/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2000 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * We have up to 8 empty zeroed pages so we can map one of the right colour * when needed. This is necessary only on R4000 / R4400 SC and MC versions * where we have to avoid VCED / VECI exceptions for good performance at * any price. Since page is never written to after the initialization we * don't have to care about aliases on other CPUs. */ unsigned long empty_zero_page, zero_page_mask; EXPORT_SYMBOL_GPL(empty_zero_page); EXPORT_SYMBOL(zero_page_mask); /* * Not static inline because used by IP27 special magic initialization code */ void setup_zero_pages(void) { unsigned int order, i; struct page *page; if (cpu_has_vce) order = 3; else order = 0; empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); if (!empty_zero_page) panic("Oh boy, that early out of memory?"); page = virt_to_page((void *)empty_zero_page); split_page(page, order); for (i = 0; i < (1 << order); i++, page++) mark_page_reserved(page); zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; } static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) { enum fixed_addresses idx; unsigned int uninitialized_var(old_mmid); unsigned long vaddr, flags, entrylo; unsigned long old_ctx; pte_t pte; int tlbidx; BUG_ON(Page_dcache_dirty(page)); preempt_disable(); pagefault_disable(); idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); idx += in_interrupt() ? FIX_N_COLOURS : 0; vaddr = __fix_to_virt(FIX_CMAP_END - idx); pte = mk_pte(page, prot); #if defined(CONFIG_XPA) entrylo = pte_to_entrylo(pte.pte_high); #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) entrylo = pte.pte_high; #else entrylo = pte_to_entrylo(pte_val(pte)); #endif local_irq_save(flags); old_ctx = read_c0_entryhi(); write_c0_entryhi(vaddr & (PAGE_MASK << 1)); write_c0_entrylo0(entrylo); write_c0_entrylo1(entrylo); if (cpu_has_mmid) { old_mmid = read_c0_memorymapid(); write_c0_memorymapid(MMID_KERNEL_WIRED); } #ifdef CONFIG_XPA if (cpu_has_xpa) { entrylo = (pte.pte_low & _PFNX_MASK); writex_c0_entrylo0(entrylo); writex_c0_entrylo1(entrylo); } #endif tlbidx = num_wired_entries(); write_c0_wired(tlbidx + 1); write_c0_index(tlbidx); mtc0_tlbw_hazard(); tlb_write_indexed(); tlbw_use_hazard(); write_c0_entryhi(old_ctx); if (cpu_has_mmid) write_c0_memorymapid(old_mmid); local_irq_restore(flags); return (void*) vaddr; } void *kmap_coherent(struct page *page, unsigned long addr) { return __kmap_pgprot(page, addr, PAGE_KERNEL); } void *kmap_noncoherent(struct page *page, unsigned long addr) { return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); } void kunmap_coherent(void) { unsigned int wired; unsigned long flags, old_ctx; local_irq_save(flags); old_ctx = read_c0_entryhi(); wired = num_wired_entries() - 1; write_c0_wired(wired); write_c0_index(wired); write_c0_entryhi(UNIQUE_ENTRYHI(wired)); write_c0_entrylo0(0); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); tlbw_use_hazard(); write_c0_entryhi(old_ctx); local_irq_restore(flags); pagefault_enable(); preempt_enable(); } void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { void *vfrom, *vto; vto = kmap_atomic(to); if (cpu_has_dc_aliases && page_mapcount(from) && !Page_dcache_dirty(from)) { vfrom = kmap_coherent(from, vaddr); copy_page(vto, vfrom); kunmap_coherent(); } else { vfrom = kmap_atomic(from); copy_page(vto, vfrom); kunmap_atomic(vfrom); } if ((!cpu_has_ic_fills_f_dc) || pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) flush_data_cache_page((unsigned long)vto); kunmap_atomic(vto); /* Make sure this page is cleared on other CPU's too before using it */ smp_wmb(); } void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long vaddr, void *dst, const void *src, unsigned long len) { if (cpu_has_dc_aliases && page_mapcount(page) && !Page_dcache_dirty(page)) { void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); memcpy(vto, src, len); kunmap_coherent(); } else { memcpy(dst, src, len); if (cpu_has_dc_aliases) SetPageDcacheDirty(page); } if (vma->vm_flags & VM_EXEC) flush_cache_page(vma, vaddr, page_to_pfn(page)); } void copy_from_user_page(struct vm_area_struct *vma, struct page *page, unsigned long vaddr, void *dst, const void *src, unsigned long len) { if (cpu_has_dc_aliases && page_mapcount(page) && !Page_dcache_dirty(page)) { void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); memcpy(dst, vfrom, len); kunmap_coherent(); } else { memcpy(dst, src, len); if (cpu_has_dc_aliases) SetPageDcacheDirty(page); } } EXPORT_SYMBOL_GPL(copy_from_user_page); void __init fixrange_init(unsigned long start, unsigned long end, pgd_t *pgd_base) { #ifdef CONFIG_HIGHMEM pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int i, j, k; unsigned long vaddr; vaddr = start; i = __pgd_offset(vaddr); j = __pud_offset(vaddr); k = __pmd_offset(vaddr); pgd = pgd_base + i; for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { pud = (pud_t *)pgd; for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { pmd = (pmd_t *)pud; for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { if (pmd_none(*pmd)) { pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); if (!pte) panic("%s: Failed to allocate %lu bytes align=%lx\n", __func__, PAGE_SIZE, PAGE_SIZE); set_pmd(pmd, __pmd((unsigned long)pte)); BUG_ON(pte != pte_offset_kernel(pmd, 0)); } vaddr += PMD_SIZE; } k = 0; } j = 0; } #endif } struct maar_walk_info { struct maar_config cfg[16]; unsigned int num_cfg; }; static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, void *data) { struct maar_walk_info *wi = data; struct maar_config *cfg = &wi->cfg[wi->num_cfg]; unsigned int maar_align; /* MAAR registers hold physical addresses right shifted by 4 bits */ maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); /* Fill in the MAAR config entry */ cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; cfg->attrs = MIPS_MAAR_S; /* Ensure we don't overflow the cfg array */ if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) wi->num_cfg++; return 0; } unsigned __weak platform_maar_init(unsigned num_pairs) { unsigned int num_configured; struct maar_walk_info wi; wi.num_cfg = 0; walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); if (num_configured < wi.num_cfg) pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", num_pairs, wi.num_cfg); return num_configured; } void maar_init(void) { unsigned num_maars, used, i; phys_addr_t lower, upper, attr; static struct { struct maar_config cfgs[3]; unsigned used; } recorded = { { { 0 } }, 0 }; if (!cpu_has_maar) return; /* Detect the number of MAARs */ write_c0_maari(~0); back_to_back_c0_hazard(); num_maars = read_c0_maari() + 1; /* MAARs should be in pairs */ WARN_ON(num_maars % 2); /* Set MAARs using values we recorded already */ if (recorded.used) { used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); BUG_ON(used != recorded.used); } else { /* Configure the required MAARs */ used = platform_maar_init(num_maars / 2); } /* Disable any further MAARs */ for (i = (used * 2); i < num_maars; i++) { write_c0_maari(i); back_to_back_c0_hazard(); write_c0_maar(0); back_to_back_c0_hazard(); } if (recorded.used) return; pr_info("MAAR configuration:\n"); for (i = 0; i < num_maars; i += 2) { write_c0_maari(i); back_to_back_c0_hazard(); upper = read_c0_maar(); write_c0_maari(i + 1); back_to_back_c0_hazard(); lower = read_c0_maar(); attr = lower & upper; lower = (lower & MIPS_MAAR_ADDR) << 4; upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; pr_info(" [%d]: ", i / 2); if (!(attr & MIPS_MAAR_VL)) { pr_cont("disabled\n"); continue; } pr_cont("%pa-%pa", &lower, &upper); if (attr & MIPS_MAAR_S) pr_cont(" speculate"); pr_cont("\n"); /* Record the setup for use on secondary CPUs */ if (used <= ARRAY_SIZE(recorded.cfgs)) { recorded.cfgs[recorded.used].lower = lower; recorded.cfgs[recorded.used].upper = upper; recorded.cfgs[recorded.used].attrs = attr; recorded.used++; } } } #ifndef CONFIG_NEED_MULTIPLE_NODES void __init paging_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; pagetable_init(); #ifdef CONFIG_HIGHMEM kmap_init(); #endif #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { printk(KERN_WARNING "This processor doesn't support highmem." " %ldk highmem ignored\n", (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; } #endif free_area_init_nodes(max_zone_pfns); } #ifdef CONFIG_64BIT static struct kcore_list kcore_kseg0; #endif static inline void __init mem_init_free_highmem(void) { #ifdef CONFIG_HIGHMEM unsigned long tmp; if (cpu_has_dc_aliases) return; for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { struct page *page = pfn_to_page(tmp); if (!memblock_is_memory(PFN_PHYS(tmp))) SetPageReserved(page); else free_highmem_page(page); } #endif } void __init mem_init(void) { #ifdef CONFIG_HIGHMEM #ifdef CONFIG_DISCONTIGMEM #error "CONFIG_HIGHMEM and CONFIG_DISCONTIGMEM dont work together yet" #endif max_mapnr = highend_pfn ? highend_pfn : max_low_pfn; #else max_mapnr = max_low_pfn; #endif high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); maar_init(); memblock_free_all(); setup_zero_pages(); /* Setup zeroed pages. */ mem_init_free_highmem(); mem_init_print_info(NULL); #ifdef CONFIG_64BIT if ((unsigned long) &_text > (unsigned long) CKSEG0) /* The -4 is a hack so that user tools don't have to handle the overflow. */ kclist_add(&kcore_kseg0, (void *) CKSEG0, 0x80000000 - 4, KCORE_TEXT); #endif } #endif /* !CONFIG_NEED_MULTIPLE_NODES */ void free_init_pages(const char *what, unsigned long begin, unsigned long end) { unsigned long pfn; for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { struct page *page = pfn_to_page(pfn); void *addr = phys_to_virt(PFN_PHYS(pfn)); memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); free_reserved_page(page); } printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); } void (*free_init_pages_eva)(void *begin, void *end) = NULL; void __ref free_initmem(void) { prom_free_prom_memory(); /* * Let the platform define a specific function to free the * init section since EVA may have used any possible mapping * between virtual and physical addresses. */ if (free_init_pages_eva) free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); else free_initmem_default(POISON_FREE_INITMEM); } #ifndef CONFIG_MIPS_PGD_C0_CONTEXT unsigned long pgd_current[NR_CPUS]; #endif /* * Align swapper_pg_dir in to 64K, allows its address to be loaded * with a single LUI instruction in the TLB handlers. If we used * __aligned(64K), its size would get rounded up to the alignment * size, and waste space. So we place it in its own section and align * it in the linker script. */ pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(.bss..swapper_pg_dir); #ifndef __PAGETABLE_PUD_FOLDED pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; #endif #ifndef __PAGETABLE_PMD_FOLDED pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; EXPORT_SYMBOL_GPL(invalid_pmd_table); #endif pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; EXPORT_SYMBOL(invalid_pte_table);