/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_decl.h" #ifndef CPU_FTR_COHERENT_ICACHE #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ #define CPU_FTR_NOEXECUTE 0 #endif int mem_init_done; unsigned long long memory_limit; #ifdef CONFIG_HIGHMEM pte_t *kmap_pte; EXPORT_SYMBOL(kmap_pte); pgprot_t kmap_prot; EXPORT_SYMBOL(kmap_prot); static inline pte_t *virt_to_kpte(unsigned long vaddr) { return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), vaddr), vaddr); } #endif int page_is_ram(unsigned long pfn) { #ifndef CONFIG_PPC64 /* XXX for now */ return pfn < max_pfn; #else unsigned long paddr = (pfn << PAGE_SHIFT); struct memblock_region *reg; for_each_memblock(memory, reg) if (paddr >= reg->base && paddr < (reg->base + reg->size)) return 1; return 0; #endif } pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); if (!page_is_ram(pfn)) vma_prot = pgprot_noncached(vma_prot); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); #ifdef CONFIG_MEMORY_HOTPLUG #ifdef CONFIG_NUMA int memory_add_physaddr_to_nid(u64 start) { return hot_add_scn_to_nid(start); } #endif int arch_add_memory(int nid, u64 start, u64 size) { struct pglist_data *pgdata; struct zone *zone; unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; pgdata = NODE_DATA(nid); start = (unsigned long)__va(start); if (create_section_mapping(start, start + size)) return -EINVAL; /* this should work for most non-highmem platforms */ zone = pgdata->node_zones + zone_for_memory(nid, start, size, 0); return __add_pages(nid, zone, start_pfn, nr_pages); } #ifdef CONFIG_MEMORY_HOTREMOVE int arch_remove_memory(u64 start, u64 size) { unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; struct zone *zone; int ret; zone = page_zone(pfn_to_page(start_pfn)); ret = __remove_pages(zone, start_pfn, nr_pages); if (ret) return ret; /* Remove htab bolted mappings for this section of memory */ start = (unsigned long)__va(start); ret = remove_section_mapping(start, start + size); /* Ensure all vmalloc mappings are flushed in case they also * hit that section of memory */ vm_unmap_aliases(); return ret; } #endif #endif /* CONFIG_MEMORY_HOTPLUG */ /* * walk_memory_resource() needs to make sure there is no holes in a given * memory range. PPC64 does not maintain the memory layout in /proc/iomem. * Instead it maintains it in memblock.memory structures. Walk through the * memory regions, find holes and callback for contiguous regions. */ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)) { struct memblock_region *reg; unsigned long end_pfn = start_pfn + nr_pages; unsigned long tstart, tend; int ret = -1; for_each_memblock(memory, reg) { tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); if (tstart >= tend) continue; ret = (*func)(tstart, tend - tstart, arg); if (ret) break; } return ret; } EXPORT_SYMBOL_GPL(walk_system_ram_range); #ifndef CONFIG_NEED_MULTIPLE_NODES void __init initmem_init(void) { max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; min_low_pfn = MEMORY_START >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM max_low_pfn = lowmem_end_addr >> PAGE_SHIFT; #endif /* Place all memblock_regions in the same node and merge contiguous * memblock_regions */ memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); /* XXX need to clip this if using highmem? */ sparse_memory_present_with_active_regions(0); } /* mark pages that don't exist as nosave */ static int __init mark_nonram_nosave(void) { struct memblock_region *reg, *prev = NULL; for_each_memblock(memory, reg) { if (prev && memblock_region_memory_end_pfn(prev) < memblock_region_memory_base_pfn(reg)) register_nosave_region(memblock_region_memory_end_pfn(prev), memblock_region_memory_base_pfn(reg)); prev = reg; } return 0; } #else /* CONFIG_NEED_MULTIPLE_NODES */ static int __init mark_nonram_nosave(void) { return 0; } #endif static bool zone_limits_final; static unsigned long max_zone_pfns[MAX_NR_ZONES] = { [0 ... MAX_NR_ZONES - 1] = ~0UL }; /* * Restrict the specified zone and all more restrictive zones * to be below the specified pfn. May not be called after * paging_init(). */ void __init limit_zone_pfn(enum zone_type zone, unsigned long pfn_limit) { int i; if (WARN_ON(zone_limits_final)) return; for (i = zone; i >= 0; i--) { if (max_zone_pfns[i] > pfn_limit) max_zone_pfns[i] = pfn_limit; } } /* * Find the least restrictive zone that is entirely below the * specified pfn limit. Returns < 0 if no suitable zone is found. * * pfn_limit must be u64 because it can exceed 32 bits even on 32-bit * systems -- the DMA limit can be higher than any possible real pfn. */ int dma_pfn_limit_to_zone(u64 pfn_limit) { enum zone_type top_zone = ZONE_NORMAL; int i; #ifdef CONFIG_HIGHMEM top_zone = ZONE_HIGHMEM; #endif for (i = top_zone; i >= 0; i--) { if (max_zone_pfns[i] <= pfn_limit) return i; } return -EPERM; } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long long total_ram = memblock_phys_mem_size(); phys_addr_t top_of_ram = memblock_end_of_DRAM(); enum zone_type top_zone; #ifdef CONFIG_PPC32 unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1); unsigned long end = __fix_to_virt(FIX_HOLE); for (; v < end; v += PAGE_SIZE) map_page(v, 0, 0); /* XXX gross */ #endif #ifdef CONFIG_HIGHMEM map_page(PKMAP_BASE, 0, 0); /* XXX gross */ pkmap_page_table = virt_to_kpte(PKMAP_BASE); kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); kmap_prot = PAGE_KERNEL; #endif /* CONFIG_HIGHMEM */ printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n", (unsigned long long)top_of_ram, total_ram); printk(KERN_DEBUG "Memory hole size: %ldMB\n", (long int)((top_of_ram - total_ram) >> 20)); #ifdef CONFIG_HIGHMEM top_zone = ZONE_HIGHMEM; limit_zone_pfn(ZONE_NORMAL, lowmem_end_addr >> PAGE_SHIFT); #else top_zone = ZONE_NORMAL; #endif limit_zone_pfn(top_zone, top_of_ram >> PAGE_SHIFT); zone_limits_final = true; free_area_init_nodes(max_zone_pfns); mark_nonram_nosave(); } void __init mem_init(void) { /* * book3s is limited to 16 page sizes due to encoding this in * a 4-bit field for slices. */ BUILD_BUG_ON(MMU_PAGE_COUNT > 16); #ifdef CONFIG_SWIOTLB swiotlb_init(0); #endif high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); set_max_mapnr(max_pfn); free_all_bootmem(); #ifdef CONFIG_HIGHMEM { unsigned long pfn, highmem_mapnr; highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT; for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { phys_addr_t paddr = (phys_addr_t)pfn << PAGE_SHIFT; struct page *page = pfn_to_page(pfn); if (!memblock_is_reserved(paddr)) free_highmem_page(page); } } #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_SMP) /* * If smp is enabled, next_tlbcam_idx is initialized in the cpu up * functions.... do it here for the non-smp case. */ per_cpu(next_tlbcam_idx, smp_processor_id()) = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; #endif mem_init_print_info(NULL); #ifdef CONFIG_PPC32 pr_info("Kernel virtual memory layout:\n"); pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP); #ifdef CONFIG_HIGHMEM pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n", PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP)); #endif /* CONFIG_HIGHMEM */ #ifdef CONFIG_NOT_COHERENT_CACHE pr_info(" * 0x%08lx..0x%08lx : consistent mem\n", IOREMAP_TOP, IOREMAP_TOP + CONFIG_CONSISTENT_SIZE); #endif /* CONFIG_NOT_COHERENT_CACHE */ pr_info(" * 0x%08lx..0x%08lx : early ioremap\n", ioremap_bot, IOREMAP_TOP); pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n", VMALLOC_START, VMALLOC_END); #endif /* CONFIG_PPC32 */ mem_init_done = 1; } void free_initmem(void) { ppc_md.progress = ppc_printk_progress; free_initmem_default(POISON_FREE_INITMEM); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { free_reserved_area((void *)start, (void *)end, -1, "initrd"); } #endif /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void flush_dcache_icache_page(struct page *page) { #ifdef CONFIG_HUGETLB_PAGE if (PageCompound(page)) { flush_dcache_icache_hugepage(page); return; } #endif #ifdef CONFIG_BOOKE { void *start = kmap_atomic(page); __flush_dcache_icache(start); kunmap_atomic(start); } #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) /* On 8xx there is no need to kmap since highmem is not supported */ __flush_dcache_icache(page_address(page)); #else __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); #endif } EXPORT_SYMBOL(flush_dcache_icache_page); void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); /* * We shouldn't have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ flush_dcache_page(pg); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif flush_dcache_page(pg); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); kunmap(page); } EXPORT_SYMBOL(flush_icache_user_range); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the pte lock held. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { #ifdef CONFIG_PPC_STD_MMU /* * We don't need to worry about _PAGE_PRESENT here because we are * called with either mm->page_table_lock held or ptl lock held */ unsigned long access = 0, trap; /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(*ptep) || address >= TASK_SIZE) return; /* We try to figure out if we are coming from an instruction * access fault and pass that down to __hash_page so we avoid * double-faulting on execution of fresh text. We have to test * for regs NULL since init will get here first thing at boot * * We also avoid filling the hash if not coming from a fault */ if (current->thread.regs == NULL) return; trap = TRAP(current->thread.regs); if (trap == 0x400) access |= _PAGE_EXEC; else if (trap != 0x300) return; hash_preload(vma->vm_mm, address, access, trap); #endif /* CONFIG_PPC_STD_MMU */ #if (defined(CONFIG_PPC_BOOK3E_64) || defined(CONFIG_PPC_FSL_BOOK3E)) \ && defined(CONFIG_HUGETLB_PAGE) if (is_vm_hugetlb_page(vma)) book3e_hugetlb_preload(vma, address, *ptep); #endif } /* * System memory should not be in /proc/iomem but various tools expect it * (eg kdump). */ static int __init add_system_ram_resources(void) { struct memblock_region *reg; for_each_memblock(memory, reg) { struct resource *res; unsigned long base = reg->base; unsigned long size = reg->size; res = kzalloc(sizeof(struct resource), GFP_KERNEL); WARN_ON(!res); if (res) { res->name = "System RAM"; res->start = base; res->end = base + size - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; WARN_ON(request_resource(&iomem_resource, res) < 0); } } return 0; } subsys_initcall(add_system_ram_resources); #ifdef CONFIG_STRICT_DEVMEM /* * devmem_is_allowed(): check to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * Access has to be given to non-kernel-ram areas as well, these contain the * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pfn) { if (iomem_is_exclusive(pfn << PAGE_SHIFT)) return 0; if (!page_is_ram(pfn)) return 1; if (page_is_rtas_user_buf(pfn)) return 1; return 0; } #endif /* CONFIG_STRICT_DEVMEM */