/* * Copyright (c) 2006-2009 Simtec Electronics * http://armlinux.simtec.co.uk/ * Ben Dooks * * S3C24XX CPU Frequency scaling - IO timing for S3C2410/S3C2440/S3C2442 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "regs-mem.h" #define print_ns(x) ((x) / 10), ((x) % 10) /** * s3c2410_print_timing - print bank timing data for debug purposes * @pfx: The prefix to put on the output * @timings: The timing inforamtion to print. */ static void s3c2410_print_timing(const char *pfx, struct s3c_iotimings *timings) { struct s3c2410_iobank_timing *bt; int bank; for (bank = 0; bank < MAX_BANKS; bank++) { bt = timings->bank[bank].io_2410; if (!bt) continue; printk(KERN_DEBUG "%s %d: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, " "Tcoh=%d.%d, Tcah=%d.%d\n", pfx, bank, print_ns(bt->tacs), print_ns(bt->tcos), print_ns(bt->tacc), print_ns(bt->tcoh), print_ns(bt->tcah)); } } /** * bank_reg - convert bank number to pointer to the control register. * @bank: The IO bank number. */ static inline void __iomem *bank_reg(unsigned int bank) { return S3C2410_BANKCON0 + (bank << 2); } /** * bank_is_io - test whether bank is used for IO * @bankcon: The bank control register. * * This is a simplistic test to see if any BANKCON[x] is not an IO * bank. It currently does not take into account whether BWSCON has * an illegal width-setting in it, or if the pin connected to nCS[x] * is actually being handled as a chip-select. */ static inline int bank_is_io(unsigned long bankcon) { return !(bankcon & S3C2410_BANKCON_SDRAM); } /** * to_div - convert cycle time to divisor * @cyc: The cycle time, in 10ths of nanoseconds. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * * Convert the given cycle time into the divisor to use to obtain it from * HCLK. */ static inline unsigned int to_div(unsigned int cyc, unsigned int hclk_tns) { if (cyc == 0) return 0; return DIV_ROUND_UP(cyc, hclk_tns); } /** * calc_0124 - calculate divisor control for divisors that do /0, /1. /2 and /4 * @cyc: The cycle time, in 10ths of nanoseconds. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @v: Pointer to register to alter. * @shift: The shift to get to the control bits. * * Calculate the divisor, and turn it into the correct control bits to * set in the result, @v. */ static unsigned int calc_0124(unsigned int cyc, unsigned long hclk_tns, unsigned long *v, int shift) { unsigned int div = to_div(cyc, hclk_tns); unsigned long val; s3c_freq_iodbg("%s: cyc=%d, hclk=%lu, shift=%d => div %d\n", __func__, cyc, hclk_tns, shift, div); switch (div) { case 0: val = 0; break; case 1: val = 1; break; case 2: val = 2; break; case 3: case 4: val = 3; break; default: return -1; } *v |= val << shift; return 0; } int calc_tacp(unsigned int cyc, unsigned long hclk, unsigned long *v) { /* Currently no support for Tacp calculations. */ return 0; } /** * calc_tacc - calculate divisor control for tacc. * @cyc: The cycle time, in 10ths of nanoseconds. * @nwait_en: IS nWAIT enabled for this bank. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @v: Pointer to register to alter. * * Calculate the divisor control for tACC, taking into account whether * the bank has nWAIT enabled. The result is used to modify the value * pointed to by @v. */ static int calc_tacc(unsigned int cyc, int nwait_en, unsigned long hclk_tns, unsigned long *v) { unsigned int div = to_div(cyc, hclk_tns); unsigned long val; s3c_freq_iodbg("%s: cyc=%u, nwait=%d, hclk=%lu => div=%u\n", __func__, cyc, nwait_en, hclk_tns, div); /* if nWait enabled on an bank, Tacc must be at-least 4 cycles. */ if (nwait_en && div < 4) div = 4; switch (div) { case 0: val = 0; break; case 1: case 2: case 3: case 4: val = div - 1; break; case 5: case 6: val = 4; break; case 7: case 8: val = 5; break; case 9: case 10: val = 6; break; case 11: case 12: case 13: case 14: val = 7; break; default: return -1; } *v |= val << 8; return 0; } /** * s3c2410_calc_bank - calculate bank timing infromation * @cfg: The configuration we need to calculate for. * @bt: The bank timing information. * * Given the cycle timine for a bank @bt, calculate the new BANKCON * setting for the @cfg timing. This updates the timing information * ready for the cpu frequency change. */ static int s3c2410_calc_bank(struct s3c_cpufreq_config *cfg, struct s3c2410_iobank_timing *bt) { unsigned long hclk = cfg->freq.hclk_tns; unsigned long res; int ret; res = bt->bankcon; res &= (S3C2410_BANKCON_SDRAM | S3C2410_BANKCON_PMC16); /* tacp: 2,3,4,5 */ /* tcah: 0,1,2,4 */ /* tcoh: 0,1,2,4 */ /* tacc: 1,2,3,4,6,7,10,14 (>4 for nwait) */ /* tcos: 0,1,2,4 */ /* tacs: 0,1,2,4 */ ret = calc_0124(bt->tacs, hclk, &res, S3C2410_BANKCON_Tacs_SHIFT); ret |= calc_0124(bt->tcos, hclk, &res, S3C2410_BANKCON_Tcos_SHIFT); ret |= calc_0124(bt->tcah, hclk, &res, S3C2410_BANKCON_Tcah_SHIFT); ret |= calc_0124(bt->tcoh, hclk, &res, S3C2410_BANKCON_Tcoh_SHIFT); if (ret) return -EINVAL; ret |= calc_tacp(bt->tacp, hclk, &res); ret |= calc_tacc(bt->tacc, bt->nwait_en, hclk, &res); if (ret) return -EINVAL; bt->bankcon = res; return 0; } static const unsigned int tacc_tab[] = { [0] = 1, [1] = 2, [2] = 3, [3] = 4, [4] = 6, [5] = 9, [6] = 10, [7] = 14, }; /** * get_tacc - turn tACC value into cycle time * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @val: The bank timing register value, shifed down. */ static unsigned int get_tacc(unsigned long hclk_tns, unsigned long val) { val &= 7; return hclk_tns * tacc_tab[val]; } /** * get_0124 - turn 0/1/2/4 divider into cycle time * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @val: The bank timing register value, shifed down. */ static unsigned int get_0124(unsigned long hclk_tns, unsigned long val) { val &= 3; return hclk_tns * ((val == 3) ? 4 : val); } /** * s3c2410_iotiming_getbank - turn BANKCON into cycle time information * @cfg: The frequency configuration * @bt: The bank timing to fill in (uses cached BANKCON) * * Given the BANKCON setting in @bt and the current frequency settings * in @cfg, update the cycle timing information. */ void s3c2410_iotiming_getbank(struct s3c_cpufreq_config *cfg, struct s3c2410_iobank_timing *bt) { unsigned long bankcon = bt->bankcon; unsigned long hclk = cfg->freq.hclk_tns; bt->tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT); bt->tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT); bt->tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT); bt->tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT); bt->tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT); } /** * s3c2410_iotiming_debugfs - debugfs show io bank timing information * @seq: The seq_file to write output to using seq_printf(). * @cfg: The current configuration. * @iob: The IO bank information to decode. */ void s3c2410_iotiming_debugfs(struct seq_file *seq, struct s3c_cpufreq_config *cfg, union s3c_iobank *iob) { struct s3c2410_iobank_timing *bt = iob->io_2410; unsigned long bankcon = bt->bankcon; unsigned long hclk = cfg->freq.hclk_tns; unsigned int tacs; unsigned int tcos; unsigned int tacc; unsigned int tcoh; unsigned int tcah; seq_printf(seq, "BANKCON=0x%08lx\n", bankcon); tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT); tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT); tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT); tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT); tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT); seq_printf(seq, "\tRead: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n", print_ns(bt->tacs), print_ns(bt->tcos), print_ns(bt->tacc), print_ns(bt->tcoh), print_ns(bt->tcah)); seq_printf(seq, "\t Set: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n", print_ns(tacs), print_ns(tcos), print_ns(tacc), print_ns(tcoh), print_ns(tcah)); } /** * s3c2410_iotiming_calc - Calculate bank timing for frequency change. * @cfg: The frequency configuration * @iot: The IO timing information to fill out. * * Calculate the new values for the banks in @iot based on the new * frequency information in @cfg. This is then used by s3c2410_iotiming_set() * to update the timing when necessary. */ int s3c2410_iotiming_calc(struct s3c_cpufreq_config *cfg, struct s3c_iotimings *iot) { struct s3c2410_iobank_timing *bt; unsigned long bankcon; int bank; int ret; for (bank = 0; bank < MAX_BANKS; bank++) { bankcon = __raw_readl(bank_reg(bank)); bt = iot->bank[bank].io_2410; if (!bt) continue; bt->bankcon = bankcon; ret = s3c2410_calc_bank(cfg, bt); if (ret) { printk(KERN_ERR "%s: cannot calculate bank %d io\n", __func__, bank); goto err; } s3c_freq_iodbg("%s: bank %d: con=%08lx\n", __func__, bank, bt->bankcon); } return 0; err: return ret; } /** * s3c2410_iotiming_set - set the IO timings from the given setup. * @cfg: The frequency configuration * @iot: The IO timing information to use. * * Set all the currently used IO bank timing information generated * by s3c2410_iotiming_calc() once the core has validated that all * the new values are within permitted bounds. */ void s3c2410_iotiming_set(struct s3c_cpufreq_config *cfg, struct s3c_iotimings *iot) { struct s3c2410_iobank_timing *bt; int bank; /* set the io timings from the specifier */ for (bank = 0; bank < MAX_BANKS; bank++) { bt = iot->bank[bank].io_2410; if (!bt) continue; __raw_writel(bt->bankcon, bank_reg(bank)); } } /** * s3c2410_iotiming_get - Get the timing information from current registers. * @cfg: The frequency configuration * @timings: The IO timing information to fill out. * * Calculate the @timings timing information from the current frequency * information in @cfg, and the new frequency configuration * through all the IO banks, reading the state and then updating @iot * as necessary. * * This is used at the moment on initialisation to get the current * configuration so that boards do not have to carry their own setup * if the timings are correct on initialisation. */ int s3c2410_iotiming_get(struct s3c_cpufreq_config *cfg, struct s3c_iotimings *timings) { struct s3c2410_iobank_timing *bt; unsigned long bankcon; unsigned long bwscon; int bank; bwscon = __raw_readl(S3C2410_BWSCON); /* look through all banks to see what is currently set. */ for (bank = 0; bank < MAX_BANKS; bank++) { bankcon = __raw_readl(bank_reg(bank)); if (!bank_is_io(bankcon)) continue; s3c_freq_iodbg("%s: bank %d: con %08lx\n", __func__, bank, bankcon); bt = kzalloc(sizeof(*bt), GFP_KERNEL); if (!bt) return -ENOMEM; /* find out in nWait is enabled for bank. */ if (bank != 0) { unsigned long tmp = S3C2410_BWSCON_GET(bwscon, bank); if (tmp & S3C2410_BWSCON_WS) bt->nwait_en = 1; } timings->bank[bank].io_2410 = bt; bt->bankcon = bankcon; s3c2410_iotiming_getbank(cfg, bt); } s3c2410_print_timing("get", timings); return 0; }