/* * Copyright (C) 2004-2007,2011-2012 Freescale Semiconductor, Inc. * All rights reserved. * * Author: Li Yang * Jiang Bo * * Description: * Freescale high-speed USB SOC DR module device controller driver. * This can be found on MPC8349E/MPC8313E/MPC5121E cpus. * The driver is previously named as mpc_udc. Based on bare board * code from Dave Liu and Shlomi Gridish. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #undef VERBOSE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsl_usb2_udc.h" #define DRIVER_DESC "Freescale High-Speed USB SOC Device Controller driver" #define DRIVER_AUTHOR "Li Yang/Jiang Bo" #define DRIVER_VERSION "Apr 20, 2007" #define DMA_ADDR_INVALID (~(dma_addr_t)0) static const char driver_name[] = "fsl-usb2-udc"; static const char driver_desc[] = DRIVER_DESC; static struct usb_dr_device *dr_regs; static struct usb_sys_interface *usb_sys_regs; /* it is initialized in probe() */ static struct fsl_udc *udc_controller = NULL; static const struct usb_endpoint_descriptor fsl_ep0_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = USB_MAX_CTRL_PAYLOAD, }; static void fsl_ep_fifo_flush(struct usb_ep *_ep); #ifdef CONFIG_PPC32 /* * On some SoCs, the USB controller registers can be big or little endian, * depending on the version of the chip. In order to be able to run the * same kernel binary on 2 different versions of an SoC, the BE/LE decision * must be made at run time. _fsl_readl and fsl_writel are pointers to the * BE or LE readl() and writel() functions, and fsl_readl() and fsl_writel() * call through those pointers. Platform code for SoCs that have BE USB * registers should set pdata->big_endian_mmio flag. * * This also applies to controller-to-cpu accessors for the USB descriptors, * since their endianness is also SoC dependant. Platform code for SoCs that * have BE USB descriptors should set pdata->big_endian_desc flag. */ static u32 _fsl_readl_be(const unsigned __iomem *p) { return in_be32(p); } static u32 _fsl_readl_le(const unsigned __iomem *p) { return in_le32(p); } static void _fsl_writel_be(u32 v, unsigned __iomem *p) { out_be32(p, v); } static void _fsl_writel_le(u32 v, unsigned __iomem *p) { out_le32(p, v); } static u32 (*_fsl_readl)(const unsigned __iomem *p); static void (*_fsl_writel)(u32 v, unsigned __iomem *p); #define fsl_readl(p) (*_fsl_readl)((p)) #define fsl_writel(v, p) (*_fsl_writel)((v), (p)) static inline void fsl_set_accessors(struct fsl_usb2_platform_data *pdata) { if (pdata->big_endian_mmio) { _fsl_readl = _fsl_readl_be; _fsl_writel = _fsl_writel_be; } else { _fsl_readl = _fsl_readl_le; _fsl_writel = _fsl_writel_le; } } static inline u32 cpu_to_hc32(const u32 x) { return udc_controller->pdata->big_endian_desc ? (__force u32)cpu_to_be32(x) : (__force u32)cpu_to_le32(x); } static inline u32 hc32_to_cpu(const u32 x) { return udc_controller->pdata->big_endian_desc ? be32_to_cpu((__force __be32)x) : le32_to_cpu((__force __le32)x); } #else /* !CONFIG_PPC32 */ static inline void fsl_set_accessors(struct fsl_usb2_platform_data *pdata) {} #define fsl_readl(addr) readl(addr) #define fsl_writel(val32, addr) writel(val32, addr) #define cpu_to_hc32(x) cpu_to_le32(x) #define hc32_to_cpu(x) le32_to_cpu(x) #endif /* CONFIG_PPC32 */ /******************************************************************** * Internal Used Function ********************************************************************/ /*----------------------------------------------------------------- * done() - retire a request; caller blocked irqs * @status : request status to be set, only works when * request is still in progress. *--------------------------------------------------------------*/ static void done(struct fsl_ep *ep, struct fsl_req *req, int status) { struct fsl_udc *udc = NULL; unsigned char stopped = ep->stopped; struct ep_td_struct *curr_td, *next_td; int j; udc = (struct fsl_udc *)ep->udc; /* Removed the req from fsl_ep->queue */ list_del_init(&req->queue); /* req.status should be set as -EINPROGRESS in ep_queue() */ if (req->req.status == -EINPROGRESS) req->req.status = status; else status = req->req.status; /* Free dtd for the request */ next_td = req->head; for (j = 0; j < req->dtd_count; j++) { curr_td = next_td; if (j != req->dtd_count - 1) { next_td = curr_td->next_td_virt; } dma_pool_free(udc->td_pool, curr_td, curr_td->td_dma); } usb_gadget_unmap_request(&ep->udc->gadget, &req->req, ep_is_in(ep)); if (status && (status != -ESHUTDOWN)) VDBG("complete %s req %p stat %d len %u/%u", ep->ep.name, &req->req, status, req->req.actual, req->req.length); ep->stopped = 1; spin_unlock(&ep->udc->lock); /* complete() is from gadget layer, * eg fsg->bulk_in_complete() */ if (req->req.complete) req->req.complete(&ep->ep, &req->req); spin_lock(&ep->udc->lock); ep->stopped = stopped; } /*----------------------------------------------------------------- * nuke(): delete all requests related to this ep * called with spinlock held *--------------------------------------------------------------*/ static void nuke(struct fsl_ep *ep, int status) { ep->stopped = 1; /* Flush fifo */ fsl_ep_fifo_flush(&ep->ep); /* Whether this eq has request linked */ while (!list_empty(&ep->queue)) { struct fsl_req *req = NULL; req = list_entry(ep->queue.next, struct fsl_req, queue); done(ep, req, status); } } /*------------------------------------------------------------------ Internal Hardware related function ------------------------------------------------------------------*/ static int dr_controller_setup(struct fsl_udc *udc) { unsigned int tmp, portctrl, ep_num; unsigned int max_no_of_ep; unsigned int ctrl; unsigned long timeout; #define FSL_UDC_RESET_TIMEOUT 1000 /* Config PHY interface */ portctrl = fsl_readl(&dr_regs->portsc1); portctrl &= ~(PORTSCX_PHY_TYPE_SEL | PORTSCX_PORT_WIDTH); switch (udc->phy_mode) { case FSL_USB2_PHY_ULPI: if (udc->pdata->have_sysif_regs) { if (udc->pdata->controller_ver) { /* controller version 1.6 or above */ ctrl = __raw_readl(&usb_sys_regs->control); ctrl &= ~USB_CTRL_UTMI_PHY_EN; ctrl |= USB_CTRL_USB_EN; __raw_writel(ctrl, &usb_sys_regs->control); } } portctrl |= PORTSCX_PTS_ULPI; break; case FSL_USB2_PHY_UTMI_WIDE: portctrl |= PORTSCX_PTW_16BIT; /* fall through */ case FSL_USB2_PHY_UTMI: if (udc->pdata->have_sysif_regs) { if (udc->pdata->controller_ver) { /* controller version 1.6 or above */ ctrl = __raw_readl(&usb_sys_regs->control); ctrl |= (USB_CTRL_UTMI_PHY_EN | USB_CTRL_USB_EN); __raw_writel(ctrl, &usb_sys_regs->control); mdelay(FSL_UTMI_PHY_DLY); /* Delay for UTMI PHY CLK to become stable - 10ms*/ } } portctrl |= PORTSCX_PTS_UTMI; break; case FSL_USB2_PHY_SERIAL: portctrl |= PORTSCX_PTS_FSLS; break; default: return -EINVAL; } fsl_writel(portctrl, &dr_regs->portsc1); /* Stop and reset the usb controller */ tmp = fsl_readl(&dr_regs->usbcmd); tmp &= ~USB_CMD_RUN_STOP; fsl_writel(tmp, &dr_regs->usbcmd); tmp = fsl_readl(&dr_regs->usbcmd); tmp |= USB_CMD_CTRL_RESET; fsl_writel(tmp, &dr_regs->usbcmd); /* Wait for reset to complete */ timeout = jiffies + FSL_UDC_RESET_TIMEOUT; while (fsl_readl(&dr_regs->usbcmd) & USB_CMD_CTRL_RESET) { if (time_after(jiffies, timeout)) { ERR("udc reset timeout!\n"); return -ETIMEDOUT; } cpu_relax(); } /* Set the controller as device mode */ tmp = fsl_readl(&dr_regs->usbmode); tmp &= ~USB_MODE_CTRL_MODE_MASK; /* clear mode bits */ tmp |= USB_MODE_CTRL_MODE_DEVICE; /* Disable Setup Lockout */ tmp |= USB_MODE_SETUP_LOCK_OFF; if (udc->pdata->es) tmp |= USB_MODE_ES; fsl_writel(tmp, &dr_regs->usbmode); /* Clear the setup status */ fsl_writel(0, &dr_regs->usbsts); tmp = udc->ep_qh_dma; tmp &= USB_EP_LIST_ADDRESS_MASK; fsl_writel(tmp, &dr_regs->endpointlistaddr); VDBG("vir[qh_base] is %p phy[qh_base] is 0x%8x reg is 0x%8x", udc->ep_qh, (int)tmp, fsl_readl(&dr_regs->endpointlistaddr)); max_no_of_ep = (0x0000001F & fsl_readl(&dr_regs->dccparams)); for (ep_num = 1; ep_num < max_no_of_ep; ep_num++) { tmp = fsl_readl(&dr_regs->endptctrl[ep_num]); tmp &= ~(EPCTRL_TX_TYPE | EPCTRL_RX_TYPE); tmp |= (EPCTRL_EP_TYPE_BULK << EPCTRL_TX_EP_TYPE_SHIFT) | (EPCTRL_EP_TYPE_BULK << EPCTRL_RX_EP_TYPE_SHIFT); fsl_writel(tmp, &dr_regs->endptctrl[ep_num]); } /* Config control enable i/o output, cpu endian register */ #ifndef CONFIG_ARCH_MXC if (udc->pdata->have_sysif_regs) { ctrl = __raw_readl(&usb_sys_regs->control); ctrl |= USB_CTRL_IOENB; __raw_writel(ctrl, &usb_sys_regs->control); } #endif #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) /* Turn on cache snooping hardware, since some PowerPC platforms * wholly rely on hardware to deal with cache coherent. */ if (udc->pdata->have_sysif_regs) { /* Setup Snooping for all the 4GB space */ tmp = SNOOP_SIZE_2GB; /* starts from 0x0, size 2G */ __raw_writel(tmp, &usb_sys_regs->snoop1); tmp |= 0x80000000; /* starts from 0x8000000, size 2G */ __raw_writel(tmp, &usb_sys_regs->snoop2); } #endif return 0; } /* Enable DR irq and set controller to run state */ static void dr_controller_run(struct fsl_udc *udc) { u32 temp; /* Enable DR irq reg */ temp = USB_INTR_INT_EN | USB_INTR_ERR_INT_EN | USB_INTR_PTC_DETECT_EN | USB_INTR_RESET_EN | USB_INTR_DEVICE_SUSPEND | USB_INTR_SYS_ERR_EN; fsl_writel(temp, &dr_regs->usbintr); /* Clear stopped bit */ udc->stopped = 0; /* Set the controller as device mode */ temp = fsl_readl(&dr_regs->usbmode); temp |= USB_MODE_CTRL_MODE_DEVICE; fsl_writel(temp, &dr_regs->usbmode); /* Set controller to Run */ temp = fsl_readl(&dr_regs->usbcmd); temp |= USB_CMD_RUN_STOP; fsl_writel(temp, &dr_regs->usbcmd); } static void dr_controller_stop(struct fsl_udc *udc) { unsigned int tmp; pr_debug("%s\n", __func__); /* if we're in OTG mode, and the Host is currently using the port, * stop now and don't rip the controller out from under the * ehci driver */ if (udc->gadget.is_otg) { if (!(fsl_readl(&dr_regs->otgsc) & OTGSC_STS_USB_ID)) { pr_debug("udc: Leaving early\n"); return; } } /* disable all INTR */ fsl_writel(0, &dr_regs->usbintr); /* Set stopped bit for isr */ udc->stopped = 1; /* disable IO output */ /* usb_sys_regs->control = 0; */ /* set controller to Stop */ tmp = fsl_readl(&dr_regs->usbcmd); tmp &= ~USB_CMD_RUN_STOP; fsl_writel(tmp, &dr_regs->usbcmd); } static void dr_ep_setup(unsigned char ep_num, unsigned char dir, unsigned char ep_type) { unsigned int tmp_epctrl = 0; tmp_epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (dir) { if (ep_num) tmp_epctrl |= EPCTRL_TX_DATA_TOGGLE_RST; tmp_epctrl |= EPCTRL_TX_ENABLE; tmp_epctrl &= ~EPCTRL_TX_TYPE; tmp_epctrl |= ((unsigned int)(ep_type) << EPCTRL_TX_EP_TYPE_SHIFT); } else { if (ep_num) tmp_epctrl |= EPCTRL_RX_DATA_TOGGLE_RST; tmp_epctrl |= EPCTRL_RX_ENABLE; tmp_epctrl &= ~EPCTRL_RX_TYPE; tmp_epctrl |= ((unsigned int)(ep_type) << EPCTRL_RX_EP_TYPE_SHIFT); } fsl_writel(tmp_epctrl, &dr_regs->endptctrl[ep_num]); } static void dr_ep_change_stall(unsigned char ep_num, unsigned char dir, int value) { u32 tmp_epctrl = 0; tmp_epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (value) { /* set the stall bit */ if (dir) tmp_epctrl |= EPCTRL_TX_EP_STALL; else tmp_epctrl |= EPCTRL_RX_EP_STALL; } else { /* clear the stall bit and reset data toggle */ if (dir) { tmp_epctrl &= ~EPCTRL_TX_EP_STALL; tmp_epctrl |= EPCTRL_TX_DATA_TOGGLE_RST; } else { tmp_epctrl &= ~EPCTRL_RX_EP_STALL; tmp_epctrl |= EPCTRL_RX_DATA_TOGGLE_RST; } } fsl_writel(tmp_epctrl, &dr_regs->endptctrl[ep_num]); } /* Get stall status of a specific ep Return: 0: not stalled; 1:stalled */ static int dr_ep_get_stall(unsigned char ep_num, unsigned char dir) { u32 epctrl; epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (dir) return (epctrl & EPCTRL_TX_EP_STALL) ? 1 : 0; else return (epctrl & EPCTRL_RX_EP_STALL) ? 1 : 0; } /******************************************************************** Internal Structure Build up functions ********************************************************************/ /*------------------------------------------------------------------ * struct_ep_qh_setup(): set the Endpoint Capabilites field of QH * @zlt: Zero Length Termination Select (1: disable; 0: enable) * @mult: Mult field ------------------------------------------------------------------*/ static void struct_ep_qh_setup(struct fsl_udc *udc, unsigned char ep_num, unsigned char dir, unsigned char ep_type, unsigned int max_pkt_len, unsigned int zlt, unsigned char mult) { struct ep_queue_head *p_QH = &udc->ep_qh[2 * ep_num + dir]; unsigned int tmp = 0; /* set the Endpoint Capabilites in QH */ switch (ep_type) { case USB_ENDPOINT_XFER_CONTROL: /* Interrupt On Setup (IOS). for control ep */ tmp = (max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS) | EP_QUEUE_HEAD_IOS; break; case USB_ENDPOINT_XFER_ISOC: tmp = (max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS) | (mult << EP_QUEUE_HEAD_MULT_POS); break; case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: tmp = max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS; break; default: VDBG("error ep type is %d", ep_type); return; } if (zlt) tmp |= EP_QUEUE_HEAD_ZLT_SEL; p_QH->max_pkt_length = cpu_to_hc32(tmp); p_QH->next_dtd_ptr = 1; p_QH->size_ioc_int_sts = 0; } /* Setup qh structure and ep register for ep0. */ static void ep0_setup(struct fsl_udc *udc) { /* the intialization of an ep includes: fields in QH, Regs, * fsl_ep struct */ struct_ep_qh_setup(udc, 0, USB_RECV, USB_ENDPOINT_XFER_CONTROL, USB_MAX_CTRL_PAYLOAD, 0, 0); struct_ep_qh_setup(udc, 0, USB_SEND, USB_ENDPOINT_XFER_CONTROL, USB_MAX_CTRL_PAYLOAD, 0, 0); dr_ep_setup(0, USB_RECV, USB_ENDPOINT_XFER_CONTROL); dr_ep_setup(0, USB_SEND, USB_ENDPOINT_XFER_CONTROL); return; } /*********************************************************************** Endpoint Management Functions ***********************************************************************/ /*------------------------------------------------------------------------- * when configurations are set, or when interface settings change * for example the do_set_interface() in gadget layer, * the driver will enable or disable the relevant endpoints * ep0 doesn't use this routine. It is always enabled. -------------------------------------------------------------------------*/ static int fsl_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct fsl_udc *udc = NULL; struct fsl_ep *ep = NULL; unsigned short max = 0; unsigned char mult = 0, zlt; int retval = -EINVAL; unsigned long flags = 0; ep = container_of(_ep, struct fsl_ep, ep); /* catch various bogus parameters */ if (!_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) return -EINVAL; udc = ep->udc; if (!udc->driver || (udc->gadget.speed == USB_SPEED_UNKNOWN)) return -ESHUTDOWN; max = usb_endpoint_maxp(desc); /* Disable automatic zlp generation. Driver is responsible to indicate * explicitly through req->req.zero. This is needed to enable multi-td * request. */ zlt = 1; /* Assume the max packet size from gadget is always correct */ switch (desc->bmAttributes & 0x03) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: /* mult = 0. Execute N Transactions as demonstrated by * the USB variable length packet protocol where N is * computed using the Maximum Packet Length (dQH) and * the Total Bytes field (dTD) */ mult = 0; break; case USB_ENDPOINT_XFER_ISOC: /* Calculate transactions needed for high bandwidth iso */ mult = (unsigned char)(1 + ((max >> 11) & 0x03)); max = max & 0x7ff; /* bit 0~10 */ /* 3 transactions at most */ if (mult > 3) goto en_done; break; default: goto en_done; } spin_lock_irqsave(&udc->lock, flags); ep->ep.maxpacket = max; ep->ep.desc = desc; ep->stopped = 0; /* Controller related setup */ /* Init EPx Queue Head (Ep Capabilites field in QH * according to max, zlt, mult) */ struct_ep_qh_setup(udc, (unsigned char) ep_index(ep), (unsigned char) ((desc->bEndpointAddress & USB_DIR_IN) ? USB_SEND : USB_RECV), (unsigned char) (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK), max, zlt, mult); /* Init endpoint ctrl register */ dr_ep_setup((unsigned char) ep_index(ep), (unsigned char) ((desc->bEndpointAddress & USB_DIR_IN) ? USB_SEND : USB_RECV), (unsigned char) (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)); spin_unlock_irqrestore(&udc->lock, flags); retval = 0; VDBG("enabled %s (ep%d%s) maxpacket %d",ep->ep.name, ep->ep.desc->bEndpointAddress & 0x0f, (desc->bEndpointAddress & USB_DIR_IN) ? "in" : "out", max); en_done: return retval; } /*--------------------------------------------------------------------- * @ep : the ep being unconfigured. May not be ep0 * Any pending and uncomplete req will complete with status (-ESHUTDOWN) *---------------------------------------------------------------------*/ static int fsl_ep_disable(struct usb_ep *_ep) { struct fsl_udc *udc = NULL; struct fsl_ep *ep = NULL; unsigned long flags = 0; u32 epctrl; int ep_num; ep = container_of(_ep, struct fsl_ep, ep); if (!_ep || !ep->ep.desc) { VDBG("%s not enabled", _ep ? ep->ep.name : NULL); return -EINVAL; } /* disable ep on controller */ ep_num = ep_index(ep); epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (ep_is_in(ep)) { epctrl &= ~(EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE); epctrl |= EPCTRL_EP_TYPE_BULK << EPCTRL_TX_EP_TYPE_SHIFT; } else { epctrl &= ~(EPCTRL_RX_ENABLE | EPCTRL_TX_TYPE); epctrl |= EPCTRL_EP_TYPE_BULK << EPCTRL_RX_EP_TYPE_SHIFT; } fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]); udc = (struct fsl_udc *)ep->udc; spin_lock_irqsave(&udc->lock, flags); /* nuke all pending requests (does flush) */ nuke(ep, -ESHUTDOWN); ep->ep.desc = NULL; ep->stopped = 1; spin_unlock_irqrestore(&udc->lock, flags); VDBG("disabled %s OK", _ep->name); return 0; } /*--------------------------------------------------------------------- * allocate a request object used by this endpoint * the main operation is to insert the req->queue to the eq->queue * Returns the request, or null if one could not be allocated *---------------------------------------------------------------------*/ static struct usb_request * fsl_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct fsl_req *req = NULL; req = kzalloc(sizeof *req, gfp_flags); if (!req) return NULL; req->req.dma = DMA_ADDR_INVALID; INIT_LIST_HEAD(&req->queue); return &req->req; } static void fsl_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct fsl_req *req = NULL; req = container_of(_req, struct fsl_req, req); if (_req) kfree(req); } /* Actually add a dTD chain to an empty dQH and let go */ static void fsl_prime_ep(struct fsl_ep *ep, struct ep_td_struct *td) { struct ep_queue_head *qh = get_qh_by_ep(ep); /* Write dQH next pointer and terminate bit to 0 */ qh->next_dtd_ptr = cpu_to_hc32(td->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK); /* Clear active and halt bit */ qh->size_ioc_int_sts &= cpu_to_hc32(~(EP_QUEUE_HEAD_STATUS_ACTIVE | EP_QUEUE_HEAD_STATUS_HALT)); /* Ensure that updates to the QH will occur before priming. */ wmb(); /* Prime endpoint by writing correct bit to ENDPTPRIME */ fsl_writel(ep_is_in(ep) ? (1 << (ep_index(ep) + 16)) : (1 << (ep_index(ep))), &dr_regs->endpointprime); } /* Add dTD chain to the dQH of an EP */ static void fsl_queue_td(struct fsl_ep *ep, struct fsl_req *req) { u32 temp, bitmask, tmp_stat; /* VDBG("QH addr Register 0x%8x", dr_regs->endpointlistaddr); VDBG("ep_qh[%d] addr is 0x%8x", i, (u32)&(ep->udc->ep_qh[i])); */ bitmask = ep_is_in(ep) ? (1 << (ep_index(ep) + 16)) : (1 << (ep_index(ep))); /* check if the pipe is empty */ if (!(list_empty(&ep->queue)) && !(ep_index(ep) == 0)) { /* Add td to the end */ struct fsl_req *lastreq; lastreq = list_entry(ep->queue.prev, struct fsl_req, queue); lastreq->tail->next_td_ptr = cpu_to_hc32(req->head->td_dma & DTD_ADDR_MASK); /* Ensure dTD's next dtd pointer to be updated */ wmb(); /* Read prime bit, if 1 goto done */ if (fsl_readl(&dr_regs->endpointprime) & bitmask) return; do { /* Set ATDTW bit in USBCMD */ temp = fsl_readl(&dr_regs->usbcmd); fsl_writel(temp | USB_CMD_ATDTW, &dr_regs->usbcmd); /* Read correct status bit */ tmp_stat = fsl_readl(&dr_regs->endptstatus) & bitmask; } while (!(fsl_readl(&dr_regs->usbcmd) & USB_CMD_ATDTW)); /* Write ATDTW bit to 0 */ temp = fsl_readl(&dr_regs->usbcmd); fsl_writel(temp & ~USB_CMD_ATDTW, &dr_regs->usbcmd); if (tmp_stat) return; } fsl_prime_ep(ep, req->head); } /* Fill in the dTD structure * @req: request that the transfer belongs to * @length: return actually data length of the dTD * @dma: return dma address of the dTD * @is_last: return flag if it is the last dTD of the request * return: pointer to the built dTD */ static struct ep_td_struct *fsl_build_dtd(struct fsl_req *req, unsigned *length, dma_addr_t *dma, int *is_last, gfp_t gfp_flags) { u32 swap_temp; struct ep_td_struct *dtd; /* how big will this transfer be? */ *length = min(req->req.length - req->req.actual, (unsigned)EP_MAX_LENGTH_TRANSFER); dtd = dma_pool_alloc(udc_controller->td_pool, gfp_flags, dma); if (dtd == NULL) return dtd; dtd->td_dma = *dma; /* Clear reserved field */ swap_temp = hc32_to_cpu(dtd->size_ioc_sts); swap_temp &= ~DTD_RESERVED_FIELDS; dtd->size_ioc_sts = cpu_to_hc32(swap_temp); /* Init all of buffer page pointers */ swap_temp = (u32) (req->req.dma + req->req.actual); dtd->buff_ptr0 = cpu_to_hc32(swap_temp); dtd->buff_ptr1 = cpu_to_hc32(swap_temp + 0x1000); dtd->buff_ptr2 = cpu_to_hc32(swap_temp + 0x2000); dtd->buff_ptr3 = cpu_to_hc32(swap_temp + 0x3000); dtd->buff_ptr4 = cpu_to_hc32(swap_temp + 0x4000); req->req.actual += *length; /* zlp is needed if req->req.zero is set */ if (req->req.zero) { if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0) *is_last = 1; else *is_last = 0; } else if (req->req.length == req->req.actual) *is_last = 1; else *is_last = 0; if ((*is_last) == 0) VDBG("multi-dtd request!"); /* Fill in the transfer size; set active bit */ swap_temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE); /* Enable interrupt for the last dtd of a request */ if (*is_last && !req->req.no_interrupt) swap_temp |= DTD_IOC; dtd->size_ioc_sts = cpu_to_hc32(swap_temp); mb(); VDBG("length = %d address= 0x%x", *length, (int)*dma); return dtd; } /* Generate dtd chain for a request */ static int fsl_req_to_dtd(struct fsl_req *req, gfp_t gfp_flags) { unsigned count; int is_last; int is_first =1; struct ep_td_struct *last_dtd = NULL, *dtd; dma_addr_t dma; do { dtd = fsl_build_dtd(req, &count, &dma, &is_last, gfp_flags); if (dtd == NULL) return -ENOMEM; if (is_first) { is_first = 0; req->head = dtd; } else { last_dtd->next_td_ptr = cpu_to_hc32(dma); last_dtd->next_td_virt = dtd; } last_dtd = dtd; req->dtd_count++; } while (!is_last); dtd->next_td_ptr = cpu_to_hc32(DTD_NEXT_TERMINATE); req->tail = dtd; return 0; } /* queues (submits) an I/O request to an endpoint */ static int fsl_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct fsl_ep *ep = container_of(_ep, struct fsl_ep, ep); struct fsl_req *req = container_of(_req, struct fsl_req, req); struct fsl_udc *udc; unsigned long flags; int ret; /* catch various bogus parameters */ if (!_req || !req->req.complete || !req->req.buf || !list_empty(&req->queue)) { VDBG("%s, bad params", __func__); return -EINVAL; } if (unlikely(!_ep || !ep->ep.desc)) { VDBG("%s, bad ep", __func__); return -EINVAL; } if (usb_endpoint_xfer_isoc(ep->ep.desc)) { if (req->req.length > ep->ep.maxpacket) return -EMSGSIZE; } udc = ep->udc; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; req->ep = ep; ret = usb_gadget_map_request(&ep->udc->gadget, &req->req, ep_is_in(ep)); if (ret) return ret; req->req.status = -EINPROGRESS; req->req.actual = 0; req->dtd_count = 0; /* build dtds and push them to device queue */ if (!fsl_req_to_dtd(req, gfp_flags)) { spin_lock_irqsave(&udc->lock, flags); fsl_queue_td(ep, req); } else { return -ENOMEM; } /* irq handler advances the queue */ if (req != NULL) list_add_tail(&req->queue, &ep->queue); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /* dequeues (cancels, unlinks) an I/O request from an endpoint */ static int fsl_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct fsl_ep *ep = container_of(_ep, struct fsl_ep, ep); struct fsl_req *req; unsigned long flags; int ep_num, stopped, ret = 0; u32 epctrl; if (!_ep || !_req) return -EINVAL; spin_lock_irqsave(&ep->udc->lock, flags); stopped = ep->stopped; /* Stop the ep before we deal with the queue */ ep->stopped = 1; ep_num = ep_index(ep); epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (ep_is_in(ep)) epctrl &= ~EPCTRL_TX_ENABLE; else epctrl &= ~EPCTRL_RX_ENABLE; fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]); /* make sure it's actually queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->req == _req) break; } if (&req->req != _req) { ret = -EINVAL; goto out; } /* The request is in progress, or completed but not dequeued */ if (ep->queue.next == &req->queue) { _req->status = -ECONNRESET; fsl_ep_fifo_flush(_ep); /* flush current transfer */ /* The request isn't the last request in this ep queue */ if (req->queue.next != &ep->queue) { struct fsl_req *next_req; next_req = list_entry(req->queue.next, struct fsl_req, queue); /* prime with dTD of next request */ fsl_prime_ep(ep, next_req->head); } /* The request hasn't been processed, patch up the TD chain */ } else { struct fsl_req *prev_req; prev_req = list_entry(req->queue.prev, struct fsl_req, queue); prev_req->tail->next_td_ptr = req->tail->next_td_ptr; } done(ep, req, -ECONNRESET); /* Enable EP */ out: epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]); if (ep_is_in(ep)) epctrl |= EPCTRL_TX_ENABLE; else epctrl |= EPCTRL_RX_ENABLE; fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]); ep->stopped = stopped; spin_unlock_irqrestore(&ep->udc->lock, flags); return ret; } /*-------------------------------------------------------------------------*/ /*----------------------------------------------------------------- * modify the endpoint halt feature * @ep: the non-isochronous endpoint being stalled * @value: 1--set halt 0--clear halt * Returns zero, or a negative error code. *----------------------------------------------------------------*/ static int fsl_ep_set_halt(struct usb_ep *_ep, int value) { struct fsl_ep *ep = NULL; unsigned long flags = 0; int status = -EOPNOTSUPP; /* operation not supported */ unsigned char ep_dir = 0, ep_num = 0; struct fsl_udc *udc = NULL; ep = container_of(_ep, struct fsl_ep, ep); udc = ep->udc; if (!_ep || !ep->ep.desc) { status = -EINVAL; goto out; } if (usb_endpoint_xfer_isoc(ep->ep.desc)) { status = -EOPNOTSUPP; goto out; } /* Attempt to halt IN ep will fail if any transfer requests * are still queue */ if (value && ep_is_in(ep) && !list_empty(&ep->queue)) { status = -EAGAIN; goto out; } status = 0; ep_dir = ep_is_in(ep) ? USB_SEND : USB_RECV; ep_num = (unsigned char)(ep_index(ep)); spin_lock_irqsave(&ep->udc->lock, flags); dr_ep_change_stall(ep_num, ep_dir, value); spin_unlock_irqrestore(&ep->udc->lock, flags); if (ep_index(ep) == 0) { udc->ep0_state = WAIT_FOR_SETUP; udc->ep0_dir = 0; } out: VDBG(" %s %s halt stat %d", ep->ep.name, value ? "set" : "clear", status); return status; } static int fsl_ep_fifo_status(struct usb_ep *_ep) { struct fsl_ep *ep; struct fsl_udc *udc; int size = 0; u32 bitmask; struct ep_queue_head *qh; ep = container_of(_ep, struct fsl_ep, ep); if (!_ep || (!ep->ep.desc && ep_index(ep) != 0)) return -ENODEV; udc = (struct fsl_udc *)ep->udc; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; qh = get_qh_by_ep(ep); bitmask = (ep_is_in(ep)) ? (1 << (ep_index(ep) + 16)) : (1 << (ep_index(ep))); if (fsl_readl(&dr_regs->endptstatus) & bitmask) size = (qh->size_ioc_int_sts & DTD_PACKET_SIZE) >> DTD_LENGTH_BIT_POS; pr_debug("%s %u\n", __func__, size); return size; } static void fsl_ep_fifo_flush(struct usb_ep *_ep) { struct fsl_ep *ep; int ep_num, ep_dir; u32 bits; unsigned long timeout; #define FSL_UDC_FLUSH_TIMEOUT 1000 if (!_ep) { return; } else { ep = container_of(_ep, struct fsl_ep, ep); if (!ep->ep.desc) return; } ep_num = ep_index(ep); ep_dir = ep_is_in(ep) ? USB_SEND : USB_RECV; if (ep_num == 0) bits = (1 << 16) | 1; else if (ep_dir == USB_SEND) bits = 1 << (16 + ep_num); else bits = 1 << ep_num; timeout = jiffies + FSL_UDC_FLUSH_TIMEOUT; do { fsl_writel(bits, &dr_regs->endptflush); /* Wait until flush complete */ while (fsl_readl(&dr_regs->endptflush)) { if (time_after(jiffies, timeout)) { ERR("ep flush timeout\n"); return; } cpu_relax(); } /* See if we need to flush again */ } while (fsl_readl(&dr_regs->endptstatus) & bits); } static struct usb_ep_ops fsl_ep_ops = { .enable = fsl_ep_enable, .disable = fsl_ep_disable, .alloc_request = fsl_alloc_request, .free_request = fsl_free_request, .queue = fsl_ep_queue, .dequeue = fsl_ep_dequeue, .set_halt = fsl_ep_set_halt, .fifo_status = fsl_ep_fifo_status, .fifo_flush = fsl_ep_fifo_flush, /* flush fifo */ }; /*------------------------------------------------------------------------- Gadget Driver Layer Operations -------------------------------------------------------------------------*/ /*---------------------------------------------------------------------- * Get the current frame number (from DR frame_index Reg ) *----------------------------------------------------------------------*/ static int fsl_get_frame(struct usb_gadget *gadget) { return (int)(fsl_readl(&dr_regs->frindex) & USB_FRINDEX_MASKS); } /*----------------------------------------------------------------------- * Tries to wake up the host connected to this gadget -----------------------------------------------------------------------*/ static int fsl_wakeup(struct usb_gadget *gadget) { struct fsl_udc *udc = container_of(gadget, struct fsl_udc, gadget); u32 portsc; /* Remote wakeup feature not enabled by host */ if (!udc->remote_wakeup) return -ENOTSUPP; portsc = fsl_readl(&dr_regs->portsc1); /* not suspended? */ if (!(portsc & PORTSCX_PORT_SUSPEND)) return 0; /* trigger force resume */ portsc |= PORTSCX_PORT_FORCE_RESUME; fsl_writel(portsc, &dr_regs->portsc1); return 0; } static int can_pullup(struct fsl_udc *udc) { return udc->driver && udc->softconnect && udc->vbus_active; } /* Notify controller that VBUS is powered, Called by whatever detects VBUS sessions */ static int fsl_vbus_session(struct usb_gadget *gadget, int is_active) { struct fsl_udc *udc; unsigned long flags; udc = container_of(gadget, struct fsl_udc, gadget); spin_lock_irqsave(&udc->lock, flags); VDBG("VBUS %s", is_active ? "on" : "off"); udc->vbus_active = (is_active != 0); if (can_pullup(udc)) fsl_writel((fsl_readl(&dr_regs->usbcmd) | USB_CMD_RUN_STOP), &dr_regs->usbcmd); else fsl_writel((fsl_readl(&dr_regs->usbcmd) & ~USB_CMD_RUN_STOP), &dr_regs->usbcmd); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /* constrain controller's VBUS power usage * This call is used by gadget drivers during SET_CONFIGURATION calls, * reporting how much power the device may consume. For example, this * could affect how quickly batteries are recharged. * * Returns zero on success, else negative errno. */ static int fsl_vbus_draw(struct usb_gadget *gadget, unsigned mA) { struct fsl_udc *udc; udc = container_of(gadget, struct fsl_udc, gadget); if (!IS_ERR_OR_NULL(udc->transceiver)) return usb_phy_set_power(udc->transceiver, mA); return -ENOTSUPP; } /* Change Data+ pullup status * this func is used by usb_gadget_connect/disconnet */ static int fsl_pullup(struct usb_gadget *gadget, int is_on) { struct fsl_udc *udc; udc = container_of(gadget, struct fsl_udc, gadget); udc->softconnect = (is_on != 0); if (can_pullup(udc)) fsl_writel((fsl_readl(&dr_regs->usbcmd) | USB_CMD_RUN_STOP), &dr_regs->usbcmd); else fsl_writel((fsl_readl(&dr_regs->usbcmd) & ~USB_CMD_RUN_STOP), &dr_regs->usbcmd); return 0; } static int fsl_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver); static int fsl_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver); /* defined in gadget.h */ static const struct usb_gadget_ops fsl_gadget_ops = { .get_frame = fsl_get_frame, .wakeup = fsl_wakeup, /* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */ .vbus_session = fsl_vbus_session, .vbus_draw = fsl_vbus_draw, .pullup = fsl_pullup, .udc_start = fsl_udc_start, .udc_stop = fsl_udc_stop, }; /* Set protocol stall on ep0, protocol stall will automatically be cleared on new transaction */ static void ep0stall(struct fsl_udc *udc) { u32 tmp; /* must set tx and rx to stall at the same time */ tmp = fsl_readl(&dr_regs->endptctrl[0]); tmp |= EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL; fsl_writel(tmp, &dr_regs->endptctrl[0]); udc->ep0_state = WAIT_FOR_SETUP; udc->ep0_dir = 0; } /* Prime a status phase for ep0 */ static int ep0_prime_status(struct fsl_udc *udc, int direction) { struct fsl_req *req = udc->status_req; struct fsl_ep *ep; int ret; if (direction == EP_DIR_IN) udc->ep0_dir = USB_DIR_IN; else udc->ep0_dir = USB_DIR_OUT; ep = &udc->eps[0]; if (udc->ep0_state != DATA_STATE_XMIT) udc->ep0_state = WAIT_FOR_OUT_STATUS; req->ep = ep; req->req.length = 0; req->req.status = -EINPROGRESS; req->req.actual = 0; req->req.complete = NULL; req->dtd_count = 0; ret = usb_gadget_map_request(&ep->udc->gadget, &req->req, ep_is_in(ep)); if (ret) return ret; if (fsl_req_to_dtd(req, GFP_ATOMIC) == 0) fsl_queue_td(ep, req); else return -ENOMEM; list_add_tail(&req->queue, &ep->queue); return 0; } static void udc_reset_ep_queue(struct fsl_udc *udc, u8 pipe) { struct fsl_ep *ep = get_ep_by_pipe(udc, pipe); if (ep->name) nuke(ep, -ESHUTDOWN); } /* * ch9 Set address */ static void ch9setaddress(struct fsl_udc *udc, u16 value, u16 index, u16 length) { /* Save the new address to device struct */ udc->device_address = (u8) value; /* Update usb state */ udc->usb_state = USB_STATE_ADDRESS; /* Status phase */ if (ep0_prime_status(udc, EP_DIR_IN)) ep0stall(udc); } /* * ch9 Get status */ static void ch9getstatus(struct fsl_udc *udc, u8 request_type, u16 value, u16 index, u16 length) { u16 tmp = 0; /* Status, cpu endian */ struct fsl_req *req; struct fsl_ep *ep; int ret; ep = &udc->eps[0]; if ((request_type & USB_RECIP_MASK) == USB_RECIP_DEVICE) { /* Get device status */ tmp = 1 << USB_DEVICE_SELF_POWERED; tmp |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP; } else if ((request_type & USB_RECIP_MASK) == USB_RECIP_INTERFACE) { /* Get interface status */ /* We don't have interface information in udc driver */ tmp = 0; } else if ((request_type & USB_RECIP_MASK) == USB_RECIP_ENDPOINT) { /* Get endpoint status */ struct fsl_ep *target_ep; target_ep = get_ep_by_pipe(udc, get_pipe_by_windex(index)); /* stall if endpoint doesn't exist */ if (!target_ep->ep.desc) goto stall; tmp = dr_ep_get_stall(ep_index(target_ep), ep_is_in(target_ep)) << USB_ENDPOINT_HALT; } udc->ep0_dir = USB_DIR_IN; /* Borrow the per device status_req */ req = udc->status_req; /* Fill in the reqest structure */ *((u16 *) req->req.buf) = cpu_to_le16(tmp); req->ep = ep; req->req.length = 2; req->req.status = -EINPROGRESS; req->req.actual = 0; req->req.complete = NULL; req->dtd_count = 0; ret = usb_gadget_map_request(&ep->udc->gadget, &req->req, ep_is_in(ep)); if (ret) goto stall; /* prime the data phase */ if ((fsl_req_to_dtd(req, GFP_ATOMIC) == 0)) fsl_queue_td(ep, req); else /* no mem */ goto stall; list_add_tail(&req->queue, &ep->queue); udc->ep0_state = DATA_STATE_XMIT; if (ep0_prime_status(udc, EP_DIR_OUT)) ep0stall(udc); return; stall: ep0stall(udc); } static void setup_received_irq(struct fsl_udc *udc, struct usb_ctrlrequest *setup) { u16 wValue = le16_to_cpu(setup->wValue); u16 wIndex = le16_to_cpu(setup->wIndex); u16 wLength = le16_to_cpu(setup->wLength); udc_reset_ep_queue(udc, 0); /* We process some stardard setup requests here */ switch (setup->bRequest) { case USB_REQ_GET_STATUS: /* Data+Status phase from udc */ if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK)) != (USB_DIR_IN | USB_TYPE_STANDARD)) break; ch9getstatus(udc, setup->bRequestType, wValue, wIndex, wLength); return; case USB_REQ_SET_ADDRESS: /* Status phase from udc */ if (setup->bRequestType != (USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE)) break; ch9setaddress(udc, wValue, wIndex, wLength); return; case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: /* Status phase from udc */ { int rc = -EOPNOTSUPP; u16 ptc = 0; if ((setup->bRequestType & (USB_RECIP_MASK | USB_TYPE_MASK)) == (USB_RECIP_ENDPOINT | USB_TYPE_STANDARD)) { int pipe = get_pipe_by_windex(wIndex); struct fsl_ep *ep; if (wValue != 0 || wLength != 0 || pipe >= udc->max_ep) break; ep = get_ep_by_pipe(udc, pipe); spin_unlock(&udc->lock); rc = fsl_ep_set_halt(&ep->ep, (setup->bRequest == USB_REQ_SET_FEATURE) ? 1 : 0); spin_lock(&udc->lock); } else if ((setup->bRequestType & (USB_RECIP_MASK | USB_TYPE_MASK)) == (USB_RECIP_DEVICE | USB_TYPE_STANDARD)) { /* Note: The driver has not include OTG support yet. * This will be set when OTG support is added */ if (wValue == USB_DEVICE_TEST_MODE) ptc = wIndex >> 8; else if (gadget_is_otg(&udc->gadget)) { if (setup->bRequest == USB_DEVICE_B_HNP_ENABLE) udc->gadget.b_hnp_enable = 1; else if (setup->bRequest == USB_DEVICE_A_HNP_SUPPORT) udc->gadget.a_hnp_support = 1; else if (setup->bRequest == USB_DEVICE_A_ALT_HNP_SUPPORT) udc->gadget.a_alt_hnp_support = 1; } rc = 0; } else break; if (rc == 0) { if (ep0_prime_status(udc, EP_DIR_IN)) ep0stall(udc); } if (ptc) { u32 tmp; mdelay(10); tmp = fsl_readl(&dr_regs->portsc1) | (ptc << 16); fsl_writel(tmp, &dr_regs->portsc1); printk(KERN_INFO "udc: switch to test mode %d.\n", ptc); } return; } default: break; } /* Requests handled by gadget */ if (wLength) { /* Data phase from gadget, status phase from udc */ udc->ep0_dir = (setup->bRequestType & USB_DIR_IN) ? USB_DIR_IN : USB_DIR_OUT; spin_unlock(&udc->lock); if (udc->driver->setup(&udc->gadget, &udc->local_setup_buff) < 0) ep0stall(udc); spin_lock(&udc->lock); udc->ep0_state = (setup->bRequestType & USB_DIR_IN) ? DATA_STATE_XMIT : DATA_STATE_RECV; /* * If the data stage is IN, send status prime immediately. * See 2.0 Spec chapter 8.5.3.3 for detail. */ if (udc->ep0_state == DATA_STATE_XMIT) if (ep0_prime_status(udc, EP_DIR_OUT)) ep0stall(udc); } else { /* No data phase, IN status from gadget */ udc->ep0_dir = USB_DIR_IN; spin_unlock(&udc->lock); if (udc->driver->setup(&udc->gadget, &udc->local_setup_buff) < 0) ep0stall(udc); spin_lock(&udc->lock); udc->ep0_state = WAIT_FOR_OUT_STATUS; } } /* Process request for Data or Status phase of ep0 * prime status phase if needed */ static void ep0_req_complete(struct fsl_udc *udc, struct fsl_ep *ep0, struct fsl_req *req) { if (udc->usb_state == USB_STATE_ADDRESS) { /* Set the new address */ u32 new_address = (u32) udc->device_address; fsl_writel(new_address << USB_DEVICE_ADDRESS_BIT_POS, &dr_regs->deviceaddr); } done(ep0, req, 0); switch (udc->ep0_state) { case DATA_STATE_XMIT: /* already primed at setup_received_irq */ udc->ep0_state = WAIT_FOR_OUT_STATUS; break; case DATA_STATE_RECV: /* send status phase */ if (ep0_prime_status(udc, EP_DIR_IN)) ep0stall(udc); break; case WAIT_FOR_OUT_STATUS: udc->ep0_state = WAIT_FOR_SETUP; break; case WAIT_FOR_SETUP: ERR("Unexpect ep0 packets\n"); break; default: ep0stall(udc); break; } } /* Tripwire mechanism to ensure a setup packet payload is extracted without * being corrupted by another incoming setup packet */ static void tripwire_handler(struct fsl_udc *udc, u8 ep_num, u8 *buffer_ptr) { u32 temp; struct ep_queue_head *qh; struct fsl_usb2_platform_data *pdata = udc->pdata; qh = &udc->ep_qh[ep_num * 2 + EP_DIR_OUT]; /* Clear bit in ENDPTSETUPSTAT */ temp = fsl_readl(&dr_regs->endptsetupstat); fsl_writel(temp | (1 << ep_num), &dr_regs->endptsetupstat); /* while a hazard exists when setup package arrives */ do { /* Set Setup Tripwire */ temp = fsl_readl(&dr_regs->usbcmd); fsl_writel(temp | USB_CMD_SUTW, &dr_regs->usbcmd); /* Copy the setup packet to local buffer */ if (pdata->le_setup_buf) { u32 *p = (u32 *)buffer_ptr; u32 *s = (u32 *)qh->setup_buffer; /* Convert little endian setup buffer to CPU endian */ *p++ = le32_to_cpu(*s++); *p = le32_to_cpu(*s); } else { memcpy(buffer_ptr, (u8 *) qh->setup_buffer, 8); } } while (!(fsl_readl(&dr_regs->usbcmd) & USB_CMD_SUTW)); /* Clear Setup Tripwire */ temp = fsl_readl(&dr_regs->usbcmd); fsl_writel(temp & ~USB_CMD_SUTW, &dr_regs->usbcmd); } /* process-ep_req(): free the completed Tds for this req */ static int process_ep_req(struct fsl_udc *udc, int pipe, struct fsl_req *curr_req) { struct ep_td_struct *curr_td; int td_complete, actual, remaining_length, j, tmp; int status = 0; int errors = 0; struct ep_queue_head *curr_qh = &udc->ep_qh[pipe]; int direction = pipe % 2; curr_td = curr_req->head; td_complete = 0; actual = curr_req->req.length; for (j = 0; j < curr_req->dtd_count; j++) { remaining_length = (hc32_to_cpu(curr_td->size_ioc_sts) & DTD_PACKET_SIZE) >> DTD_LENGTH_BIT_POS; actual -= remaining_length; errors = hc32_to_cpu(curr_td->size_ioc_sts); if (errors & DTD_ERROR_MASK) { if (errors & DTD_STATUS_HALTED) { ERR("dTD error %08x QH=%d\n", errors, pipe); /* Clear the errors and Halt condition */ tmp = hc32_to_cpu(curr_qh->size_ioc_int_sts); tmp &= ~errors; curr_qh->size_ioc_int_sts = cpu_to_hc32(tmp); status = -EPIPE; /* FIXME: continue with next queued TD? */ break; } if (errors & DTD_STATUS_DATA_BUFF_ERR) { VDBG("Transfer overflow"); status = -EPROTO; break; } else if (errors & DTD_STATUS_TRANSACTION_ERR) { VDBG("ISO error"); status = -EILSEQ; break; } else ERR("Unknown error has occurred (0x%x)!\n", errors); } else if (hc32_to_cpu(curr_td->size_ioc_sts) & DTD_STATUS_ACTIVE) { VDBG("Request not complete"); status = REQ_UNCOMPLETE; return status; } else if (remaining_length) { if (direction) { VDBG("Transmit dTD remaining length not zero"); status = -EPROTO; break; } else { td_complete++; break; } } else { td_complete++; VDBG("dTD transmitted successful"); } if (j != curr_req->dtd_count - 1) curr_td = (struct ep_td_struct *)curr_td->next_td_virt; } if (status) return status; curr_req->req.actual = actual; return 0; } /* Process a DTD completion interrupt */ static void dtd_complete_irq(struct fsl_udc *udc) { u32 bit_pos; int i, ep_num, direction, bit_mask, status; struct fsl_ep *curr_ep; struct fsl_req *curr_req, *temp_req; /* Clear the bits in the register */ bit_pos = fsl_readl(&dr_regs->endptcomplete); fsl_writel(bit_pos, &dr_regs->endptcomplete); if (!bit_pos) return; for (i = 0; i < udc->max_ep; i++) { ep_num = i >> 1; direction = i % 2; bit_mask = 1 << (ep_num + 16 * direction); if (!(bit_pos & bit_mask)) continue; curr_ep = get_ep_by_pipe(udc, i); /* If the ep is configured */ if (curr_ep->name == NULL) { WARNING("Invalid EP?"); continue; } /* process the req queue until an uncomplete request */ list_for_each_entry_safe(curr_req, temp_req, &curr_ep->queue, queue) { status = process_ep_req(udc, i, curr_req); VDBG("status of process_ep_req= %d, ep = %d", status, ep_num); if (status == REQ_UNCOMPLETE) break; /* write back status to req */ curr_req->req.status = status; if (ep_num == 0) { ep0_req_complete(udc, curr_ep, curr_req); break; } else done(curr_ep, curr_req, status); } } } static inline enum usb_device_speed portscx_device_speed(u32 reg) { switch (reg & PORTSCX_PORT_SPEED_MASK) { case PORTSCX_PORT_SPEED_HIGH: return USB_SPEED_HIGH; case PORTSCX_PORT_SPEED_FULL: return USB_SPEED_FULL; case PORTSCX_PORT_SPEED_LOW: return USB_SPEED_LOW; default: return USB_SPEED_UNKNOWN; } } /* Process a port change interrupt */ static void port_change_irq(struct fsl_udc *udc) { if (udc->bus_reset) udc->bus_reset = 0; /* Bus resetting is finished */ if (!(fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_RESET)) /* Get the speed */ udc->gadget.speed = portscx_device_speed(fsl_readl(&dr_regs->portsc1)); /* Update USB state */ if (!udc->resume_state) udc->usb_state = USB_STATE_DEFAULT; } /* Process suspend interrupt */ static void suspend_irq(struct fsl_udc *udc) { udc->resume_state = udc->usb_state; udc->usb_state = USB_STATE_SUSPENDED; /* report suspend to the driver, serial.c does not support this */ if (udc->driver->suspend) udc->driver->suspend(&udc->gadget); } static void bus_resume(struct fsl_udc *udc) { udc->usb_state = udc->resume_state; udc->resume_state = 0; /* report resume to the driver, serial.c does not support this */ if (udc->driver->resume) udc->driver->resume(&udc->gadget); } /* Clear up all ep queues */ static int reset_queues(struct fsl_udc *udc) { u8 pipe; for (pipe = 0; pipe < udc->max_pipes; pipe++) udc_reset_ep_queue(udc, pipe); /* report disconnect; the driver is already quiesced */ spin_unlock(&udc->lock); udc->driver->disconnect(&udc->gadget); spin_lock(&udc->lock); return 0; } /* Process reset interrupt */ static void reset_irq(struct fsl_udc *udc) { u32 temp; unsigned long timeout; /* Clear the device address */ temp = fsl_readl(&dr_regs->deviceaddr); fsl_writel(temp & ~USB_DEVICE_ADDRESS_MASK, &dr_regs->deviceaddr); udc->device_address = 0; /* Clear usb state */ udc->resume_state = 0; udc->ep0_dir = 0; udc->ep0_state = WAIT_FOR_SETUP; udc->remote_wakeup = 0; /* default to 0 on reset */ udc->gadget.b_hnp_enable = 0; udc->gadget.a_hnp_support = 0; udc->gadget.a_alt_hnp_support = 0; /* Clear all the setup token semaphores */ temp = fsl_readl(&dr_regs->endptsetupstat); fsl_writel(temp, &dr_regs->endptsetupstat); /* Clear all the endpoint complete status bits */ temp = fsl_readl(&dr_regs->endptcomplete); fsl_writel(temp, &dr_regs->endptcomplete); timeout = jiffies + 100; while (fsl_readl(&dr_regs->endpointprime)) { /* Wait until all endptprime bits cleared */ if (time_after(jiffies, timeout)) { ERR("Timeout for reset\n"); break; } cpu_relax(); } /* Write 1s to the flush register */ fsl_writel(0xffffffff, &dr_regs->endptflush); if (fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_RESET) { VDBG("Bus reset"); /* Bus is reseting */ udc->bus_reset = 1; /* Reset all the queues, include XD, dTD, EP queue * head and TR Queue */ reset_queues(udc); udc->usb_state = USB_STATE_DEFAULT; } else { VDBG("Controller reset"); /* initialize usb hw reg except for regs for EP, not * touch usbintr reg */ dr_controller_setup(udc); /* Reset all internal used Queues */ reset_queues(udc); ep0_setup(udc); /* Enable DR IRQ reg, Set Run bit, change udc state */ dr_controller_run(udc); udc->usb_state = USB_STATE_ATTACHED; } } /* * USB device controller interrupt handler */ static irqreturn_t fsl_udc_irq(int irq, void *_udc) { struct fsl_udc *udc = _udc; u32 irq_src; irqreturn_t status = IRQ_NONE; unsigned long flags; /* Disable ISR for OTG host mode */ if (udc->stopped) return IRQ_NONE; spin_lock_irqsave(&udc->lock, flags); irq_src = fsl_readl(&dr_regs->usbsts) & fsl_readl(&dr_regs->usbintr); /* Clear notification bits */ fsl_writel(irq_src, &dr_regs->usbsts); /* VDBG("irq_src [0x%8x]", irq_src); */ /* Need to resume? */ if (udc->usb_state == USB_STATE_SUSPENDED) if ((fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_SUSPEND) == 0) bus_resume(udc); /* USB Interrupt */ if (irq_src & USB_STS_INT) { VDBG("Packet int"); /* Setup package, we only support ep0 as control ep */ if (fsl_readl(&dr_regs->endptsetupstat) & EP_SETUP_STATUS_EP0) { tripwire_handler(udc, 0, (u8 *) (&udc->local_setup_buff)); setup_received_irq(udc, &udc->local_setup_buff); status = IRQ_HANDLED; } /* completion of dtd */ if (fsl_readl(&dr_regs->endptcomplete)) { dtd_complete_irq(udc); status = IRQ_HANDLED; } } /* SOF (for ISO transfer) */ if (irq_src & USB_STS_SOF) { status = IRQ_HANDLED; } /* Port Change */ if (irq_src & USB_STS_PORT_CHANGE) { port_change_irq(udc); status = IRQ_HANDLED; } /* Reset Received */ if (irq_src & USB_STS_RESET) { VDBG("reset int"); reset_irq(udc); status = IRQ_HANDLED; } /* Sleep Enable (Suspend) */ if (irq_src & USB_STS_SUSPEND) { suspend_irq(udc); status = IRQ_HANDLED; } if (irq_src & (USB_STS_ERR | USB_STS_SYS_ERR)) { VDBG("Error IRQ %x", irq_src); } spin_unlock_irqrestore(&udc->lock, flags); return status; } /*----------------------------------------------------------------* * Hook to gadget drivers * Called by initialization code of gadget drivers *----------------------------------------------------------------*/ static int fsl_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { int retval = 0; unsigned long flags = 0; /* lock is needed but whether should use this lock or another */ spin_lock_irqsave(&udc_controller->lock, flags); driver->driver.bus = NULL; /* hook up the driver */ udc_controller->driver = driver; spin_unlock_irqrestore(&udc_controller->lock, flags); if (!IS_ERR_OR_NULL(udc_controller->transceiver)) { /* Suspend the controller until OTG enable it */ udc_controller->stopped = 1; printk(KERN_INFO "Suspend udc for OTG auto detect\n"); /* connect to bus through transceiver */ if (!IS_ERR_OR_NULL(udc_controller->transceiver)) { retval = otg_set_peripheral( udc_controller->transceiver->otg, &udc_controller->gadget); if (retval < 0) { ERR("can't bind to transceiver\n"); driver->unbind(&udc_controller->gadget); udc_controller->driver = 0; return retval; } } } else { /* Enable DR IRQ reg and set USBCMD reg Run bit */ dr_controller_run(udc_controller); udc_controller->usb_state = USB_STATE_ATTACHED; udc_controller->ep0_state = WAIT_FOR_SETUP; udc_controller->ep0_dir = 0; } return retval; } /* Disconnect from gadget driver */ static int fsl_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver) { struct fsl_ep *loop_ep; unsigned long flags; if (!IS_ERR_OR_NULL(udc_controller->transceiver)) otg_set_peripheral(udc_controller->transceiver->otg, NULL); /* stop DR, disable intr */ dr_controller_stop(udc_controller); /* in fact, no needed */ udc_controller->usb_state = USB_STATE_ATTACHED; udc_controller->ep0_state = WAIT_FOR_SETUP; udc_controller->ep0_dir = 0; /* stand operation */ spin_lock_irqsave(&udc_controller->lock, flags); udc_controller->gadget.speed = USB_SPEED_UNKNOWN; nuke(&udc_controller->eps[0], -ESHUTDOWN); list_for_each_entry(loop_ep, &udc_controller->gadget.ep_list, ep.ep_list) nuke(loop_ep, -ESHUTDOWN); spin_unlock_irqrestore(&udc_controller->lock, flags); udc_controller->driver = NULL; return 0; } /*------------------------------------------------------------------------- PROC File System Support -------------------------------------------------------------------------*/ #ifdef CONFIG_USB_GADGET_DEBUG_FILES #include static const char proc_filename[] = "driver/fsl_usb2_udc"; static int fsl_proc_read(char *page, char **start, off_t off, int count, int *eof, void *_dev) { char *buf = page; char *next = buf; unsigned size = count; unsigned long flags; int t, i; u32 tmp_reg; struct fsl_ep *ep = NULL; struct fsl_req *req; struct fsl_udc *udc = udc_controller; if (off != 0) return 0; spin_lock_irqsave(&udc->lock, flags); /* ------basic driver information ---- */ t = scnprintf(next, size, DRIVER_DESC "\n" "%s version: %s\n" "Gadget driver: %s\n\n", driver_name, DRIVER_VERSION, udc->driver ? udc->driver->driver.name : "(none)"); size -= t; next += t; /* ------ DR Registers ----- */ tmp_reg = fsl_readl(&dr_regs->usbcmd); t = scnprintf(next, size, "USBCMD reg:\n" "SetupTW: %d\n" "Run/Stop: %s\n\n", (tmp_reg & USB_CMD_SUTW) ? 1 : 0, (tmp_reg & USB_CMD_RUN_STOP) ? "Run" : "Stop"); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->usbsts); t = scnprintf(next, size, "USB Status Reg:\n" "Dr Suspend: %d Reset Received: %d System Error: %s " "USB Error Interrupt: %s\n\n", (tmp_reg & USB_STS_SUSPEND) ? 1 : 0, (tmp_reg & USB_STS_RESET) ? 1 : 0, (tmp_reg & USB_STS_SYS_ERR) ? "Err" : "Normal", (tmp_reg & USB_STS_ERR) ? "Err detected" : "No err"); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->usbintr); t = scnprintf(next, size, "USB Interrupt Enable Reg:\n" "Sleep Enable: %d SOF Received Enable: %d " "Reset Enable: %d\n" "System Error Enable: %d " "Port Change Dectected Enable: %d\n" "USB Error Intr Enable: %d USB Intr Enable: %d\n\n", (tmp_reg & USB_INTR_DEVICE_SUSPEND) ? 1 : 0, (tmp_reg & USB_INTR_SOF_EN) ? 1 : 0, (tmp_reg & USB_INTR_RESET_EN) ? 1 : 0, (tmp_reg & USB_INTR_SYS_ERR_EN) ? 1 : 0, (tmp_reg & USB_INTR_PTC_DETECT_EN) ? 1 : 0, (tmp_reg & USB_INTR_ERR_INT_EN) ? 1 : 0, (tmp_reg & USB_INTR_INT_EN) ? 1 : 0); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->frindex); t = scnprintf(next, size, "USB Frame Index Reg: Frame Number is 0x%x\n\n", (tmp_reg & USB_FRINDEX_MASKS)); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->deviceaddr); t = scnprintf(next, size, "USB Device Address Reg: Device Addr is 0x%x\n\n", (tmp_reg & USB_DEVICE_ADDRESS_MASK)); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->endpointlistaddr); t = scnprintf(next, size, "USB Endpoint List Address Reg: " "Device Addr is 0x%x\n\n", (tmp_reg & USB_EP_LIST_ADDRESS_MASK)); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->portsc1); t = scnprintf(next, size, "USB Port Status&Control Reg:\n" "Port Transceiver Type : %s Port Speed: %s\n" "PHY Low Power Suspend: %s Port Reset: %s " "Port Suspend Mode: %s\n" "Over-current Change: %s " "Port Enable/Disable Change: %s\n" "Port Enabled/Disabled: %s " "Current Connect Status: %s\n\n", ( { char *s; switch (tmp_reg & PORTSCX_PTS_FSLS) { case PORTSCX_PTS_UTMI: s = "UTMI"; break; case PORTSCX_PTS_ULPI: s = "ULPI "; break; case PORTSCX_PTS_FSLS: s = "FS/LS Serial"; break; default: s = "None"; break; } s;} ), usb_speed_string(portscx_device_speed(tmp_reg)), (tmp_reg & PORTSCX_PHY_LOW_POWER_SPD) ? "Normal PHY mode" : "Low power mode", (tmp_reg & PORTSCX_PORT_RESET) ? "In Reset" : "Not in Reset", (tmp_reg & PORTSCX_PORT_SUSPEND) ? "In " : "Not in", (tmp_reg & PORTSCX_OVER_CURRENT_CHG) ? "Dected" : "No", (tmp_reg & PORTSCX_PORT_EN_DIS_CHANGE) ? "Disable" : "Not change", (tmp_reg & PORTSCX_PORT_ENABLE) ? "Enable" : "Not correct", (tmp_reg & PORTSCX_CURRENT_CONNECT_STATUS) ? "Attached" : "Not-Att"); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->usbmode); t = scnprintf(next, size, "USB Mode Reg: Controller Mode is: %s\n\n", ( { char *s; switch (tmp_reg & USB_MODE_CTRL_MODE_HOST) { case USB_MODE_CTRL_MODE_IDLE: s = "Idle"; break; case USB_MODE_CTRL_MODE_DEVICE: s = "Device Controller"; break; case USB_MODE_CTRL_MODE_HOST: s = "Host Controller"; break; default: s = "None"; break; } s; } )); size -= t; next += t; tmp_reg = fsl_readl(&dr_regs->endptsetupstat); t = scnprintf(next, size, "Endpoint Setup Status Reg: SETUP on ep 0x%x\n\n", (tmp_reg & EP_SETUP_STATUS_MASK)); size -= t; next += t; for (i = 0; i < udc->max_ep / 2; i++) { tmp_reg = fsl_readl(&dr_regs->endptctrl[i]); t = scnprintf(next, size, "EP Ctrl Reg [0x%x]: = [0x%x]\n", i, tmp_reg); size -= t; next += t; } tmp_reg = fsl_readl(&dr_regs->endpointprime); t = scnprintf(next, size, "EP Prime Reg = [0x%x]\n\n", tmp_reg); size -= t; next += t; #ifndef CONFIG_ARCH_MXC if (udc->pdata->have_sysif_regs) { tmp_reg = usb_sys_regs->snoop1; t = scnprintf(next, size, "Snoop1 Reg : = [0x%x]\n\n", tmp_reg); size -= t; next += t; tmp_reg = usb_sys_regs->control; t = scnprintf(next, size, "General Control Reg : = [0x%x]\n\n", tmp_reg); size -= t; next += t; } #endif /* ------fsl_udc, fsl_ep, fsl_request structure information ----- */ ep = &udc->eps[0]; t = scnprintf(next, size, "For %s Maxpkt is 0x%x index is 0x%x\n", ep->ep.name, ep_maxpacket(ep), ep_index(ep)); size -= t; next += t; if (list_empty(&ep->queue)) { t = scnprintf(next, size, "its req queue is empty\n\n"); size -= t; next += t; } else { list_for_each_entry(req, &ep->queue, queue) { t = scnprintf(next, size, "req %p actual 0x%x length 0x%x buf %p\n", &req->req, req->req.actual, req->req.length, req->req.buf); size -= t; next += t; } } /* other gadget->eplist ep */ list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) { if (ep->ep.desc) { t = scnprintf(next, size, "\nFor %s Maxpkt is 0x%x " "index is 0x%x\n", ep->ep.name, ep_maxpacket(ep), ep_index(ep)); size -= t; next += t; if (list_empty(&ep->queue)) { t = scnprintf(next, size, "its req queue is empty\n\n"); size -= t; next += t; } else { list_for_each_entry(req, &ep->queue, queue) { t = scnprintf(next, size, "req %p actual 0x%x length " "0x%x buf %p\n", &req->req, req->req.actual, req->req.length, req->req.buf); size -= t; next += t; } /* end for each_entry of ep req */ } /* end for else */ } /* end for if(ep->queue) */ } /* end (ep->desc) */ spin_unlock_irqrestore(&udc->lock, flags); *eof = 1; return count - size; } #define create_proc_file() create_proc_read_entry(proc_filename, \ 0, NULL, fsl_proc_read, NULL) #define remove_proc_file() remove_proc_entry(proc_filename, NULL) #else /* !CONFIG_USB_GADGET_DEBUG_FILES */ #define create_proc_file() do {} while (0) #define remove_proc_file() do {} while (0) #endif /* CONFIG_USB_GADGET_DEBUG_FILES */ /*-------------------------------------------------------------------------*/ /* Release udc structures */ static void fsl_udc_release(struct device *dev) { complete(udc_controller->done); dma_free_coherent(dev->parent, udc_controller->ep_qh_size, udc_controller->ep_qh, udc_controller->ep_qh_dma); kfree(udc_controller); } /****************************************************************** Internal structure setup functions *******************************************************************/ /*------------------------------------------------------------------ * init resource for globle controller * Return the udc handle on success or NULL on failure ------------------------------------------------------------------*/ static int __init struct_udc_setup(struct fsl_udc *udc, struct platform_device *pdev) { struct fsl_usb2_platform_data *pdata; size_t size; pdata = pdev->dev.platform_data; udc->phy_mode = pdata->phy_mode; udc->eps = kzalloc(sizeof(struct fsl_ep) * udc->max_ep, GFP_KERNEL); if (!udc->eps) { ERR("malloc fsl_ep failed\n"); return -1; } /* initialized QHs, take care of alignment */ size = udc->max_ep * sizeof(struct ep_queue_head); if (size < QH_ALIGNMENT) size = QH_ALIGNMENT; else if ((size % QH_ALIGNMENT) != 0) { size += QH_ALIGNMENT + 1; size &= ~(QH_ALIGNMENT - 1); } udc->ep_qh = dma_alloc_coherent(&pdev->dev, size, &udc->ep_qh_dma, GFP_KERNEL); if (!udc->ep_qh) { ERR("malloc QHs for udc failed\n"); kfree(udc->eps); return -1; } udc->ep_qh_size = size; /* Initialize ep0 status request structure */ /* FIXME: fsl_alloc_request() ignores ep argument */ udc->status_req = container_of(fsl_alloc_request(NULL, GFP_KERNEL), struct fsl_req, req); /* allocate a small amount of memory to get valid address */ udc->status_req->req.buf = kmalloc(8, GFP_KERNEL); udc->resume_state = USB_STATE_NOTATTACHED; udc->usb_state = USB_STATE_POWERED; udc->ep0_dir = 0; udc->remote_wakeup = 0; /* default to 0 on reset */ return 0; } /*---------------------------------------------------------------- * Setup the fsl_ep struct for eps * Link fsl_ep->ep to gadget->ep_list * ep0out is not used so do nothing here * ep0in should be taken care *--------------------------------------------------------------*/ static int __init struct_ep_setup(struct fsl_udc *udc, unsigned char index, char *name, int link) { struct fsl_ep *ep = &udc->eps[index]; ep->udc = udc; strcpy(ep->name, name); ep->ep.name = ep->name; ep->ep.ops = &fsl_ep_ops; ep->stopped = 0; /* for ep0: maxP defined in desc * for other eps, maxP is set by epautoconfig() called by gadget layer */ ep->ep.maxpacket = (unsigned short) ~0; /* the queue lists any req for this ep */ INIT_LIST_HEAD(&ep->queue); /* gagdet.ep_list used for ep_autoconfig so no ep0 */ if (link) list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); ep->gadget = &udc->gadget; ep->qh = &udc->ep_qh[index]; return 0; } /* Driver probe function * all intialization operations implemented here except enabling usb_intr reg * board setup should have been done in the platform code */ static int __init fsl_udc_probe(struct platform_device *pdev) { struct fsl_usb2_platform_data *pdata; struct resource *res; int ret = -ENODEV; unsigned int i; u32 dccparams; udc_controller = kzalloc(sizeof(struct fsl_udc), GFP_KERNEL); if (udc_controller == NULL) { ERR("malloc udc failed\n"); return -ENOMEM; } pdata = pdev->dev.platform_data; udc_controller->pdata = pdata; spin_lock_init(&udc_controller->lock); udc_controller->stopped = 1; #ifdef CONFIG_USB_OTG if (pdata->operating_mode == FSL_USB2_DR_OTG) { udc_controller->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); if (IS_ERR_OR_NULL(udc_controller->transceiver)) { ERR("Can't find OTG driver!\n"); ret = -ENODEV; goto err_kfree; } } #endif res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { ret = -ENXIO; goto err_kfree; } if (pdata->operating_mode == FSL_USB2_DR_DEVICE) { if (!request_mem_region(res->start, resource_size(res), driver_name)) { ERR("request mem region for %s failed\n", pdev->name); ret = -EBUSY; goto err_kfree; } } dr_regs = ioremap(res->start, resource_size(res)); if (!dr_regs) { ret = -ENOMEM; goto err_release_mem_region; } pdata->regs = (void *)dr_regs; /* * do platform specific init: check the clock, grab/config pins, etc. */ if (pdata->init && pdata->init(pdev)) { ret = -ENODEV; goto err_iounmap_noclk; } /* Set accessors only after pdata->init() ! */ fsl_set_accessors(pdata); #ifndef CONFIG_ARCH_MXC if (pdata->have_sysif_regs) usb_sys_regs = (void *)dr_regs + USB_DR_SYS_OFFSET; #endif /* Initialize USB clocks */ ret = fsl_udc_clk_init(pdev); if (ret < 0) goto err_iounmap_noclk; /* Read Device Controller Capability Parameters register */ dccparams = fsl_readl(&dr_regs->dccparams); if (!(dccparams & DCCPARAMS_DC)) { ERR("This SOC doesn't support device role\n"); ret = -ENODEV; goto err_iounmap; } /* Get max device endpoints */ /* DEN is bidirectional ep number, max_ep doubles the number */ udc_controller->max_ep = (dccparams & DCCPARAMS_DEN_MASK) * 2; udc_controller->irq = platform_get_irq(pdev, 0); if (!udc_controller->irq) { ret = -ENODEV; goto err_iounmap; } ret = request_irq(udc_controller->irq, fsl_udc_irq, IRQF_SHARED, driver_name, udc_controller); if (ret != 0) { ERR("cannot request irq %d err %d\n", udc_controller->irq, ret); goto err_iounmap; } /* Initialize the udc structure including QH member and other member */ if (struct_udc_setup(udc_controller, pdev)) { ERR("Can't initialize udc data structure\n"); ret = -ENOMEM; goto err_free_irq; } if (IS_ERR_OR_NULL(udc_controller->transceiver)) { /* initialize usb hw reg except for regs for EP, * leave usbintr reg untouched */ dr_controller_setup(udc_controller); } ret = fsl_udc_clk_finalize(pdev); if (ret) goto err_free_irq; /* Setup gadget structure */ udc_controller->gadget.ops = &fsl_gadget_ops; udc_controller->gadget.max_speed = USB_SPEED_HIGH; udc_controller->gadget.ep0 = &udc_controller->eps[0].ep; INIT_LIST_HEAD(&udc_controller->gadget.ep_list); udc_controller->gadget.speed = USB_SPEED_UNKNOWN; udc_controller->gadget.name = driver_name; /* Setup gadget.dev and register with kernel */ dev_set_name(&udc_controller->gadget.dev, "gadget"); udc_controller->gadget.dev.of_node = pdev->dev.of_node; if (!IS_ERR_OR_NULL(udc_controller->transceiver)) udc_controller->gadget.is_otg = 1; /* setup QH and epctrl for ep0 */ ep0_setup(udc_controller); /* setup udc->eps[] for ep0 */ struct_ep_setup(udc_controller, 0, "ep0", 0); /* for ep0: the desc defined here; * for other eps, gadget layer called ep_enable with defined desc */ udc_controller->eps[0].ep.desc = &fsl_ep0_desc; udc_controller->eps[0].ep.maxpacket = USB_MAX_CTRL_PAYLOAD; /* setup the udc->eps[] for non-control endpoints and link * to gadget.ep_list */ for (i = 1; i < (int)(udc_controller->max_ep / 2); i++) { char name[14]; sprintf(name, "ep%dout", i); struct_ep_setup(udc_controller, i * 2, name, 1); sprintf(name, "ep%din", i); struct_ep_setup(udc_controller, i * 2 + 1, name, 1); } /* use dma_pool for TD management */ udc_controller->td_pool = dma_pool_create("udc_td", &pdev->dev, sizeof(struct ep_td_struct), DTD_ALIGNMENT, UDC_DMA_BOUNDARY); if (udc_controller->td_pool == NULL) { ret = -ENOMEM; goto err_free_irq; } ret = usb_add_gadget_udc_release(&pdev->dev, &udc_controller->gadget, fsl_udc_release); if (ret) goto err_del_udc; create_proc_file(); return 0; err_del_udc: dma_pool_destroy(udc_controller->td_pool); err_free_irq: free_irq(udc_controller->irq, udc_controller); err_iounmap: if (pdata->exit) pdata->exit(pdev); fsl_udc_clk_release(); err_iounmap_noclk: iounmap(dr_regs); err_release_mem_region: if (pdata->operating_mode == FSL_USB2_DR_DEVICE) release_mem_region(res->start, resource_size(res)); err_kfree: kfree(udc_controller); udc_controller = NULL; return ret; } /* Driver removal function * Free resources and finish pending transactions */ static int __exit fsl_udc_remove(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct fsl_usb2_platform_data *pdata = pdev->dev.platform_data; DECLARE_COMPLETION(done); if (!udc_controller) return -ENODEV; usb_del_gadget_udc(&udc_controller->gadget); udc_controller->done = &done; fsl_udc_clk_release(); /* DR has been stopped in usb_gadget_unregister_driver() */ remove_proc_file(); /* Free allocated memory */ kfree(udc_controller->status_req->req.buf); kfree(udc_controller->status_req); kfree(udc_controller->eps); dma_pool_destroy(udc_controller->td_pool); free_irq(udc_controller->irq, udc_controller); iounmap(dr_regs); if (pdata->operating_mode == FSL_USB2_DR_DEVICE) release_mem_region(res->start, resource_size(res)); /* free udc --wait for the release() finished */ wait_for_completion(&done); /* * do platform specific un-initialization: * release iomux pins, etc. */ if (pdata->exit) pdata->exit(pdev); return 0; } /*----------------------------------------------------------------- * Modify Power management attributes * Used by OTG statemachine to disable gadget temporarily -----------------------------------------------------------------*/ static int fsl_udc_suspend(struct platform_device *pdev, pm_message_t state) { dr_controller_stop(udc_controller); return 0; } /*----------------------------------------------------------------- * Invoked on USB resume. May be called in_interrupt. * Here we start the DR controller and enable the irq *-----------------------------------------------------------------*/ static int fsl_udc_resume(struct platform_device *pdev) { /* Enable DR irq reg and set controller Run */ if (udc_controller->stopped) { dr_controller_setup(udc_controller); dr_controller_run(udc_controller); } udc_controller->usb_state = USB_STATE_ATTACHED; udc_controller->ep0_state = WAIT_FOR_SETUP; udc_controller->ep0_dir = 0; return 0; } static int fsl_udc_otg_suspend(struct device *dev, pm_message_t state) { struct fsl_udc *udc = udc_controller; u32 mode, usbcmd; mode = fsl_readl(&dr_regs->usbmode) & USB_MODE_CTRL_MODE_MASK; pr_debug("%s(): mode 0x%x stopped %d\n", __func__, mode, udc->stopped); /* * If the controller is already stopped, then this must be a * PM suspend. Remember this fact, so that we will leave the * controller stopped at PM resume time. */ if (udc->stopped) { pr_debug("gadget already stopped, leaving early\n"); udc->already_stopped = 1; return 0; } if (mode != USB_MODE_CTRL_MODE_DEVICE) { pr_debug("gadget not in device mode, leaving early\n"); return 0; } /* stop the controller */ usbcmd = fsl_readl(&dr_regs->usbcmd) & ~USB_CMD_RUN_STOP; fsl_writel(usbcmd, &dr_regs->usbcmd); udc->stopped = 1; pr_info("USB Gadget suspended\n"); return 0; } static int fsl_udc_otg_resume(struct device *dev) { pr_debug("%s(): stopped %d already_stopped %d\n", __func__, udc_controller->stopped, udc_controller->already_stopped); /* * If the controller was stopped at suspend time, then * don't resume it now. */ if (udc_controller->already_stopped) { udc_controller->already_stopped = 0; pr_debug("gadget was already stopped, leaving early\n"); return 0; } pr_info("USB Gadget resume\n"); return fsl_udc_resume(NULL); } /*------------------------------------------------------------------------- Register entry point for the peripheral controller driver --------------------------------------------------------------------------*/ static const struct platform_device_id fsl_udc_devtype[] = { { .name = "imx-udc-mx27", }, { .name = "imx-udc-mx51", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, fsl_udc_devtype); static struct platform_driver udc_driver = { .remove = __exit_p(fsl_udc_remove), /* Just for FSL i.mx SoC currently */ .id_table = fsl_udc_devtype, /* these suspend and resume are not usb suspend and resume */ .suspend = fsl_udc_suspend, .resume = fsl_udc_resume, .driver = { .name = (char *)driver_name, .owner = THIS_MODULE, /* udc suspend/resume called from OTG driver */ .suspend = fsl_udc_otg_suspend, .resume = fsl_udc_otg_resume, }, }; module_platform_driver_probe(udc_driver, fsl_udc_probe); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:fsl-usb2-udc");