/* sched.c - SPU scheduler. * * Copyright (C) IBM 2005 * Author: Mark Nutter * * 2006-03-31 NUMA domains added. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #define SPU_MIN_TIMESLICE (100 * HZ / 1000) #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1) struct spu_prio_array { unsigned long bitmap[SPU_BITMAP_SIZE]; struct list_head runq[MAX_PRIO]; spinlock_t runq_lock; struct list_head active_list[MAX_NUMNODES]; struct mutex active_mutex[MAX_NUMNODES]; }; static struct spu_prio_array *spu_prio; static inline int node_allowed(int node) { cpumask_t mask; if (!nr_cpus_node(node)) return 0; mask = node_to_cpumask(node); if (!cpus_intersects(mask, current->cpus_allowed)) return 0; return 1; } /** * spu_add_to_active_list - add spu to active list * @spu: spu to add to the active list */ static void spu_add_to_active_list(struct spu *spu) { mutex_lock(&spu_prio->active_mutex[spu->node]); list_add_tail(&spu->list, &spu_prio->active_list[spu->node]); mutex_unlock(&spu_prio->active_mutex[spu->node]); } /** * spu_remove_from_active_list - remove spu from active list * @spu: spu to remove from the active list */ static void spu_remove_from_active_list(struct spu *spu) { int node = spu->node; mutex_lock(&spu_prio->active_mutex[node]); list_del_init(&spu->list); mutex_unlock(&spu_prio->active_mutex[node]); } static inline void mm_needs_global_tlbie(struct mm_struct *mm) { int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; /* Global TLBIE broadcast required with SPEs. */ __cpus_setall(&mm->cpu_vm_mask, nr); } static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier); static void spu_switch_notify(struct spu *spu, struct spu_context *ctx) { blocking_notifier_call_chain(&spu_switch_notifier, ctx ? ctx->object_id : 0, spu); } int spu_switch_event_register(struct notifier_block * n) { return blocking_notifier_chain_register(&spu_switch_notifier, n); } int spu_switch_event_unregister(struct notifier_block * n) { return blocking_notifier_chain_unregister(&spu_switch_notifier, n); } /** * spu_bind_context - bind spu context to physical spu * @spu: physical spu to bind to * @ctx: context to bind */ static void spu_bind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid, spu->number, spu->node); spu->ctx = ctx; spu->flags = 0; ctx->spu = spu; ctx->ops = &spu_hw_ops; spu->pid = current->pid; spu->mm = ctx->owner; mm_needs_global_tlbie(spu->mm); spu->ibox_callback = spufs_ibox_callback; spu->wbox_callback = spufs_wbox_callback; spu->stop_callback = spufs_stop_callback; spu->mfc_callback = spufs_mfc_callback; spu->dma_callback = spufs_dma_callback; mb(); spu_unmap_mappings(ctx); spu_restore(&ctx->csa, spu); spu->timestamp = jiffies; spu_cpu_affinity_set(spu, raw_smp_processor_id()); spu_switch_notify(spu, ctx); spu_add_to_active_list(spu); ctx->state = SPU_STATE_RUNNABLE; } /** * spu_unbind_context - unbind spu context from physical spu * @spu: physical spu to unbind from * @ctx: context to unbind */ static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__, spu->pid, spu->number, spu->node); spu_remove_from_active_list(spu); spu_switch_notify(spu, NULL); spu_unmap_mappings(ctx); spu_save(&ctx->csa, spu); spu->timestamp = jiffies; ctx->state = SPU_STATE_SAVED; spu->ibox_callback = NULL; spu->wbox_callback = NULL; spu->stop_callback = NULL; spu->mfc_callback = NULL; spu->dma_callback = NULL; spu->mm = NULL; spu->pid = 0; ctx->ops = &spu_backing_ops; ctx->spu = NULL; spu->flags = 0; spu->ctx = NULL; } /** * spu_add_to_rq - add a context to the runqueue * @ctx: context to add */ static void spu_add_to_rq(struct spu_context *ctx) { spin_lock(&spu_prio->runq_lock); list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); set_bit(ctx->prio, spu_prio->bitmap); spin_unlock(&spu_prio->runq_lock); } /** * spu_del_from_rq - remove a context from the runqueue * @ctx: context to remove */ static void spu_del_from_rq(struct spu_context *ctx) { spin_lock(&spu_prio->runq_lock); list_del_init(&ctx->rq); if (list_empty(&spu_prio->runq[ctx->prio])) clear_bit(ctx->prio, spu_prio->bitmap); spin_unlock(&spu_prio->runq_lock); } /** * spu_grab_context - remove one context from the runqueue * @prio: priority of the context to be removed * * This function removes one context from the runqueue for priority @prio. * If there is more than one context with the given priority the first * task on the runqueue will be taken. * * Returns the spu_context it just removed. * * Must be called with spu_prio->runq_lock held. */ static struct spu_context *spu_grab_context(int prio) { struct list_head *rq = &spu_prio->runq[prio]; if (list_empty(rq)) return NULL; return list_entry(rq->next, struct spu_context, rq); } static void spu_prio_wait(struct spu_context *ctx) { DEFINE_WAIT(wait); set_bit(SPU_SCHED_WAKE, &ctx->sched_flags); prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); if (!signal_pending(current)) { mutex_unlock(&ctx->state_mutex); schedule(); mutex_lock(&ctx->state_mutex); } __set_current_state(TASK_RUNNING); remove_wait_queue(&ctx->stop_wq, &wait); clear_bit(SPU_SCHED_WAKE, &ctx->sched_flags); } /** * spu_reschedule - try to find a runnable context for a spu * @spu: spu available * * This function is called whenever a spu becomes idle. It looks for the * most suitable runnable spu context and schedules it for execution. */ static void spu_reschedule(struct spu *spu) { int best; spu_free(spu); spin_lock(&spu_prio->runq_lock); best = sched_find_first_bit(spu_prio->bitmap); if (best < MAX_PRIO) { struct spu_context *ctx = spu_grab_context(best); if (ctx && test_bit(SPU_SCHED_WAKE, &ctx->sched_flags)) wake_up(&ctx->stop_wq); } spin_unlock(&spu_prio->runq_lock); } static struct spu *spu_get_idle(struct spu_context *ctx) { struct spu *spu = NULL; int node = cpu_to_node(raw_smp_processor_id()); int n; for (n = 0; n < MAX_NUMNODES; n++, node++) { node = (node < MAX_NUMNODES) ? node : 0; if (!node_allowed(node)) continue; spu = spu_alloc_node(node); if (spu) break; } return spu; } /* The three externally callable interfaces * for the scheduler begin here. * * spu_activate - bind a context to SPU, waiting as needed. * spu_deactivate - unbind a context from its SPU. * spu_yield - yield an SPU if others are waiting. */ /** * spu_activate - find a free spu for a context and execute it * @ctx: spu context to schedule * @flags: flags (currently ignored) * * Tries to find a free spu to run @ctx. If no free spu is availble * add the context to the runqueue so it gets woken up once an spu * is available. */ int spu_activate(struct spu_context *ctx, unsigned long flags) { if (ctx->spu) return 0; do { struct spu *spu; spu = spu_get_idle(ctx); if (spu) { spu_bind_context(spu, ctx); return 0; } spu_add_to_rq(ctx); if (!(flags & SPU_ACTIVATE_NOWAKE)) spu_prio_wait(ctx); spu_del_from_rq(ctx); } while (!signal_pending(current)); return -ERESTARTSYS; } /** * spu_deactivate - unbind a context from it's physical spu * @ctx: spu context to unbind * * Unbind @ctx from the physical spu it is running on and schedule * the highest priority context to run on the freed physical spu. */ void spu_deactivate(struct spu_context *ctx) { struct spu *spu = ctx->spu; if (spu) { spu_unbind_context(spu, ctx); spu_reschedule(spu); } } void spu_yield(struct spu_context *ctx) { struct spu *spu; int need_yield = 0; if (mutex_trylock(&ctx->state_mutex)) { if ((spu = ctx->spu) != NULL) { int best = sched_find_first_bit(spu_prio->bitmap); if (best < MAX_PRIO) { pr_debug("%s: yielding SPU %d NODE %d\n", __FUNCTION__, spu->number, spu->node); spu_deactivate(ctx); need_yield = 1; } } mutex_unlock(&ctx->state_mutex); } if (unlikely(need_yield)) yield(); } int __init spu_sched_init(void) { int i; spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); if (!spu_prio) { printk(KERN_WARNING "%s: Unable to allocate priority queue.\n", __FUNCTION__); return 1; } for (i = 0; i < MAX_PRIO; i++) { INIT_LIST_HEAD(&spu_prio->runq[i]); __clear_bit(i, spu_prio->bitmap); } __set_bit(MAX_PRIO, spu_prio->bitmap); for (i = 0; i < MAX_NUMNODES; i++) { mutex_init(&spu_prio->active_mutex[i]); INIT_LIST_HEAD(&spu_prio->active_list[i]); } spin_lock_init(&spu_prio->runq_lock); return 0; } void __exit spu_sched_exit(void) { struct spu *spu, *tmp; int node; for (node = 0; node < MAX_NUMNODES; node++) { mutex_lock(&spu_prio->active_mutex[node]); list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node], list) { list_del_init(&spu->list); spu_free(spu); } mutex_unlock(&spu_prio->active_mutex[node]); } kfree(spu_prio); }