/* * Copyright (C) ST-Ericsson SA 2007-2010 * Author: Per Forlin for ST-Ericsson * Author: Jonas Aaberg for ST-Ericsson * License terms: GNU General Public License (GPL) version 2 */ #include #include #include "ste_dma40_ll.h" /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ void d40_log_cfg(struct stedma40_chan_cfg *cfg, u32 *lcsp1, u32 *lcsp3) { u32 l3 = 0; /* dst */ u32 l1 = 0; /* src */ /* src is mem? -> increase address pos */ if (cfg->dir == STEDMA40_MEM_TO_PERIPH || cfg->dir == STEDMA40_MEM_TO_MEM) l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS; /* dst is mem? -> increase address pos */ if (cfg->dir == STEDMA40_PERIPH_TO_MEM || cfg->dir == STEDMA40_MEM_TO_MEM) l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS; /* src is hw? -> master port 1 */ if (cfg->dir == STEDMA40_PERIPH_TO_MEM || cfg->dir == STEDMA40_PERIPH_TO_PERIPH) l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS; /* dst is hw? -> master port 1 */ if (cfg->dir == STEDMA40_MEM_TO_PERIPH || cfg->dir == STEDMA40_PERIPH_TO_PERIPH) l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS; l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS; l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS; l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS; l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS; *lcsp1 = l1; *lcsp3 = l3; } /* Sets up SRC and DST CFG register for both logical and physical channels */ void d40_phy_cfg(struct stedma40_chan_cfg *cfg, u32 *src_cfg, u32 *dst_cfg, bool is_log) { u32 src = 0; u32 dst = 0; if (!is_log) { /* Physical channel */ if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) || (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { /* Set master port to 1 */ src |= 1 << D40_SREG_CFG_MST_POS; src |= D40_TYPE_TO_EVENT(cfg->src_dev_type); if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) src |= 1 << D40_SREG_CFG_PHY_TM_POS; else src |= 3 << D40_SREG_CFG_PHY_TM_POS; } if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) || (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { /* Set master port to 1 */ dst |= 1 << D40_SREG_CFG_MST_POS; dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type); if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) dst |= 1 << D40_SREG_CFG_PHY_TM_POS; else dst |= 3 << D40_SREG_CFG_PHY_TM_POS; } /* Interrupt on end of transfer for destination */ dst |= 1 << D40_SREG_CFG_TIM_POS; /* Generate interrupt on error */ src |= 1 << D40_SREG_CFG_EIM_POS; dst |= 1 << D40_SREG_CFG_EIM_POS; /* PSIZE */ if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { src |= 1 << D40_SREG_CFG_PHY_PEN_POS; src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; } if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { dst |= 1 << D40_SREG_CFG_PHY_PEN_POS; dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; } /* Element size */ src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS; dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS; } else { /* Logical channel */ dst |= 1 << D40_SREG_CFG_LOG_GIM_POS; src |= 1 << D40_SREG_CFG_LOG_GIM_POS; } if (cfg->high_priority) { src |= 1 << D40_SREG_CFG_PRI_POS; dst |= 1 << D40_SREG_CFG_PRI_POS; } if (cfg->src_info.big_endian) src |= 1 << D40_SREG_CFG_LBE_POS; if (cfg->dst_info.big_endian) dst |= 1 << D40_SREG_CFG_LBE_POS; *src_cfg = src; *dst_cfg = dst; } static int d40_phy_fill_lli(struct d40_phy_lli *lli, dma_addr_t data, u32 data_size, int psize, dma_addr_t next_lli, u32 reg_cfg, bool term_int, u32 data_width, bool is_device) { int num_elems; if (psize == STEDMA40_PSIZE_PHY_1) num_elems = 1; else num_elems = 2 << psize; /* Must be aligned */ if (!IS_ALIGNED(data, 0x1 << data_width)) return -EINVAL; /* Transfer size can't be smaller than (num_elms * elem_size) */ if (data_size < num_elems * (0x1 << data_width)) return -EINVAL; /* The number of elements. IE now many chunks */ lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS; /* * Distance to next element sized entry. * Usually the size of the element unless you want gaps. */ if (!is_device) lli->reg_elt |= (0x1 << data_width) << D40_SREG_ELEM_PHY_EIDX_POS; /* Where the data is */ lli->reg_ptr = data; lli->reg_cfg = reg_cfg; /* If this scatter list entry is the last one, no next link */ if (next_lli == 0) lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS; else lli->reg_lnk = next_lli; /* Set/clear interrupt generation on this link item.*/ if (term_int) lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS; else lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS); /* Post link */ lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS; return 0; } static int d40_seg_size(int size, int data_width1, int data_width2) { u32 max_w = max(data_width1, data_width2); u32 min_w = min(data_width1, data_width2); u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); if (seg_max > STEDMA40_MAX_SEG_SIZE) seg_max -= (1 << max_w); if (size <= seg_max) return size; if (size <= 2 * seg_max) return ALIGN(size / 2, 1 << max_w); return seg_max; } static struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size, int psize, dma_addr_t lli_phys, u32 reg_cfg, bool term_int, u32 data_width1, u32 data_width2, bool is_device) { int err; dma_addr_t next = lli_phys; int size_rest = size; int size_seg = 0; do { size_seg = d40_seg_size(size_rest, data_width1, data_width2); size_rest -= size_seg; if (term_int && size_rest == 0) next = 0; else next = ALIGN(next + sizeof(struct d40_phy_lli), D40_LLI_ALIGN); err = d40_phy_fill_lli(lli, addr, size_seg, psize, next, reg_cfg, !next, data_width1, is_device); if (err) goto err; lli++; if (!is_device) addr += size_seg; } while (size_rest); return lli; err: return NULL; } int d40_phy_sg_to_lli(struct scatterlist *sg, int sg_len, dma_addr_t target, struct d40_phy_lli *lli_sg, dma_addr_t lli_phys, u32 reg_cfg, u32 data_width1, u32 data_width2, int psize) { int total_size = 0; int i; struct scatterlist *current_sg = sg; dma_addr_t dst; struct d40_phy_lli *lli = lli_sg; dma_addr_t l_phys = lli_phys; for_each_sg(sg, current_sg, sg_len, i) { total_size += sg_dma_len(current_sg); if (target) dst = target; else dst = sg_dma_address(current_sg); l_phys = ALIGN(lli_phys + (lli - lli_sg) * sizeof(struct d40_phy_lli), D40_LLI_ALIGN); lli = d40_phy_buf_to_lli(lli, dst, sg_dma_len(current_sg), psize, l_phys, reg_cfg, sg_len - 1 == i, data_width1, data_width2, target == dst); if (lli == NULL) return -EINVAL; } return total_size; } /* DMA logical lli operations */ static void d40_log_lli_link(struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next) { u32 slos = 0; u32 dlos = 0; if (next != -EINVAL) { slos = next * 2; dlos = next * 2 + 1; } else { lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; } lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | (slos << D40_MEM_LCSP1_SLOS_POS); lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | (dlos << D40_MEM_LCSP1_SLOS_POS); } void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next) { d40_log_lli_link(lli_dst, lli_src, next); writel(lli_src->lcsp02, &lcpa[0].lcsp0); writel(lli_src->lcsp13, &lcpa[0].lcsp1); writel(lli_dst->lcsp02, &lcpa[0].lcsp2); writel(lli_dst->lcsp13, &lcpa[0].lcsp3); } void d40_log_lli_lcla_write(struct d40_log_lli *lcla, struct d40_log_lli *lli_dst, struct d40_log_lli *lli_src, int next) { d40_log_lli_link(lli_dst, lli_src, next); writel(lli_src->lcsp02, &lcla[0].lcsp02); writel(lli_src->lcsp13, &lcla[0].lcsp13); writel(lli_dst->lcsp02, &lcla[1].lcsp02); writel(lli_dst->lcsp13, &lcla[1].lcsp13); } static void d40_log_fill_lli(struct d40_log_lli *lli, dma_addr_t data, u32 data_size, u32 reg_cfg, u32 data_width, bool addr_inc) { lli->lcsp13 = reg_cfg; /* The number of elements to transfer */ lli->lcsp02 = ((data_size >> data_width) << D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE); /* 16 LSBs address of the current element */ lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; /* 16 MSBs address of the current element */ lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; if (addr_inc) lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; } struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg, dma_addr_t addr, int size, u32 lcsp13, /* src or dst*/ u32 data_width1, u32 data_width2, bool addr_inc) { struct d40_log_lli *lli = lli_sg; int size_rest = size; int size_seg = 0; do { size_seg = d40_seg_size(size_rest, data_width1, data_width2); size_rest -= size_seg; d40_log_fill_lli(lli, addr, size_seg, lcsp13, data_width1, addr_inc); if (addr_inc) addr += size_seg; lli++; } while (size_rest); return lli; } int d40_log_sg_to_lli(struct scatterlist *sg, int sg_len, dma_addr_t dev_addr, struct d40_log_lli *lli_sg, u32 lcsp13, /* src or dst*/ u32 data_width1, u32 data_width2) { int total_size = 0; struct scatterlist *current_sg = sg; int i; struct d40_log_lli *lli = lli_sg; bool autoinc = !dev_addr; for_each_sg(sg, current_sg, sg_len, i) { dma_addr_t sg_addr = sg_dma_address(current_sg); unsigned int len = sg_dma_len(current_sg); dma_addr_t addr = dev_addr ?: sg_addr; total_size += sg_dma_len(current_sg); lli = d40_log_buf_to_lli(lli, addr, len, lcsp13, data_width1, data_width2, autoinc); } return total_size; }