf, '='); if (!tmp) return -EINVAL; *tmp++ = '\0'; if (!strcmp(kbuf, "partition_entitled_capacity")) { char *endp; *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_ppp(new_entitled_ptr, NULL); } else if (!strcmp(kbuf, "capacity_weight")) { char *endp; *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_ppp(NULL, new_weight_ptr); } else if (!strcmp(kbuf, "entitled_memory")) { char *endp; *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_mpp(new_entitled_ptr, NULL); } else if (!strcmp(kbuf, "entitled_memory_weight")) { char *endp; *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_mpp(NULL, new_weight_ptr); } else return -EINVAL; if (retval == H_SUCCESS || retval == H_CONSTRAINED) { retval = count; } else if (retval == H_BUSY) { retval = -EBUSY; } else if (retval == H_HARDWARE) { retval = -EIO; } else if (retval == H_PARAMETER) { retval = -EINVAL; } return retval; } static int lparcfg_data(struct seq_file *m, void *v) { struct device_node *rootdn; const char *model = ""; const char *system_id = ""; const char *tmp; const unsigned int *lp_index_ptr; unsigned int lp_index = 0; seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); rootdn = of_find_node_by_path("/"); if (rootdn) { tmp = of_get_property(rootdn, "model", NULL); if (tmp) model = tmp; tmp = of_get_property(rootdn, "system-id", NULL); if (tmp) system_id = tmp; lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", NULL); if (lp_index_ptr) lp_index = *lp_index_ptr; of_node_put(rootdn); } seq_printf(m, "serial_number=%s\n", system_id); seq_printf(m, "system_type=%s\n", model); seq_printf(m, "partition_id=%d\n", (int)lp_index); return pseries_lparcfg_data(m, v); } static int lparcfg_open(struct inode *inode, struct file *file) { return single_open(file, lparcfg_data, NULL); } static const struct file_operations lparcfg_fops = { .owner = THIS_MODULE, .read = seq_read, .write = lparcfg_write, .open = lparcfg_open, .release = single_release, .llseek = seq_lseek, }; static int __init lparcfg_init(void) { struct proc_dir_entry *ent; umode_t mode = S_IRUSR | S_IRGRP | S_IROTH; /* Allow writing if we have FW_FEATURE_SPLPAR */ if (firmware_has_feature(FW_FEATURE_SPLPAR)) mode |= S_IWUSR; ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops); if (!ent) { printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); return -EIO; } proc_ppc64_lparcfg = ent; return 0; } static void __exit lparcfg_cleanup(void) { if (proc_ppc64_lparcfg) remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent); } module_init(lparcfg_init); module_exit(lparcfg_cleanup); MODULE_DESCRIPTION("Interface for LPAR configuration data"); MODULE_AUTHOR("Dave Engebretsen"); MODULE_LICENSE("GPL");