/* * perf_event_intel_cstate.c: support cstate residency counters * * Copyright (C) 2015, Intel Corp. * Author: Kan Liang (kan.liang@intel.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * */ /* * This file export cstate related free running (read-only) counters * for perf. These counters may be use simultaneously by other tools, * such as turbostat. However, it still make sense to implement them * in perf. Because we can conveniently collect them together with * other events, and allow to use them from tools without special MSR * access code. * * The events only support system-wide mode counting. There is no * sampling support because it is not supported by the hardware. * * According to counters' scope and category, two PMUs are registered * with the perf_event core subsystem. * - 'cstate_core': The counter is available for each physical core. * The counters include CORE_C*_RESIDENCY. * - 'cstate_pkg': The counter is available for each physical package. * The counters include PKG_C*_RESIDENCY. * * All of these counters are specified in the IntelĀ® 64 and IA-32 * Architectures Software Developer.s Manual Vol3b. * * Model specific counters: * MSR_CORE_C1_RES: CORE C1 Residency Counter * perf code: 0x00 * Available model: SLM,AMT * Scope: Core (each processor core has a MSR) * MSR_CORE_C3_RESIDENCY: CORE C3 Residency Counter * perf code: 0x01 * Available model: NHM,WSM,SNB,IVB,HSW,BDW,SKL * Scope: Core * MSR_CORE_C6_RESIDENCY: CORE C6 Residency Counter * perf code: 0x02 * Available model: SLM,AMT,NHM,WSM,SNB,IVB,HSW,BDW,SKL * Scope: Core * MSR_CORE_C7_RESIDENCY: CORE C7 Residency Counter * perf code: 0x03 * Available model: SNB,IVB,HSW,BDW,SKL * Scope: Core * MSR_PKG_C2_RESIDENCY: Package C2 Residency Counter. * perf code: 0x00 * Available model: SNB,IVB,HSW,BDW,SKL * Scope: Package (physical package) * MSR_PKG_C3_RESIDENCY: Package C3 Residency Counter. * perf code: 0x01 * Available model: NHM,WSM,SNB,IVB,HSW,BDW,SKL * Scope: Package (physical package) * MSR_PKG_C6_RESIDENCY: Package C6 Residency Counter. * perf code: 0x02 * Available model: SLM,AMT,NHM,WSM,SNB,IVB,HSW,BDW,SKL * Scope: Package (physical package) * MSR_PKG_C7_RESIDENCY: Package C7 Residency Counter. * perf code: 0x03 * Available model: NHM,WSM,SNB,IVB,HSW,BDW,SKL * Scope: Package (physical package) * MSR_PKG_C8_RESIDENCY: Package C8 Residency Counter. * perf code: 0x04 * Available model: HSW ULT only * Scope: Package (physical package) * MSR_PKG_C9_RESIDENCY: Package C9 Residency Counter. * perf code: 0x05 * Available model: HSW ULT only * Scope: Package (physical package) * MSR_PKG_C10_RESIDENCY: Package C10 Residency Counter. * perf code: 0x06 * Available model: HSW ULT only * Scope: Package (physical package) * */ #include #include #include #include #include "../../kernel/cpu/perf_event.h" #define DEFINE_CSTATE_FORMAT_ATTR(_var, _name, _format) \ static ssize_t __cstate_##_var##_show(struct kobject *kobj, \ struct kobj_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ static struct kobj_attribute format_attr_##_var = \ __ATTR(_name, 0444, __cstate_##_var##_show, NULL) static ssize_t cstate_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf); struct perf_cstate_msr { u64 msr; struct perf_pmu_events_attr *attr; bool (*test)(int idx); }; /* cstate_core PMU */ static struct pmu cstate_core_pmu; static bool has_cstate_core; enum perf_cstate_core_id { /* * cstate_core events */ PERF_CSTATE_CORE_C1_RES = 0, PERF_CSTATE_CORE_C3_RES, PERF_CSTATE_CORE_C6_RES, PERF_CSTATE_CORE_C7_RES, PERF_CSTATE_CORE_EVENT_MAX, }; bool test_core(int idx) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || boot_cpu_data.x86 != 6) return false; switch (boot_cpu_data.x86_model) { case 30: /* 45nm Nehalem */ case 26: /* 45nm Nehalem-EP */ case 46: /* 45nm Nehalem-EX */ case 37: /* 32nm Westmere */ case 44: /* 32nm Westmere-EP */ case 47: /* 32nm Westmere-EX */ if (idx == PERF_CSTATE_CORE_C3_RES || idx == PERF_CSTATE_CORE_C6_RES) return true; break; case 42: /* 32nm SandyBridge */ case 45: /* 32nm SandyBridge-E/EN/EP */ case 58: /* 22nm IvyBridge */ case 62: /* 22nm IvyBridge-EP/EX */ case 60: /* 22nm Haswell Core */ case 63: /* 22nm Haswell Server */ case 69: /* 22nm Haswell ULT */ case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */ case 61: /* 14nm Broadwell Core-M */ case 86: /* 14nm Broadwell Xeon D */ case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */ case 79: /* 14nm Broadwell Server */ case 78: /* 14nm Skylake Mobile */ case 94: /* 14nm Skylake Desktop */ if (idx == PERF_CSTATE_CORE_C3_RES || idx == PERF_CSTATE_CORE_C6_RES || idx == PERF_CSTATE_CORE_C7_RES) return true; break; case 55: /* 22nm Atom "Silvermont" */ case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */ case 76: /* 14nm Atom "Airmont" */ if (idx == PERF_CSTATE_CORE_C1_RES || idx == PERF_CSTATE_CORE_C6_RES) return true; break; } return false; } PMU_EVENT_ATTR_STRING(c1-residency, evattr_cstate_core_c1, "event=0x00"); PMU_EVENT_ATTR_STRING(c3-residency, evattr_cstate_core_c3, "event=0x01"); PMU_EVENT_ATTR_STRING(c6-residency, evattr_cstate_core_c6, "event=0x02"); PMU_EVENT_ATTR_STRING(c7-residency, evattr_cstate_core_c7, "event=0x03"); static struct perf_cstate_msr core_msr[] = { [PERF_CSTATE_CORE_C1_RES] = { MSR_CORE_C1_RES, &evattr_cstate_core_c1, test_core, }, [PERF_CSTATE_CORE_C3_RES] = { MSR_CORE_C3_RESIDENCY, &evattr_cstate_core_c3, test_core, }, [PERF_CSTATE_CORE_C6_RES] = { MSR_CORE_C6_RESIDENCY, &evattr_cstate_core_c6, test_core, }, [PERF_CSTATE_CORE_C7_RES] = { MSR_CORE_C7_RESIDENCY, &evattr_cstate_core_c7, test_core, }, }; static struct attribute *core_events_attrs[PERF_CSTATE_CORE_EVENT_MAX + 1] = { NULL, }; static struct attribute_group core_events_attr_group = { .name = "events", .attrs = core_events_attrs, }; DEFINE_CSTATE_FORMAT_ATTR(core_event, event, "config:0-63"); static struct attribute *core_format_attrs[] = { &format_attr_core_event.attr, NULL, }; static struct attribute_group core_format_attr_group = { .name = "format", .attrs = core_format_attrs, }; static cpumask_t cstate_core_cpu_mask; static DEVICE_ATTR(cpumask, S_IRUGO, cstate_get_attr_cpumask, NULL); static struct attribute *cstate_cpumask_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group cpumask_attr_group = { .attrs = cstate_cpumask_attrs, }; static const struct attribute_group *core_attr_groups[] = { &core_events_attr_group, &core_format_attr_group, &cpumask_attr_group, NULL, }; /* cstate_core PMU end */ /* cstate_pkg PMU */ static struct pmu cstate_pkg_pmu; static bool has_cstate_pkg; enum perf_cstate_pkg_id { /* * cstate_pkg events */ PERF_CSTATE_PKG_C2_RES = 0, PERF_CSTATE_PKG_C3_RES, PERF_CSTATE_PKG_C6_RES, PERF_CSTATE_PKG_C7_RES, PERF_CSTATE_PKG_C8_RES, PERF_CSTATE_PKG_C9_RES, PERF_CSTATE_PKG_C10_RES, PERF_CSTATE_PKG_EVENT_MAX, }; bool test_pkg(int idx) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || boot_cpu_data.x86 != 6) return false; switch (boot_cpu_data.x86_model) { case 30: /* 45nm Nehalem */ case 26: /* 45nm Nehalem-EP */ case 46: /* 45nm Nehalem-EX */ case 37: /* 32nm Westmere */ case 44: /* 32nm Westmere-EP */ case 47: /* 32nm Westmere-EX */ if (idx == PERF_CSTATE_CORE_C3_RES || idx == PERF_CSTATE_CORE_C6_RES || idx == PERF_CSTATE_CORE_C7_RES) return true; break; case 42: /* 32nm SandyBridge */ case 45: /* 32nm SandyBridge-E/EN/EP */ case 58: /* 22nm IvyBridge */ case 62: /* 22nm IvyBridge-EP/EX */ case 60: /* 22nm Haswell Core */ case 63: /* 22nm Haswell Server */ case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */ case 61: /* 14nm Broadwell Core-M */ case 86: /* 14nm Broadwell Xeon D */ case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */ case 79: /* 14nm Broadwell Server */ case 78: /* 14nm Skylake Mobile */ case 94: /* 14nm Skylake Desktop */ if (idx == PERF_CSTATE_PKG_C2_RES || idx == PERF_CSTATE_PKG_C3_RES || idx == PERF_CSTATE_PKG_C6_RES || idx == PERF_CSTATE_PKG_C7_RES) return true; break; case 55: /* 22nm Atom "Silvermont" */ case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */ case 76: /* 14nm Atom "Airmont" */ if (idx == PERF_CSTATE_CORE_C6_RES) return true; break; case 69: /* 22nm Haswell ULT */ if (idx == PERF_CSTATE_PKG_C2_RES || idx == PERF_CSTATE_PKG_C3_RES || idx == PERF_CSTATE_PKG_C6_RES || idx == PERF_CSTATE_PKG_C7_RES || idx == PERF_CSTATE_PKG_C8_RES || idx == PERF_CSTATE_PKG_C9_RES || idx == PERF_CSTATE_PKG_C10_RES) return true; break; } return false; } PMU_EVENT_ATTR_STRING(c2-residency, evattr_cstate_pkg_c2, "event=0x00"); PMU_EVENT_ATTR_STRING(c3-residency, evattr_cstate_pkg_c3, "event=0x01"); PMU_EVENT_ATTR_STRING(c6-residency, evattr_cstate_pkg_c6, "event=0x02"); PMU_EVENT_ATTR_STRING(c7-residency, evattr_cstate_pkg_c7, "event=0x03"); PMU_EVENT_ATTR_STRING(c8-residency, evattr_cstate_pkg_c8, "event=0x04"); PMU_EVENT_ATTR_STRING(c9-residency, evattr_cstate_pkg_c9, "event=0x05"); PMU_EVENT_ATTR_STRING(c10-residency, evattr_cstate_pkg_c10, "event=0x06"); static struct perf_cstate_msr pkg_msr[] = { [PERF_CSTATE_PKG_C2_RES] = { MSR_PKG_C2_RESIDENCY, &evattr_cstate_pkg_c2, test_pkg, }, [PERF_CSTATE_PKG_C3_RES] = { MSR_PKG_C3_RESIDENCY, &evattr_cstate_pkg_c3, test_pkg, }, [PERF_CSTATE_PKG_C6_RES] = { MSR_PKG_C6_RESIDENCY, &evattr_cstate_pkg_c6, test_pkg, }, [PERF_CSTATE_PKG_C7_RES] = { MSR_PKG_C7_RESIDENCY, &evattr_cstate_pkg_c7, test_pkg, }, [PERF_CSTATE_PKG_C8_RES] = { MSR_PKG_C8_RESIDENCY, &evattr_cstate_pkg_c8, test_pkg, }, [PERF_CSTATE_PKG_C9_RES] = { MSR_PKG_C9_RESIDENCY, &evattr_cstate_pkg_c9, test_pkg, }, [PERF_CSTATE_PKG_C10_RES] = { MSR_PKG_C10_RESIDENCY, &evattr_cstate_pkg_c10, test_pkg, }, }; static struct attribute *pkg_events_attrs[PERF_CSTATE_PKG_EVENT_MAX + 1] = { NULL, }; static struct attribute_group pkg_events_attr_group = { .name = "events", .attrs = pkg_events_attrs, }; DEFINE_CSTATE_FORMAT_ATTR(pkg_event, event, "config:0-63"); static struct attribute *pkg_format_attrs[] = { &format_attr_pkg_event.attr, NULL, }; static struct attribute_group pkg_format_attr_group = { .name = "format", .attrs = pkg_format_attrs, }; static cpumask_t cstate_pkg_cpu_mask; static const struct attribute_group *pkg_attr_groups[] = { &pkg_events_attr_group, &pkg_format_attr_group, &cpumask_attr_group, NULL, }; /* cstate_pkg PMU end*/ static ssize_t cstate_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); if (pmu == &cstate_core_pmu) return cpumap_print_to_pagebuf(true, buf, &cstate_core_cpu_mask); else if (pmu == &cstate_pkg_pmu) return cpumap_print_to_pagebuf(true, buf, &cstate_pkg_cpu_mask); else return 0; } static int cstate_pmu_event_init(struct perf_event *event) { u64 cfg = event->attr.config; int ret = 0; if (event->attr.type != event->pmu->type) return -ENOENT; /* unsupported modes and filters */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle || event->attr.exclude_host || event->attr.exclude_guest || event->attr.sample_period) /* no sampling */ return -EINVAL; if (event->pmu == &cstate_core_pmu) { if (cfg >= PERF_CSTATE_CORE_EVENT_MAX) return -EINVAL; if (!core_msr[cfg].attr) return -EINVAL; event->hw.event_base = core_msr[cfg].msr; } else if (event->pmu == &cstate_pkg_pmu) { if (cfg >= PERF_CSTATE_PKG_EVENT_MAX) return -EINVAL; if (!pkg_msr[cfg].attr) return -EINVAL; event->hw.event_base = pkg_msr[cfg].msr; } else return -ENOENT; /* must be done before validate_group */ event->hw.config = cfg; event->hw.idx = -1; return ret; } static inline u64 cstate_pmu_read_counter(struct perf_event *event) { u64 val; rdmsrl(event->hw.event_base, val); return val; } static void cstate_pmu_event_update(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = cstate_pmu_read_counter(event); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; local64_add(new_raw_count - prev_raw_count, &event->count); } static void cstate_pmu_event_start(struct perf_event *event, int mode) { local64_set(&event->hw.prev_count, cstate_pmu_read_counter(event)); } static void cstate_pmu_event_stop(struct perf_event *event, int mode) { cstate_pmu_event_update(event); } static void cstate_pmu_event_del(struct perf_event *event, int mode) { cstate_pmu_event_stop(event, PERF_EF_UPDATE); } static int cstate_pmu_event_add(struct perf_event *event, int mode) { if (mode & PERF_EF_START) cstate_pmu_event_start(event, mode); return 0; } static void cstate_cpu_exit(int cpu) { int i, id, target; /* cpu exit for cstate core */ if (has_cstate_core) { id = topology_core_id(cpu); target = -1; for_each_online_cpu(i) { if (i == cpu) continue; if (id == topology_core_id(i)) { target = i; break; } } if (cpumask_test_and_clear_cpu(cpu, &cstate_core_cpu_mask) && target >= 0) cpumask_set_cpu(target, &cstate_core_cpu_mask); WARN_ON(cpumask_empty(&cstate_core_cpu_mask)); if (target >= 0) perf_pmu_migrate_context(&cstate_core_pmu, cpu, target); } /* cpu exit for cstate pkg */ if (has_cstate_pkg) { id = topology_physical_package_id(cpu); target = -1; for_each_online_cpu(i) { if (i == cpu) continue; if (id == topology_physical_package_id(i)) { target = i; break; } } if (cpumask_test_and_clear_cpu(cpu, &cstate_pkg_cpu_mask) && target >= 0) cpumask_set_cpu(target, &cstate_pkg_cpu_mask); WARN_ON(cpumask_empty(&cstate_pkg_cpu_mask)); if (target >= 0) perf_pmu_migrate_context(&cstate_pkg_pmu, cpu, target); } } static void cstate_cpu_init(int cpu) { int i, id; /* cpu init for cstate core */ if (has_cstate_core) { id = topology_core_id(cpu); for_each_cpu(i, &cstate_core_cpu_mask) { if (id == topology_core_id(i)) break; } if (i >= nr_cpu_ids) cpumask_set_cpu(cpu, &cstate_core_cpu_mask); } /* cpu init for cstate pkg */ if (has_cstate_pkg) { id = topology_physical_package_id(cpu); for_each_cpu(i, &cstate_pkg_cpu_mask) { if (id == topology_physical_package_id(i)) break; } if (i >= nr_cpu_ids) cpumask_set_cpu(cpu, &cstate_pkg_cpu_mask); } } static int cstate_cpu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: break; case CPU_STARTING: cstate_cpu_init(cpu); break; case CPU_UP_CANCELED: case CPU_DYING: break; case CPU_ONLINE: case CPU_DEAD: break; case CPU_DOWN_PREPARE: cstate_cpu_exit(cpu); break; default: break; } return NOTIFY_OK; } /* * Probe the cstate events and insert the available one into sysfs attrs * Return false if there is no available events. */ static bool cstate_probe_msr(struct perf_cstate_msr *msr, struct attribute **events_attrs, int max_event_nr) { int i, j = 0; u64 val; /* Probe the cstate events. */ for (i = 0; i < max_event_nr; i++) { if (!msr[i].test(i) || rdmsrl_safe(msr[i].msr, &val)) msr[i].attr = NULL; } /* List remaining events in the sysfs attrs. */ for (i = 0; i < max_event_nr; i++) { if (msr[i].attr) events_attrs[j++] = &msr[i].attr->attr.attr; } events_attrs[j] = NULL; return (j > 0) ? true : false; } static int __init cstate_init(void) { /* SLM has different MSR for PKG C6 */ switch (boot_cpu_data.x86_model) { case 55: case 76: case 77: pkg_msr[PERF_CSTATE_PKG_C6_RES].msr = MSR_PKG_C7_RESIDENCY; } if (cstate_probe_msr(core_msr, core_events_attrs, PERF_CSTATE_CORE_EVENT_MAX)) has_cstate_core = true; if (cstate_probe_msr(pkg_msr, pkg_events_attrs, PERF_CSTATE_PKG_EVENT_MAX)) has_cstate_pkg = true; return (has_cstate_core || has_cstate_pkg) ? 0 : -ENODEV; } static void __init cstate_cpumask_init(void) { int cpu; cpu_notifier_register_begin(); for_each_online_cpu(cpu) cstate_cpu_init(cpu); __perf_cpu_notifier(cstate_cpu_notifier); cpu_notifier_register_done(); } static struct pmu cstate_core_pmu = { .attr_groups = core_attr_groups, .name = "cstate_core", .task_ctx_nr = perf_invalid_context, .event_init = cstate_pmu_event_init, .add = cstate_pmu_event_add, /* must have */ .del = cstate_pmu_event_del, /* must have */ .start = cstate_pmu_event_start, .stop = cstate_pmu_event_stop, .read = cstate_pmu_event_update, .capabilities = PERF_PMU_CAP_NO_INTERRUPT, }; static struct pmu cstate_pkg_pmu = { .attr_groups = pkg_attr_groups, .name = "cstate_pkg", .task_ctx_nr = perf_invalid_context, .event_init = cstate_pmu_event_init, .add = cstate_pmu_event_add, /* must have */ .del = cstate_pmu_event_del, /* must have */ .start = cstate_pmu_event_start, .stop = cstate_pmu_event_stop, .read = cstate_pmu_event_update, .capabilities = PERF_PMU_CAP_NO_INTERRUPT, }; static void __init cstate_pmus_register(void) { int err; if (has_cstate_core) { err = perf_pmu_register(&cstate_core_pmu, cstate_core_pmu.name, -1); if (WARN_ON(err)) pr_info("Failed to register PMU %s error %d\n", cstate_core_pmu.name, err); } if (has_cstate_pkg) { err = perf_pmu_register(&cstate_pkg_pmu, cstate_pkg_pmu.name, -1); if (WARN_ON(err)) pr_info("Failed to register PMU %s error %d\n", cstate_pkg_pmu.name, err); } } static int __init cstate_pmu_init(void) { int err; if (cpu_has_hypervisor) return -ENODEV; err = cstate_init(); if (err) return err; cstate_cpumask_init(); cstate_pmus_register(); return 0; } device_initcall(cstate_pmu_init);