/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * MMU support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ /* * We need the mmu code to access both 32-bit and 64-bit guest ptes, * so the code in this file is compiled twice, once per pte size. */ #if PTTYPE == 64 #define pt_element_t u64 #define guest_walker guest_walker64 #define FNAME(name) paging##64_##name #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK #define PT_INDEX(addr, level) PT64_INDEX(addr, level) #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK #ifdef CONFIG_X86_64 #define PT_MAX_FULL_LEVELS 4 #else #define PT_MAX_FULL_LEVELS 2 #endif #elif PTTYPE == 32 #define pt_element_t u32 #define guest_walker guest_walker32 #define FNAME(name) paging##32_##name #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK #define PT_INDEX(addr, level) PT32_INDEX(addr, level) #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK #define PT_MAX_FULL_LEVELS 2 #else #error Invalid PTTYPE value #endif /* * The guest_walker structure emulates the behavior of the hardware page * table walker. */ struct guest_walker { int level; gfn_t table_gfn[PT_MAX_FULL_LEVELS]; pt_element_t *table; pt_element_t *ptep; pt_element_t inherited_ar; gfn_t gfn; u32 error_code; }; /* * Fetch a guest pte for a guest virtual address */ static int FNAME(walk_addr)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gva_t addr, int write_fault, int user_fault, int fetch_fault) { hpa_t hpa; struct kvm_memory_slot *slot; pt_element_t *ptep; pt_element_t root; gfn_t table_gfn; pgprintk("%s: addr %lx\n", __FUNCTION__, addr); walker->level = vcpu->mmu.root_level; walker->table = NULL; root = vcpu->cr3; #if PTTYPE == 64 if (!is_long_mode(vcpu)) { walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3]; root = *walker->ptep; if (!(root & PT_PRESENT_MASK)) goto not_present; --walker->level; } #endif table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; walker->table_gfn[walker->level - 1] = table_gfn; pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__, walker->level - 1, table_gfn); slot = gfn_to_memslot(vcpu->kvm, table_gfn); hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK); walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0); ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0); walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK; for (;;) { int index = PT_INDEX(addr, walker->level); hpa_t paddr; ptep = &walker->table[index]; ASSERT(((unsigned long)walker->table & PAGE_MASK) == ((unsigned long)ptep & PAGE_MASK)); if (!is_present_pte(*ptep)) goto not_present; if (write_fault && !is_writeble_pte(*ptep)) if (user_fault || is_write_protection(vcpu)) goto access_error; if (user_fault && !(*ptep & PT_USER_MASK)) goto access_error; #if PTTYPE == 64 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK)) goto access_error; #endif if (!(*ptep & PT_ACCESSED_MASK)) { mark_page_dirty(vcpu->kvm, table_gfn); *ptep |= PT_ACCESSED_MASK; } if (walker->level == PT_PAGE_TABLE_LEVEL) { walker->gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT; break; } if (walker->level == PT_DIRECTORY_LEVEL && (*ptep & PT_PAGE_SIZE_MASK) && (PTTYPE == 64 || is_pse(vcpu))) { walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT; walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL); break; } walker->inherited_ar &= walker->table[index]; table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT; paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK); kunmap_atomic(walker->table, KM_USER0); walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0); --walker->level; walker->table_gfn[walker->level - 1 ] = table_gfn; pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__, walker->level - 1, table_gfn); } walker->ptep = ptep; pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep); return 1; not_present: walker->error_code = 0; goto err; access_error: walker->error_code = PFERR_PRESENT_MASK; err: if (write_fault) walker->error_code |= PFERR_WRITE_MASK; if (user_fault) walker->error_code |= PFERR_USER_MASK; if (fetch_fault) walker->error_code |= PFERR_FETCH_MASK; return 0; } static void FNAME(release_walker)(struct guest_walker *walker) { if (walker->table) kunmap_atomic(walker->table, KM_USER0); } static void FNAME(mark_pagetable_dirty)(struct kvm *kvm, struct guest_walker *walker) { mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]); } static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu, u64 *shadow_pte, gpa_t gaddr, pt_element_t *gpte, u64 access_bits, int write_fault, gfn_t gfn) { hpa_t paddr; int dirty = *gpte & PT_DIRTY_MASK; *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET; if (!dirty) access_bits &= ~PT_WRITABLE_MASK; paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK); *shadow_pte |= access_bits; if (is_error_hpa(paddr)) { *shadow_pte |= gaddr; *shadow_pte |= PT_SHADOW_IO_MARK; *shadow_pte &= ~PT_PRESENT_MASK; return; } *shadow_pte |= paddr; if (!write_fault && (*shadow_pte & PT_SHADOW_USER_MASK) && !(*shadow_pte & PT_USER_MASK)) { /* * If supervisor write protect is disabled, we shadow kernel * pages as user pages so we can trap the write access. */ *shadow_pte |= PT_USER_MASK; *shadow_pte &= ~PT_WRITABLE_MASK; access_bits &= ~PT_WRITABLE_MASK; } if (access_bits & PT_WRITABLE_MASK) { struct kvm_mmu_page *shadow; shadow = kvm_mmu_lookup_page(vcpu, gfn); if (shadow) { pgprintk("%s: found shadow page for %lx, marking ro\n", __FUNCTION__, gfn); access_bits &= ~PT_WRITABLE_MASK; if (is_writeble_pte(*shadow_pte)) { *shadow_pte &= ~PT_WRITABLE_MASK; kvm_arch_ops->tlb_flush(vcpu); } } } if (access_bits & PT_WRITABLE_MASK) mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT); page_header_update_slot(vcpu->kvm, shadow_pte, gaddr); rmap_add(vcpu, shadow_pte); } static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte, u64 *shadow_pte, u64 access_bits, int write_fault, gfn_t gfn) { ASSERT(*shadow_pte == 0); access_bits &= *gpte; *shadow_pte = (*gpte & PT_PTE_COPY_MASK); FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK, gpte, access_bits, write_fault, gfn); } static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, u64 *spte, const void *pte, int bytes) { pt_element_t gpte; if (bytes < sizeof(pt_element_t)) return; gpte = *(const pt_element_t *)pte; if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) return; pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte); FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0, (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT); } static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde, u64 *shadow_pte, u64 access_bits, int write_fault, gfn_t gfn) { gpa_t gaddr; ASSERT(*shadow_pte == 0); access_bits &= *gpde; gaddr = (gpa_t)gfn << PAGE_SHIFT; if (PTTYPE == 32 && is_cpuid_PSE36()) gaddr |= (*gpde & PT32_DIR_PSE36_MASK) << (32 - PT32_DIR_PSE36_SHIFT); *shadow_pte = *gpde & PT_PTE_COPY_MASK; FNAME(set_pte_common)(vcpu, shadow_pte, gaddr, gpde, access_bits, write_fault, gfn); } /* * Fetch a shadow pte for a specific level in the paging hierarchy. */ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, struct guest_walker *walker, int write_fault) { hpa_t shadow_addr; int level; u64 *shadow_ent; u64 *prev_shadow_ent = NULL; pt_element_t *guest_ent = walker->ptep; if (!is_present_pte(*guest_ent)) return NULL; shadow_addr = vcpu->mmu.root_hpa; level = vcpu->mmu.shadow_root_level; if (level == PT32E_ROOT_LEVEL) { shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3]; shadow_addr &= PT64_BASE_ADDR_MASK; --level; } for (; ; level--) { u32 index = SHADOW_PT_INDEX(addr, level); struct kvm_mmu_page *shadow_page; u64 shadow_pte; int metaphysical; gfn_t table_gfn; unsigned hugepage_access = 0; shadow_ent = ((u64 *)__va(shadow_addr)) + index; if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { if (level == PT_PAGE_TABLE_LEVEL) return shadow_ent; shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; prev_shadow_ent = shadow_ent; continue; } if (level == PT_PAGE_TABLE_LEVEL) break; if (level - 1 == PT_PAGE_TABLE_LEVEL && walker->level == PT_DIRECTORY_LEVEL) { metaphysical = 1; hugepage_access = *guest_ent; hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK; hugepage_access >>= PT_WRITABLE_SHIFT; table_gfn = (*guest_ent & PT_BASE_ADDR_MASK) >> PAGE_SHIFT; } else { metaphysical = 0; table_gfn = walker->table_gfn[level - 2]; } shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1, metaphysical, hugepage_access, shadow_ent); shadow_addr = __pa(shadow_page->spt); shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; *shadow_ent = shadow_pte; prev_shadow_ent = shadow_ent; } if (walker->level == PT_DIRECTORY_LEVEL) { if (prev_shadow_ent) *prev_shadow_ent |= PT_SHADOW_PS_MARK; FNAME(set_pde)(vcpu, guest_ent, shadow_ent, walker->inherited_ar, write_fault, walker->gfn); } else { ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); FNAME(set_pte)(vcpu, guest_ent, shadow_ent, walker->inherited_ar, write_fault, walker->gfn); } return shadow_ent; } /* * The guest faulted for write. We need to * * - check write permissions * - update the guest pte dirty bit * - update our own dirty page tracking structures */ static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu, u64 *shadow_ent, struct guest_walker *walker, gva_t addr, int user, int *write_pt) { pt_element_t *guest_ent; int writable_shadow; gfn_t gfn; struct kvm_mmu_page *page; if (is_writeble_pte(*shadow_ent)) return !user || (*shadow_ent & PT_USER_MASK); writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK; if (user) { /* * User mode access. Fail if it's a kernel page or a read-only * page. */ if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow) return 0; ASSERT(*shadow_ent & PT_USER_MASK); } else /* * Kernel mode access. Fail if it's a read-only page and * supervisor write protection is enabled. */ if (!writable_shadow) { if (is_write_protection(vcpu)) return 0; *shadow_ent &= ~PT_USER_MASK; } guest_ent = walker->ptep; if (!is_present_pte(*guest_ent)) { *shadow_ent = 0; return 0; } gfn = walker->gfn; if (user) { /* * Usermode page faults won't be for page table updates. */ while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) { pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, page->role.word); kvm_mmu_zap_page(vcpu, page); } } else if (kvm_mmu_lookup_page(vcpu, gfn)) { pgprintk("%s: found shadow page for %lx, marking ro\n", __FUNCTION__, gfn); mark_page_dirty(vcpu->kvm, gfn); FNAME(mark_pagetable_dirty)(vcpu->kvm, walker); *guest_ent |= PT_DIRTY_MASK; *write_pt = 1; return 0; } mark_page_dirty(vcpu->kvm, gfn); *shadow_ent |= PT_WRITABLE_MASK; FNAME(mark_pagetable_dirty)(vcpu->kvm, walker); *guest_ent |= PT_DIRTY_MASK; rmap_add(vcpu, shadow_ent); return 1; } /* * Page fault handler. There are several causes for a page fault: * - there is no shadow pte for the guest pte * - write access through a shadow pte marked read only so that we can set * the dirty bit * - write access to a shadow pte marked read only so we can update the page * dirty bitmap, when userspace requests it * - mmio access; in this case we will never install a present shadow pte * - normal guest page fault due to the guest pte marked not present, not * writable, or not executable * * Returns: 1 if we need to emulate the instruction, 0 otherwise, or * a negative value on error. */ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code) { int write_fault = error_code & PFERR_WRITE_MASK; int user_fault = error_code & PFERR_USER_MASK; int fetch_fault = error_code & PFERR_FETCH_MASK; struct guest_walker walker; u64 *shadow_pte; int fixed; int write_pt = 0; int r; pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code); kvm_mmu_audit(vcpu, "pre page fault"); r = mmu_topup_memory_caches(vcpu); if (r) return r; /* * Look up the shadow pte for the faulting address. */ r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault, fetch_fault); /* * The page is not mapped by the guest. Let the guest handle it. */ if (!r) { pgprintk("%s: guest page fault\n", __FUNCTION__); inject_page_fault(vcpu, addr, walker.error_code); FNAME(release_walker)(&walker); vcpu->last_pt_write_count = 0; /* reset fork detector */ return 0; } shadow_pte = FNAME(fetch)(vcpu, addr, &walker, write_fault); pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__, shadow_pte, *shadow_pte); /* * Update the shadow pte. */ if (write_fault) fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr, user_fault, &write_pt); pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__, shadow_pte, *shadow_pte); FNAME(release_walker)(&walker); if (!write_pt) vcpu->last_pt_write_count = 0; /* reset fork detector */ /* * mmio: emulate if accessible, otherwise its a guest fault. */ if (is_io_pte(*shadow_pte)) return 1; ++vcpu->stat.pf_fixed; kvm_mmu_audit(vcpu, "post page fault (fixed)"); return write_pt; } static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr) { struct guest_walker walker; gpa_t gpa = UNMAPPED_GVA; int r; r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0); if (r) { gpa = (gpa_t)walker.gfn << PAGE_SHIFT; gpa |= vaddr & ~PAGE_MASK; } FNAME(release_walker)(&walker); return gpa; } #undef pt_element_t #undef guest_walker #undef FNAME #undef PT_BASE_ADDR_MASK #undef PT_INDEX #undef SHADOW_PT_INDEX #undef PT_LEVEL_MASK #undef PT_PTE_COPY_MASK #undef PT_NON_PTE_COPY_MASK #undef PT_DIR_BASE_ADDR_MASK #undef PT_MAX_FULL_LEVELS