/* * linux/kernel/time/tick-broadcast.c * * This file contains functions which emulate a local clock-event * device via a broadcast event source. * * Copyright(C) 2005-2006, Thomas Gleixner * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner * * This code is licenced under the GPL version 2. For details see * kernel-base/COPYING. */ #include #include #include #include #include #include #include #include #include #include "tick-internal.h" /* * Broadcast support for broken x86 hardware, where the local apic * timer stops in C3 state. */ static struct tick_device tick_broadcast_device; static cpumask_var_t tick_broadcast_mask; static cpumask_var_t tick_broadcast_on; static cpumask_var_t tmpmask; static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); static int tick_broadcast_forced; #ifdef CONFIG_TICK_ONESHOT static void tick_broadcast_clear_oneshot(int cpu); static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); #else static inline void tick_broadcast_clear_oneshot(int cpu) { } static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } #endif /* * Debugging: see timer_list.c */ struct tick_device *tick_get_broadcast_device(void) { return &tick_broadcast_device; } struct cpumask *tick_get_broadcast_mask(void) { return tick_broadcast_mask; } /* * Start the device in periodic mode */ static void tick_broadcast_start_periodic(struct clock_event_device *bc) { if (bc) tick_setup_periodic(bc, 1); } /* * Check, if the device can be utilized as broadcast device: */ static bool tick_check_broadcast_device(struct clock_event_device *curdev, struct clock_event_device *newdev) { if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || (newdev->features & CLOCK_EVT_FEAT_PERCPU) || (newdev->features & CLOCK_EVT_FEAT_C3STOP)) return false; if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) return false; return !curdev || newdev->rating > curdev->rating; } /* * Conditionally install/replace broadcast device */ void tick_install_broadcast_device(struct clock_event_device *dev) { struct clock_event_device *cur = tick_broadcast_device.evtdev; if (!tick_check_broadcast_device(cur, dev)) return; if (!try_module_get(dev->owner)) return; clockevents_exchange_device(cur, dev); if (cur) cur->event_handler = clockevents_handle_noop; tick_broadcast_device.evtdev = dev; if (!cpumask_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(dev); /* * Inform all cpus about this. We might be in a situation * where we did not switch to oneshot mode because the per cpu * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack * of a oneshot capable broadcast device. Without that * notification the systems stays stuck in periodic mode * forever. */ if (dev->features & CLOCK_EVT_FEAT_ONESHOT) tick_clock_notify(); } /* * Check, if the device is the broadcast device */ int tick_is_broadcast_device(struct clock_event_device *dev) { return (dev && tick_broadcast_device.evtdev == dev); } int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) { int ret = -ENODEV; if (tick_is_broadcast_device(dev)) { raw_spin_lock(&tick_broadcast_lock); ret = __clockevents_update_freq(dev, freq); raw_spin_unlock(&tick_broadcast_lock); } return ret; } static void err_broadcast(const struct cpumask *mask) { pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); } static void tick_device_setup_broadcast_func(struct clock_event_device *dev) { if (!dev->broadcast) dev->broadcast = tick_broadcast; if (!dev->broadcast) { pr_warn_once("%s depends on broadcast, but no broadcast function available\n", dev->name); dev->broadcast = err_broadcast; } } /* * Check, if the device is disfunctional and a place holder, which * needs to be handled by the broadcast device. */ int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) { struct clock_event_device *bc = tick_broadcast_device.evtdev; unsigned long flags; int ret; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Devices might be registered with both periodic and oneshot * mode disabled. This signals, that the device needs to be * operated from the broadcast device and is a placeholder for * the cpu local device. */ if (!tick_device_is_functional(dev)) { dev->event_handler = tick_handle_periodic; tick_device_setup_broadcast_func(dev); cpumask_set_cpu(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_broadcast_start_periodic(bc); else tick_broadcast_setup_oneshot(bc); ret = 1; } else { /* * Clear the broadcast bit for this cpu if the * device is not power state affected. */ if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) cpumask_clear_cpu(cpu, tick_broadcast_mask); else tick_device_setup_broadcast_func(dev); /* * Clear the broadcast bit if the CPU is not in * periodic broadcast on state. */ if (!cpumask_test_cpu(cpu, tick_broadcast_on)) cpumask_clear_cpu(cpu, tick_broadcast_mask); switch (tick_broadcast_device.mode) { case TICKDEV_MODE_ONESHOT: /* * If the system is in oneshot mode we can * unconditionally clear the oneshot mask bit, * because the CPU is running and therefore * not in an idle state which causes the power * state affected device to stop. Let the * caller initialize the device. */ tick_broadcast_clear_oneshot(cpu); ret = 0; break; case TICKDEV_MODE_PERIODIC: /* * If the system is in periodic mode, check * whether the broadcast device can be * switched off now. */ if (cpumask_empty(tick_broadcast_mask) && bc) clockevents_shutdown(bc); /* * If we kept the cpu in the broadcast mask, * tell the caller to leave the per cpu device * in shutdown state. The periodic interrupt * is delivered by the broadcast device. */ ret = cpumask_test_cpu(cpu, tick_broadcast_mask); break; default: /* Nothing to do */ ret = 0; break; } } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); return ret; } #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST int tick_receive_broadcast(void) { struct tick_device *td = this_cpu_ptr(&tick_cpu_device); struct clock_event_device *evt = td->evtdev; if (!evt) return -ENODEV; if (!evt->event_handler) return -EINVAL; evt->event_handler(evt); return 0; } #endif /* * Broadcast the event to the cpus, which are set in the mask (mangled). */ static void tick_do_broadcast(struct cpumask *mask) { int cpu = smp_processor_id(); struct tick_device *td; /* * Check, if the current cpu is in the mask */ if (cpumask_test_cpu(cpu, mask)) { cpumask_clear_cpu(cpu, mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->event_handler(td->evtdev); } if (!cpumask_empty(mask)) { /* * It might be necessary to actually check whether the devices * have different broadcast functions. For now, just use the * one of the first device. This works as long as we have this * misfeature only on x86 (lapic) */ td = &per_cpu(tick_cpu_device, cpumask_first(mask)); td->evtdev->broadcast(mask); } } /* * Periodic broadcast: * - invoke the broadcast handlers */ static void tick_do_periodic_broadcast(void) { cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); tick_do_broadcast(tmpmask); } /* * Event handler for periodic broadcast ticks */ static void tick_handle_periodic_broadcast(struct clock_event_device *dev) { ktime_t next; raw_spin_lock(&tick_broadcast_lock); tick_do_periodic_broadcast(); /* * The device is in periodic mode. No reprogramming necessary: */ if (dev->state == CLOCK_EVT_STATE_PERIODIC) goto unlock; /* * Setup the next period for devices, which do not have * periodic mode. We read dev->next_event first and add to it * when the event already expired. clockevents_program_event() * sets dev->next_event only when the event is really * programmed to the device. */ for (next = dev->next_event; ;) { next = ktime_add(next, tick_period); if (!clockevents_program_event(dev, next, false)) goto unlock; tick_do_periodic_broadcast(); } unlock: raw_spin_unlock(&tick_broadcast_lock); } /** * tick_broadcast_control - Enable/disable or force broadcast mode * @mode: The selected broadcast mode * * Called when the system enters a state where affected tick devices * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. * * Called with interrupts disabled, so clockevents_lock is not * required here because the local clock event device cannot go away * under us. */ void tick_broadcast_control(enum tick_broadcast_mode mode) { struct clock_event_device *bc, *dev; struct tick_device *td; int cpu, bc_stopped; td = this_cpu_ptr(&tick_cpu_device); dev = td->evtdev; /* * Is the device not affected by the powerstate ? */ if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) return; if (!tick_device_is_functional(dev)) return; raw_spin_lock(&tick_broadcast_lock); cpu = smp_processor_id(); bc = tick_broadcast_device.evtdev; bc_stopped = cpumask_empty(tick_broadcast_mask); switch (mode) { case TICK_BROADCAST_FORCE: tick_broadcast_forced = 1; case TICK_BROADCAST_ON: cpumask_set_cpu(cpu, tick_broadcast_on); if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) clockevents_shutdown(dev); } break; case TICK_BROADCAST_OFF: if (tick_broadcast_forced) break; cpumask_clear_cpu(cpu, tick_broadcast_on); if (!tick_device_is_functional(dev)) break; if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(dev, 0); } break; } if (cpumask_empty(tick_broadcast_mask)) { if (!bc_stopped) clockevents_shutdown(bc); } else if (bc_stopped) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_broadcast_start_periodic(bc); else tick_broadcast_setup_oneshot(bc); } raw_spin_unlock(&tick_broadcast_lock); } EXPORT_SYMBOL_GPL(tick_broadcast_control); /* * Set the periodic handler depending on broadcast on/off */ void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) { if (!broadcast) dev->event_handler = tick_handle_periodic; else dev->event_handler = tick_handle_periodic_broadcast; } /* * Remove a CPU from broadcasting */ void tick_shutdown_broadcast(unsigned int *cpup) { struct clock_event_device *bc; unsigned long flags; unsigned int cpu = *cpup; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; cpumask_clear_cpu(cpu, tick_broadcast_mask); cpumask_clear_cpu(cpu, tick_broadcast_on); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { if (bc && cpumask_empty(tick_broadcast_mask)) clockevents_shutdown(bc); } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } void tick_suspend_broadcast(void) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) clockevents_shutdown(bc); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * This is called from tick_resume_local() on a resuming CPU. That's * called from the core resume function, tick_unfreeze() and the magic XEN * resume hackery. * * In none of these cases the broadcast device mode can change and the * bit of the resuming CPU in the broadcast mask is safe as well. */ bool tick_resume_check_broadcast(void) { if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) return false; else return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); } void tick_resume_broadcast(void) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) { clockevents_tick_resume(bc); switch (tick_broadcast_device.mode) { case TICKDEV_MODE_PERIODIC: if (!cpumask_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(bc); break; case TICKDEV_MODE_ONESHOT: if (!cpumask_empty(tick_broadcast_mask)) tick_resume_broadcast_oneshot(bc); break; } } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } #ifdef CONFIG_TICK_ONESHOT static cpumask_var_t tick_broadcast_oneshot_mask; static cpumask_var_t tick_broadcast_pending_mask; static cpumask_var_t tick_broadcast_force_mask; /* * Exposed for debugging: see timer_list.c */ struct cpumask *tick_get_broadcast_oneshot_mask(void) { return tick_broadcast_oneshot_mask; } /* * Called before going idle with interrupts disabled. Checks whether a * broadcast event from the other core is about to happen. We detected * that in tick_broadcast_oneshot_control(). The callsite can use this * to avoid a deep idle transition as we are about to get the * broadcast IPI right away. */ int tick_check_broadcast_expired(void) { return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); } /* * Set broadcast interrupt affinity */ static void tick_broadcast_set_affinity(struct clock_event_device *bc, const struct cpumask *cpumask) { if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) return; if (cpumask_equal(bc->cpumask, cpumask)) return; bc->cpumask = cpumask; irq_set_affinity(bc->irq, bc->cpumask); } static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu, ktime_t expires, int force) { int ret; if (bc->state != CLOCK_EVT_STATE_ONESHOT) clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); ret = clockevents_program_event(bc, expires, force); if (!ret) tick_broadcast_set_affinity(bc, cpumask_of(cpu)); return ret; } static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); } /* * Called from irq_enter() when idle was interrupted to reenable the * per cpu device. */ void tick_check_oneshot_broadcast_this_cpu(void) { if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { struct tick_device *td = this_cpu_ptr(&tick_cpu_device); /* * We might be in the middle of switching over from * periodic to oneshot. If the CPU has not yet * switched over, leave the device alone. */ if (td->mode == TICKDEV_MODE_ONESHOT) { clockevents_set_state(td->evtdev, CLOCK_EVT_STATE_ONESHOT); } } } /* * Handle oneshot mode broadcasting */ static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) { struct tick_device *td; ktime_t now, next_event; int cpu, next_cpu = 0; raw_spin_lock(&tick_broadcast_lock); again: dev->next_event.tv64 = KTIME_MAX; next_event.tv64 = KTIME_MAX; cpumask_clear(tmpmask); now = ktime_get(); /* Find all expired events */ for_each_cpu(cpu, tick_broadcast_oneshot_mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev->next_event.tv64 <= now.tv64) { cpumask_set_cpu(cpu, tmpmask); /* * Mark the remote cpu in the pending mask, so * it can avoid reprogramming the cpu local * timer in tick_broadcast_oneshot_control(). */ cpumask_set_cpu(cpu, tick_broadcast_pending_mask); } else if (td->evtdev->next_event.tv64 < next_event.tv64) { next_event.tv64 = td->evtdev->next_event.tv64; next_cpu = cpu; } } /* * Remove the current cpu from the pending mask. The event is * delivered immediately in tick_do_broadcast() ! */ cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); /* Take care of enforced broadcast requests */ cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); cpumask_clear(tick_broadcast_force_mask); /* * Sanity check. Catch the case where we try to broadcast to * offline cpus. */ if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) cpumask_and(tmpmask, tmpmask, cpu_online_mask); /* * Wakeup the cpus which have an expired event. */ tick_do_broadcast(tmpmask); /* * Two reasons for reprogram: * * - The global event did not expire any CPU local * events. This happens in dyntick mode, as the maximum PIT * delta is quite small. * * - There are pending events on sleeping CPUs which were not * in the event mask */ if (next_event.tv64 != KTIME_MAX) { /* * Rearm the broadcast device. If event expired, * repeat the above */ if (tick_broadcast_set_event(dev, next_cpu, next_event, 0)) goto again; } raw_spin_unlock(&tick_broadcast_lock); } static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) { if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) return 0; if (bc->next_event.tv64 == KTIME_MAX) return 0; return bc->bound_on == cpu ? -EBUSY : 0; } static void broadcast_shutdown_local(struct clock_event_device *bc, struct clock_event_device *dev) { /* * For hrtimer based broadcasting we cannot shutdown the cpu * local device if our own event is the first one to expire or * if we own the broadcast timer. */ if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { if (broadcast_needs_cpu(bc, smp_processor_id())) return; if (dev->next_event.tv64 < bc->next_event.tv64) return; } clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN); } void hotplug_cpu__broadcast_tick_pull(int deadcpu) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc && broadcast_needs_cpu(bc, deadcpu)) { /* This moves the broadcast assignment to this CPU: */ clockevents_program_event(bc, bc->next_event, 1); } raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /** * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode * @state: The target state (enter/exit) * * The system enters/leaves a state, where affected devices might stop * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. * * Called with interrupts disabled, so clockevents_lock is not * required here because the local clock event device cannot go away * under us. */ int tick_broadcast_oneshot_control(enum tick_broadcast_state state) { struct clock_event_device *bc, *dev; struct tick_device *td; int cpu, ret = 0; ktime_t now; /* * Periodic mode does not care about the enter/exit of power * states */ if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) return 0; /* * We are called with preemtion disabled from the depth of the * idle code, so we can't be moved away. */ td = this_cpu_ptr(&tick_cpu_device); dev = td->evtdev; if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) return 0; raw_spin_lock(&tick_broadcast_lock); bc = tick_broadcast_device.evtdev; cpu = smp_processor_id(); if (state == TICK_BROADCAST_ENTER) { if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); broadcast_shutdown_local(bc, dev); /* * We only reprogram the broadcast timer if we * did not mark ourself in the force mask and * if the cpu local event is earlier than the * broadcast event. If the current CPU is in * the force mask, then we are going to be * woken by the IPI right away. */ if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) && dev->next_event.tv64 < bc->next_event.tv64) tick_broadcast_set_event(bc, cpu, dev->next_event, 1); } /* * If the current CPU owns the hrtimer broadcast * mechanism, it cannot go deep idle and we remove the * CPU from the broadcast mask. We don't have to go * through the EXIT path as the local timer is not * shutdown. */ ret = broadcast_needs_cpu(bc, cpu); if (ret) cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); } else { if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT); /* * The cpu which was handling the broadcast * timer marked this cpu in the broadcast * pending mask and fired the broadcast * IPI. So we are going to handle the expired * event anyway via the broadcast IPI * handler. No need to reprogram the timer * with an already expired event. */ if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_pending_mask)) goto out; /* * Bail out if there is no next event. */ if (dev->next_event.tv64 == KTIME_MAX) goto out; /* * If the pending bit is not set, then we are * either the CPU handling the broadcast * interrupt or we got woken by something else. * * We are not longer in the broadcast mask, so * if the cpu local expiry time is already * reached, we would reprogram the cpu local * timer with an already expired event. * * This can lead to a ping-pong when we return * to idle and therefor rearm the broadcast * timer before the cpu local timer was able * to fire. This happens because the forced * reprogramming makes sure that the event * will happen in the future and depending on * the min_delta setting this might be far * enough out that the ping-pong starts. * * If the cpu local next_event has expired * then we know that the broadcast timer * next_event has expired as well and * broadcast is about to be handled. So we * avoid reprogramming and enforce that the * broadcast handler, which did not run yet, * will invoke the cpu local handler. * * We cannot call the handler directly from * here, because we might be in a NOHZ phase * and we did not go through the irq_enter() * nohz fixups. */ now = ktime_get(); if (dev->next_event.tv64 <= now.tv64) { cpumask_set_cpu(cpu, tick_broadcast_force_mask); goto out; } /* * We got woken by something else. Reprogram * the cpu local timer device. */ tick_program_event(dev->next_event, 1); } } out: raw_spin_unlock(&tick_broadcast_lock); return ret; } EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); /* * Reset the one shot broadcast for a cpu * * Called with tick_broadcast_lock held */ static void tick_broadcast_clear_oneshot(int cpu) { cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); } static void tick_broadcast_init_next_event(struct cpumask *mask, ktime_t expires) { struct tick_device *td; int cpu; for_each_cpu(cpu, mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev) td->evtdev->next_event = expires; } } /** * tick_broadcast_setup_oneshot - setup the broadcast device */ void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { int cpu = smp_processor_id(); /* Set it up only once ! */ if (bc->event_handler != tick_handle_oneshot_broadcast) { int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC; bc->event_handler = tick_handle_oneshot_broadcast; /* * We must be careful here. There might be other CPUs * waiting for periodic broadcast. We need to set the * oneshot_mask bits for those and program the * broadcast device to fire. */ cpumask_copy(tmpmask, tick_broadcast_mask); cpumask_clear_cpu(cpu, tmpmask); cpumask_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, tmpmask); if (was_periodic && !cpumask_empty(tmpmask)) { clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); tick_broadcast_init_next_event(tmpmask, tick_next_period); tick_broadcast_set_event(bc, cpu, tick_next_period, 1); } else bc->next_event.tv64 = KTIME_MAX; } else { /* * The first cpu which switches to oneshot mode sets * the bit for all other cpus which are in the general * (periodic) broadcast mask. So the bit is set and * would prevent the first broadcast enter after this * to program the bc device. */ tick_broadcast_clear_oneshot(cpu); } } /* * Select oneshot operating mode for the broadcast device */ void tick_broadcast_switch_to_oneshot(void) { struct clock_event_device *bc; unsigned long flags; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; bc = tick_broadcast_device.evtdev; if (bc) tick_broadcast_setup_oneshot(bc); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Remove a dead CPU from broadcasting */ void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { unsigned long flags; unsigned int cpu = *cpup; raw_spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Clear the broadcast masks for the dead cpu, but do not stop * the broadcast device! */ cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); cpumask_clear_cpu(cpu, tick_broadcast_force_mask); raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Check, whether the broadcast device is in one shot mode */ int tick_broadcast_oneshot_active(void) { return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; } /* * Check whether the broadcast device supports oneshot. */ bool tick_broadcast_oneshot_available(void) { struct clock_event_device *bc = tick_broadcast_device.evtdev; return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; } #endif void __init tick_broadcast_init(void) { zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); #ifdef CONFIG_TICK_ONESHOT zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); #endif }