/* * drivers/mtd/nand/fsmc_nand.c * * ST Microelectronics * Flexible Static Memory Controller (FSMC) * Driver for NAND portions * * Copyright © 2010 ST Microelectronics * Vipin Kumar * Ashish Priyadarshi * * Based on drivers/mtd/nand/nomadik_nand.c * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct nand_ecclayout fsmc_ecc1_128_layout = { .eccbytes = 24, .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, .oobfree = { {.offset = 8, .length = 8}, {.offset = 24, .length = 8}, {.offset = 40, .length = 8}, {.offset = 56, .length = 8}, {.offset = 72, .length = 8}, {.offset = 88, .length = 8}, {.offset = 104, .length = 8}, {.offset = 120, .length = 8} } }; static struct nand_ecclayout fsmc_ecc1_64_layout = { .eccbytes = 12, .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52}, .oobfree = { {.offset = 8, .length = 8}, {.offset = 24, .length = 8}, {.offset = 40, .length = 8}, {.offset = 56, .length = 8}, } }; static struct nand_ecclayout fsmc_ecc1_16_layout = { .eccbytes = 3, .eccpos = {2, 3, 4}, .oobfree = { {.offset = 8, .length = 8}, } }; /* * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46 * bytes are free for use. */ static struct nand_ecclayout fsmc_ecc4_256_layout = { .eccbytes = 208, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 3}, {.offset = 143, .length = 3}, {.offset = 159, .length = 3}, {.offset = 175, .length = 3}, {.offset = 191, .length = 3}, {.offset = 207, .length = 3}, {.offset = 223, .length = 3}, {.offset = 239, .length = 3}, {.offset = 255, .length = 1} } }; /* * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 * bytes are free for use. */ static struct nand_ecclayout fsmc_ecc4_224_layout = { .eccbytes = 104, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 97} } }; /* * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22 * bytes are free for use. */ static struct nand_ecclayout fsmc_ecc4_128_layout = { .eccbytes = 104, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 3}, {.offset = 79, .length = 3}, {.offset = 95, .length = 3}, {.offset = 111, .length = 3}, {.offset = 127, .length = 1} } }; /* * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10 * bytes are free for use. */ static struct nand_ecclayout fsmc_ecc4_64_layout = { .eccbytes = 52, .eccpos = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, }, .oobfree = { {.offset = 15, .length = 3}, {.offset = 31, .length = 3}, {.offset = 47, .length = 3}, {.offset = 63, .length = 1}, } }; /* * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One * byte is free for use. */ static struct nand_ecclayout fsmc_ecc4_16_layout = { .eccbytes = 13, .eccpos = { 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, .oobfree = { {.offset = 15, .length = 1}, } }; /* * ECC placement definitions in oobfree type format. * There are 13 bytes of ecc for every 512 byte block and it has to be read * consecutively and immediately after the 512 byte data block for hardware to * generate the error bit offsets in 512 byte data. * Managing the ecc bytes in the following way makes it easier for software to * read ecc bytes consecutive to data bytes. This way is similar to * oobfree structure maintained already in generic nand driver */ static struct fsmc_eccplace fsmc_ecc4_lp_place = { .eccplace = { {.offset = 2, .length = 13}, {.offset = 18, .length = 13}, {.offset = 34, .length = 13}, {.offset = 50, .length = 13}, {.offset = 66, .length = 13}, {.offset = 82, .length = 13}, {.offset = 98, .length = 13}, {.offset = 114, .length = 13} } }; static struct fsmc_eccplace fsmc_ecc4_sp_place = { .eccplace = { {.offset = 0, .length = 4}, {.offset = 6, .length = 9} } }; /** * struct fsmc_nand_data - structure for FSMC NAND device state * * @pid: Part ID on the AMBA PrimeCell format * @mtd: MTD info for a NAND flash. * @nand: Chip related info for a NAND flash. * @partitions: Partition info for a NAND Flash. * @nr_partitions: Total number of partition of a NAND flash. * * @ecc_place: ECC placing locations in oobfree type format. * @bank: Bank number for probed device. * @clk: Clock structure for FSMC. * * @read_dma_chan: DMA channel for read access * @write_dma_chan: DMA channel for write access to NAND * @dma_access_complete: Completion structure * * @data_pa: NAND Physical port for Data. * @data_va: NAND port for Data. * @cmd_va: NAND port for Command. * @addr_va: NAND port for Address. * @regs_va: FSMC regs base address. */ struct fsmc_nand_data { u32 pid; struct nand_chip nand; struct mtd_partition *partitions; unsigned int nr_partitions; struct fsmc_eccplace *ecc_place; unsigned int bank; struct device *dev; enum access_mode mode; struct clk *clk; /* DMA related objects */ struct dma_chan *read_dma_chan; struct dma_chan *write_dma_chan; struct completion dma_access_complete; struct fsmc_nand_timings *dev_timings; dma_addr_t data_pa; void __iomem *data_va; void __iomem *cmd_va; void __iomem *addr_va; void __iomem *regs_va; void (*select_chip)(uint32_t bank, uint32_t busw); }; static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); } /* Assert CS signal based on chipnr */ static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsmc_nand_data *host; host = mtd_to_fsmc(mtd); switch (chipnr) { case -1: chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: case 1: case 2: case 3: if (host->select_chip) host->select_chip(chipnr, chip->options & NAND_BUSWIDTH_16); break; default: dev_err(host->dev, "unsupported chip-select %d\n", chipnr); } } /* * fsmc_cmd_ctrl - For facilitaing Hardware access * This routine allows hardware specific access to control-lines(ALE,CLE) */ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd_to_nand(mtd); struct fsmc_nand_data *host = mtd_to_fsmc(mtd); void __iomem *regs = host->regs_va; unsigned int bank = host->bank; if (ctrl & NAND_CTRL_CHANGE) { u32 pc; if (ctrl & NAND_CLE) { this->IO_ADDR_R = host->cmd_va; this->IO_ADDR_W = host->cmd_va; } else if (ctrl & NAND_ALE) { this->IO_ADDR_R = host->addr_va; this->IO_ADDR_W = host->addr_va; } else { this->IO_ADDR_R = host->data_va; this->IO_ADDR_W = host->data_va; } pc = readl(FSMC_NAND_REG(regs, bank, PC)); if (ctrl & NAND_NCE) pc |= FSMC_ENABLE; else pc &= ~FSMC_ENABLE; writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); } mb(); if (cmd != NAND_CMD_NONE) writeb_relaxed(cmd, this->IO_ADDR_W); } /* * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine * * This routine initializes timing parameters related to NAND memory access in * FSMC registers */ static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, uint32_t busw, struct fsmc_nand_timings *timings) { uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; uint32_t tclr, tar, thiz, thold, twait, tset; struct fsmc_nand_timings *tims; struct fsmc_nand_timings default_timings = { .tclr = FSMC_TCLR_1, .tar = FSMC_TAR_1, .thiz = FSMC_THIZ_1, .thold = FSMC_THOLD_4, .twait = FSMC_TWAIT_6, .tset = FSMC_TSET_0, }; if (timings) tims = timings; else tims = &default_timings; tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; if (busw) writel_relaxed(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC)); else writel_relaxed(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC)); writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, FSMC_NAND_REG(regs, bank, PC)); writel_relaxed(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM)); writel_relaxed(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB)); } /* * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers */ static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); void __iomem *regs = host->regs_va; uint32_t bank = host->bank; writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, FSMC_NAND_REG(regs, bank, PC)); writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, FSMC_NAND_REG(regs, bank, PC)); writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, FSMC_NAND_REG(regs, bank, PC)); } /* * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to * max of 8-bits) */ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); void __iomem *regs = host->regs_va; uint32_t bank = host->bank; uint32_t ecc_tmp; unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; do { if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) break; else cond_resched(); } while (!time_after_eq(jiffies, deadline)); if (time_after_eq(jiffies, deadline)) { dev_err(host->dev, "calculate ecc timed out\n"); return -ETIMEDOUT; } ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[3] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); ecc[4] = (uint8_t) (ecc_tmp >> 0); ecc[5] = (uint8_t) (ecc_tmp >> 8); ecc[6] = (uint8_t) (ecc_tmp >> 16); ecc[7] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); ecc[8] = (uint8_t) (ecc_tmp >> 0); ecc[9] = (uint8_t) (ecc_tmp >> 8); ecc[10] = (uint8_t) (ecc_tmp >> 16); ecc[11] = (uint8_t) (ecc_tmp >> 24); ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); ecc[12] = (uint8_t) (ecc_tmp >> 16); return 0; } /* * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to * max of 1-bit) */ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); void __iomem *regs = host->regs_va; uint32_t bank = host->bank; uint32_t ecc_tmp; ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); return 0; } /* Count the number of 0's in buff upto a max of max_bits */ static int count_written_bits(uint8_t *buff, int size, int max_bits) { int k, written_bits = 0; for (k = 0; k < size; k++) { written_bits += hweight8(~buff[k]); if (written_bits > max_bits) break; } return written_bits; } static void dma_complete(void *param) { struct fsmc_nand_data *host = param; complete(&host->dma_access_complete); } static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, enum dma_data_direction direction) { struct dma_chan *chan; struct dma_device *dma_dev; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dst, dma_src, dma_addr; dma_cookie_t cookie; unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; int ret; unsigned long time_left; if (direction == DMA_TO_DEVICE) chan = host->write_dma_chan; else if (direction == DMA_FROM_DEVICE) chan = host->read_dma_chan; else return -EINVAL; dma_dev = chan->device; dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); if (direction == DMA_TO_DEVICE) { dma_src = dma_addr; dma_dst = host->data_pa; } else { dma_src = host->data_pa; dma_dst = dma_addr; } tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); if (!tx) { dev_err(host->dev, "device_prep_dma_memcpy error\n"); ret = -EIO; goto unmap_dma; } tx->callback = dma_complete; tx->callback_param = host; cookie = tx->tx_submit(tx); ret = dma_submit_error(cookie); if (ret) { dev_err(host->dev, "dma_submit_error %d\n", cookie); goto unmap_dma; } dma_async_issue_pending(chan); time_left = wait_for_completion_timeout(&host->dma_access_complete, msecs_to_jiffies(3000)); if (time_left == 0) { dmaengine_terminate_all(chan); dev_err(host->dev, "wait_for_completion_timeout\n"); ret = -ETIMEDOUT; goto unmap_dma; } ret = 0; unmap_dma: dma_unmap_single(dma_dev->dev, dma_addr, len, direction); return ret; } /* * fsmc_write_buf - write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd_to_nand(mtd); if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && IS_ALIGNED(len, sizeof(uint32_t))) { uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) writel_relaxed(p[i], chip->IO_ADDR_W); } else { for (i = 0; i < len; i++) writeb_relaxed(buf[i], chip->IO_ADDR_W); } } /* * fsmc_read_buf - read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd_to_nand(mtd); if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && IS_ALIGNED(len, sizeof(uint32_t))) { uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) p[i] = readl_relaxed(chip->IO_ADDR_R); } else { for (i = 0; i < len; i++) buf[i] = readb_relaxed(chip->IO_ADDR_R); } } /* * fsmc_read_buf_dma - read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); dma_xfer(host, buf, len, DMA_FROM_DEVICE); } /* * fsmc_write_buf_dma - write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, int len) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); } /* * fsmc_read_page_hwecc * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller expects OOB data read to chip->oob_poi * @page: page number to read * * This routine is needed for fsmc version 8 as reading from NAND chip has to be * performed in a strict sequence as follows: * data(512 byte) -> ecc(13 byte) * After this read, fsmc hardware generates and reports error data bits(up to a * max of 8 bits) */ static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); struct fsmc_eccplace *ecc_place = host->ecc_place; int i, j, s, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; int off, len, group = 0; /* * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we * end up reading 14 bytes (7 words) from oob. The local array is * to maintain word alignment */ uint16_t ecc_oob[7]; uint8_t *oob = (uint8_t *)&ecc_oob[0]; unsigned int max_bitflips = 0; for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); for (j = 0; j < eccbytes;) { off = ecc_place->eccplace[group].offset; len = ecc_place->eccplace[group].length; group++; /* * length is intentionally kept a higher multiple of 2 * to read at least 13 bytes even in case of 16 bit NAND * devices */ if (chip->options & NAND_BUSWIDTH_16) len = roundup(len, 2); chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); chip->read_buf(mtd, oob + j, len); j += len; } memcpy(&ecc_code[i], oob, chip->ecc.bytes); chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /* * fsmc_bch8_correct_data * @mtd: mtd info structure * @dat: buffer of read data * @read_ecc: ecc read from device spare area * @calc_ecc: ecc calculated from read data * * calc_ecc is a 104 bit information containing maximum of 8 error * offset informations of 13 bits each in 512 bytes of read data. */ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsmc_nand_data *host = mtd_to_fsmc(mtd); void __iomem *regs = host->regs_va; unsigned int bank = host->bank; uint32_t err_idx[8]; uint32_t num_err, i; uint32_t ecc1, ecc2, ecc3, ecc4; num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; /* no bit flipping */ if (likely(num_err == 0)) return 0; /* too many errors */ if (unlikely(num_err > 8)) { /* * This is a temporary erase check. A newly erased page read * would result in an ecc error because the oob data is also * erased to FF and the calculated ecc for an FF data is not * FF..FF. * This is a workaround to skip performing correction in case * data is FF..FF * * Logic: * For every page, each bit written as 0 is counted until these * number of bits are greater than 8 (the maximum correction * capability of FSMC for each 512 + 13 bytes) */ int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); int bits_data = count_written_bits(dat, chip->ecc.size, 8); if ((bits_ecc + bits_data) <= 8) { if (bits_data) memset(dat, 0xff, chip->ecc.size); return bits_data; } return -EBADMSG; } /* * ------------------- calc_ecc[] bit wise -----------|--13 bits--| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| * * calc_ecc is a 104 bit information containing maximum of 8 error * offset informations of 13 bits each. calc_ecc is copied into a * uint64_t array and error offset indexes are populated in err_idx * array */ ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); err_idx[0] = (ecc1 >> 0) & 0x1FFF; err_idx[1] = (ecc1 >> 13) & 0x1FFF; err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); err_idx[3] = (ecc2 >> 7) & 0x1FFF; err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); err_idx[5] = (ecc3 >> 1) & 0x1FFF; err_idx[6] = (ecc3 >> 14) & 0x1FFF; err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); i = 0; while (num_err--) { change_bit(0, (unsigned long *)&err_idx[i]); change_bit(1, (unsigned long *)&err_idx[i]); if (err_idx[i] < chip->ecc.size * 8) { change_bit(err_idx[i], (unsigned long *)dat); i++; } } return i; } static bool filter(struct dma_chan *chan, void *slave) { chan->private = slave; return true; } #ifdef CONFIG_OF static int fsmc_nand_probe_config_dt(struct platform_device *pdev, struct device_node *np) { struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); u32 val; int ret; /* Set default NAND width to 8 bits */ pdata->width = 8; if (!of_property_read_u32(np, "bank-width", &val)) { if (val == 2) { pdata->width = 16; } else if (val != 1) { dev_err(&pdev->dev, "invalid bank-width %u\n", val); return -EINVAL; } } if (of_get_property(np, "nand-skip-bbtscan", NULL)) pdata->options = NAND_SKIP_BBTSCAN; pdata->nand_timings = devm_kzalloc(&pdev->dev, sizeof(*pdata->nand_timings), GFP_KERNEL); if (!pdata->nand_timings) return -ENOMEM; ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings, sizeof(*pdata->nand_timings)); if (ret) { dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n"); pdata->nand_timings = NULL; } /* Set default NAND bank to 0 */ pdata->bank = 0; if (!of_property_read_u32(np, "bank", &val)) { if (val > 3) { dev_err(&pdev->dev, "invalid bank %u\n", val); return -EINVAL; } pdata->bank = val; } return 0; } #else static int fsmc_nand_probe_config_dt(struct platform_device *pdev, struct device_node *np) { return -ENOSYS; } #endif /* * fsmc_nand_probe - Probe function * @pdev: platform device structure */ static int __init fsmc_nand_probe(struct platform_device *pdev) { struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct device_node __maybe_unused *np = pdev->dev.of_node; struct fsmc_nand_data *host; struct mtd_info *mtd; struct nand_chip *nand; struct resource *res; dma_cap_mask_t mask; int ret = 0; u32 pid; int i; if (np) { pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); pdev->dev.platform_data = pdata; ret = fsmc_nand_probe_config_dt(pdev, np); if (ret) { dev_err(&pdev->dev, "no platform data\n"); return -ENODEV; } } if (!pdata) { dev_err(&pdev->dev, "platform data is NULL\n"); return -EINVAL; } /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); host->data_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->data_va)) return PTR_ERR(host->data_va); host->data_pa = (dma_addr_t)res->start; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); host->addr_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->addr_va)) return PTR_ERR(host->addr_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); host->cmd_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->cmd_va)) return PTR_ERR(host->cmd_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); host->regs_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->regs_va)) return PTR_ERR(host->regs_va); host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "failed to fetch block clock\n"); return PTR_ERR(host->clk); } ret = clk_prepare_enable(host->clk); if (ret) goto err_clk_prepare_enable; /* * This device ID is actually a common AMBA ID as used on the * AMBA PrimeCell bus. However it is not a PrimeCell. */ for (pid = 0, i = 0; i < 4; i++) pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); host->pid = pid; dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " "revision %02x, config %02x\n", AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); host->bank = pdata->bank; host->select_chip = pdata->select_bank; host->partitions = pdata->partitions; host->nr_partitions = pdata->nr_partitions; host->dev = &pdev->dev; host->dev_timings = pdata->nand_timings; host->mode = pdata->mode; if (host->mode == USE_DMA_ACCESS) init_completion(&host->dma_access_complete); /* Link all private pointers */ mtd = nand_to_mtd(&host->nand); nand = &host->nand; nand->priv = host; nand_set_flash_node(nand, np); mtd->dev.parent = &pdev->dev; nand->IO_ADDR_R = host->data_va; nand->IO_ADDR_W = host->data_va; nand->cmd_ctrl = fsmc_cmd_ctrl; nand->chip_delay = 30; /* * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() * can overwrite this value if the DT provides a different value. */ nand->ecc.mode = NAND_ECC_HW; nand->ecc.hwctl = fsmc_enable_hwecc; nand->ecc.size = 512; nand->options = pdata->options; nand->select_chip = fsmc_select_chip; nand->badblockbits = 7; nand_set_flash_node(nand, np); if (pdata->width == FSMC_NAND_BW16) nand->options |= NAND_BUSWIDTH_16; switch (host->mode) { case USE_DMA_ACCESS: dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); host->read_dma_chan = dma_request_channel(mask, filter, pdata->read_dma_priv); if (!host->read_dma_chan) { dev_err(&pdev->dev, "Unable to get read dma channel\n"); goto err_req_read_chnl; } host->write_dma_chan = dma_request_channel(mask, filter, pdata->write_dma_priv); if (!host->write_dma_chan) { dev_err(&pdev->dev, "Unable to get write dma channel\n"); goto err_req_write_chnl; } nand->read_buf = fsmc_read_buf_dma; nand->write_buf = fsmc_write_buf_dma; break; default: case USE_WORD_ACCESS: nand->read_buf = fsmc_read_buf; nand->write_buf = fsmc_write_buf; break; } fsmc_nand_setup(host->regs_va, host->bank, nand->options & NAND_BUSWIDTH_16, host->dev_timings); if (AMBA_REV_BITS(host->pid) >= 8) { nand->ecc.read_page = fsmc_read_page_hwecc; nand->ecc.calculate = fsmc_read_hwecc_ecc4; nand->ecc.correct = fsmc_bch8_correct_data; nand->ecc.bytes = 13; nand->ecc.strength = 8; } /* * Scan to find existence of the device */ if (nand_scan_ident(mtd, 1, NULL)) { ret = -ENXIO; dev_err(&pdev->dev, "No NAND Device found!\n"); goto err_scan_ident; } if (AMBA_REV_BITS(host->pid) >= 8) { switch (mtd->oobsize) { case 16: nand->ecc.layout = &fsmc_ecc4_16_layout; host->ecc_place = &fsmc_ecc4_sp_place; break; case 64: nand->ecc.layout = &fsmc_ecc4_64_layout; host->ecc_place = &fsmc_ecc4_lp_place; break; case 128: nand->ecc.layout = &fsmc_ecc4_128_layout; host->ecc_place = &fsmc_ecc4_lp_place; break; case 224: nand->ecc.layout = &fsmc_ecc4_224_layout; host->ecc_place = &fsmc_ecc4_lp_place; break; case 256: nand->ecc.layout = &fsmc_ecc4_256_layout; host->ecc_place = &fsmc_ecc4_lp_place; break; default: dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", mtd->oobsize); ret = -EINVAL; goto err_probe; } } else { switch (nand->ecc.mode) { case NAND_ECC_HW: dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n"); nand->ecc.calculate = fsmc_read_hwecc_ecc1; nand->ecc.correct = nand_correct_data; nand->ecc.bytes = 3; nand->ecc.strength = 1; break; case NAND_ECC_SOFT_BCH: dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n"); break; default: dev_err(&pdev->dev, "Unsupported ECC mode!\n"); goto err_probe; } /* * Don't set layout for BCH4 SW ECC. This will be * generated later in nand_bch_init() later. */ if (nand->ecc.mode != NAND_ECC_SOFT_BCH) { switch (mtd->oobsize) { case 16: nand->ecc.layout = &fsmc_ecc1_16_layout; break; case 64: nand->ecc.layout = &fsmc_ecc1_64_layout; break; case 128: nand->ecc.layout = &fsmc_ecc1_128_layout; break; default: dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", mtd->oobsize); ret = -EINVAL; goto err_probe; } } } /* Second stage of scan to fill MTD data-structures */ if (nand_scan_tail(mtd)) { ret = -ENXIO; goto err_probe; } /* * The partition information can is accessed by (in the same precedence) * * command line through Bootloader, * platform data, * default partition information present in driver. */ /* * Check for partition info passed */ mtd->name = "nand"; ret = mtd_device_register(mtd, host->partitions, host->nr_partitions); if (ret) goto err_probe; platform_set_drvdata(pdev, host); dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); return 0; err_probe: err_scan_ident: if (host->mode == USE_DMA_ACCESS) dma_release_channel(host->write_dma_chan); err_req_write_chnl: if (host->mode == USE_DMA_ACCESS) dma_release_channel(host->read_dma_chan); err_req_read_chnl: clk_disable_unprepare(host->clk); err_clk_prepare_enable: clk_put(host->clk); return ret; } /* * Clean up routine */ static int fsmc_nand_remove(struct platform_device *pdev) { struct fsmc_nand_data *host = platform_get_drvdata(pdev); if (host) { nand_release(nand_to_mtd(&host->nand)); if (host->mode == USE_DMA_ACCESS) { dma_release_channel(host->write_dma_chan); dma_release_channel(host->read_dma_chan); } clk_disable_unprepare(host->clk); clk_put(host->clk); } return 0; } #ifdef CONFIG_PM_SLEEP static int fsmc_nand_suspend(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); if (host) clk_disable_unprepare(host->clk); return 0; } static int fsmc_nand_resume(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); if (host) { clk_prepare_enable(host->clk); fsmc_nand_setup(host->regs_va, host->bank, host->nand.options & NAND_BUSWIDTH_16, host->dev_timings); } return 0; } #endif static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); #ifdef CONFIG_OF static const struct of_device_id fsmc_nand_id_table[] = { { .compatible = "st,spear600-fsmc-nand" }, { .compatible = "stericsson,fsmc-nand" }, {} }; MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); #endif static struct platform_driver fsmc_nand_driver = { .remove = fsmc_nand_remove, .driver = { .name = "fsmc-nand", .of_match_table = of_match_ptr(fsmc_nand_id_table), .pm = &fsmc_nand_pm_ops, }, }; module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");